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2024 AIML231 Techniques in ML: Assignment 1 
 
 
This assignment has 100 marks in total and is due on 23:59pm, 25th March 2024. 
Please submit your report as a single .pdf file including figures and tables as required, 
and your source code as separate files (a Jupyter notebook as a .ipynb file and/or .py 
files). Make sure you read the Assessment and Submission sections at the end of this 
assignment description. This assignment contributes 20% to your overall course 
grade. 

Objec&ves 
This assignment involves trying out a variety of classification algorithms. It requires 
use of python, numpy, matplotlib, and scikit-learn