AIML420 (2023) - Artificial Intelligence
Prescription
This course addresses concepts and techniques of artificial intelligence (AI). It provides a brief overview of AI history and search techniques, as well as covering important machine learning topics and algorithms with their applications, including neural networks and evolutionary algorithms. Other topics include probability and Bayesian networks, planning and scheduling. The course will also give a brief overview of a selection of other current topics in AI.
Course learning objectives
Students who pass this course will be able to:
- Explain fundamental concepts and techniques of artificial intelligence, particularly in areas of advanced search, machine learning, reasoning under uncertainty, planning and scheduling.
- Apply fundamental concepts and techniques of artificial intelligence to real world problems in regression, classification, clustering and simple planning tasks.
- Critically evaluate AI techniques described in AI research publications.
Course content
This course is designed for in-person study, and students are strongly recommended to attend lectures, tutorials and labs on campus. In particular, some assessment items or practical hands-on labs will require in-person attendance, although exceptions can be made under special circumstances.
Queries about any such exceptions can be sent to remote-enrolments@ecs.vuw.ac.nz.
=============================================
Artificial Intelligence (AI) is intelligence exhibited by machines. Examples include self-driving cars, automatically planning a holiday, generating sensible conversation, learning to predict fog at Wellington Airport, reading a web page to get the answer to a question, recognising handwritten digits, detecting identity by checking fingerprints, detecting network intrusions, controlling robot actuators, processing and recognising images and signals, discovering and detecting the mathematical or logical relationship between output variables and a large number of inputs in economic and engineering tasks, or optimising parameter values in complex engineering problems. AIML 420 is an introduction to the ideas and techniques that computer scientists have developed to address these kinds of tasks.
The lectures cover following main topics: search techniques, machine learning including basic learning concepts and algorithms, neural networks and evolutionary learning, reasoning under uncertainty, planning and scheduling, knowledge based systems and AI Philosophy. The course includes a substantial amount of programming. The course will cover both science and engineering applications.
Withdrawal from Course
Withdrawal dates and process:
https://www.wgtn.ac.nz/students/study/course-additions-withdrawals
Lecturers

Dr Heitor Murilo Gomes (Coordinator)

Dr Yi Mei
- yi.mei@vuw.ac.nz
- 04 886 5331
- CO 353 Cotton Building (All Blocks), Gate 7, Kelburn Parade, Kelburn
Prof Mengjie Zhang, for some tutorials and guest lectures
Dr Fangfang Zhang for some tutorials and/or guest lectures
Teaching Format
This course will be offered in-person and remotely. For students in Wellington, there will be a combination of in-person components and web/internet based resources. It will also be possible to take the course remotely for those who cannot attend on campus, with recorded lectures made available online.
During the trimester there will be typically two lectures and one tutorial per week.
Dates (trimester, teaching & break dates)
- Teaching: 27 February 2023 - 02 June 2023
- Break: 10 April 2023 - 23 April 2023
- Study period: 05 June 2023 - 08 June 2023
- Exam period: 09 June 2023 - 24 June 2023
Other Classes
There will be some scheduled helpdesks.
Set Texts and Recommended Readings
Required
There is not required textbook for AIML 420. You can learn all the course content from the lecture notes and slides.
Some online materials are available on the course website.
Recommended
A highly recommended reading is the book: Stuart J. Russell and Peter Norvig, Artificial Intelligence. A Modern Approach, Prentice-Hall, NJ (Available at the library and several bookstores and.) A lot of content of the course is from this book.
We will also provide a reading list via the course website.
Mandatory Course Requirements
There are no mandatory course requirements for this course.
If you believe that exceptional circumstances may prevent you from meeting the mandatory course requirements, contact the Course Coordinator for advice as soon as possible.
Assessment
This course will be assessed through assignments and two tests. There will be four assignments, which will involve a combination of programming and discussions.
The marks and feedback will be returned in two weeks after the submission of each assignment.
Assessment Item | Due Date or Test Date | CLO(s) | Percentage |
---|---|---|---|
Assignment 1 (3-4 weeks) | Week 5 | CLO: 1,2 | 15% |
Assignment 2 (3 weeks) | Week 7 | CLO: 1,2 | 12% |
Assignment 3 (2-3 weeks) | Week 10 | CLO: 1,2 | 10% |
Assignment 4 (2 weeks) | Week 12 | CLO: 1,2 | 8% |
Research report | Assessment period | CLO: 3 | 10% |
Test 1 | Week 8 | CLO: 1,2 | 10% |
Test 2 | Assessment period | CLO: 1,2 | 35% |
Penalties
The penalty for assignments that are handed in late without prior arrangement is one grade reduction per day. Assignments that are more than one week late will not be marked.
There are three late days for the assignments. Students can allocate these three days among the assignments freely.
Extensions
Individual extensions will only be granted in exceptional personal circumstances, and should be negotiated with the course coordinator before the deadline whenever possible. Documentation (eg, medical certificate) may be requested.
Submission & Return
All work should be submitted through the ECS submission system, accessible through the course web pages. Marks and comments will be returned through the ECS marking system, also available through the course web pages.
Workload
In order to maintain satisfactory progress in AIML 420, you should plan to spend an average of 10 hours per week on this course. A plausible and approximate breakdown for these hours would be:
- Lectures and tutorials: 3 hours
- Readings, revision/review, and assignments: 7 hours
If assignments are left until the last minute, the amount of work spent in particular weeks may vary greatly.
Teaching Plan
Communication of Additional Information
1. Course website: https://ecs.wgtn.ac.nz/Courses/AIML420_2023T1/
2. Course forum
3. Email sent by the lecturers to students at their ecs email addresses.
Links to General Course Information
- Academic Integrity and Plagiarism: https://www.wgtn.ac.nz/students/support/student-interest-and-conflict-resolution/academic-integrity
- Academic Progress: https://www.wgtn.ac.nz/students/study/progress/academic-progess (including restrictions and non-engagement)
- Dates and deadlines: https://www.wgtn.ac.nz/students/study/dates
- Grades: https://www.wgtn.ac.nz/students/study/progress/grades
- Special passes: Refer to the Assessment Handbook, at https://www.wgtn.ac.nz/documents/policy/staff-policy/assessment-handbook.pdf
- Statutes and policies, e.g. Student Conduct Statute: https://www.wgtn.ac.nz/about/governance/strategy
- Student support: https://www.wgtn.ac.nz/students/support
- Students with disabilities: https://www.wgtn.ac.nz/st_services/disability/
- Student Charter: https://www.wgtn.ac.nz/learning-teaching/learning-partnerships/student-charter
- Student Feedback on University courses may be found at: http://www.cad.vuw.ac.nz/feedback/feedback_display.php
- Terms and Conditions: https://www.wgtn.ac.nz/study/apply-enrol/terms-conditions/student-contract
- Turnitin: http://www.cad.vuw.ac.nz/wiki/index.php/Turnitin
- University structure: https://www.wgtn.ac.nz/about/governance/structure
- The Use of Te Reo Māori for Assessment Policy:
Victoria University values te reo Māori. Students who wish to submit any of their assessments in te reo Māori must refer to The Use of Te Reo Māori for Assessment Policy
He mea nui te reo Māori ki te Whare Wānanga o te Ūpoko o te Ika. Ki te pīrangi koe ki te tuhituhi i ō aro matawai i roto i te reo Māori, tēnā me mātua whakapā atu ki te kaupapa here, The Use of Te Reo Māori for Assessment Policy - VUWSA: http://www.vuwsa.org.nz
Offering CRN: 33065
Points: 15
Prerequisites: 60 300-level CGRA, COMP, CYBR, DATA, SWEN or NWEN pts
Restrictions: COMP 307, COMP 420
Duration: 27 February 2023 - 25 June 2023
Starts: Trimester 1
Campus: Kelburn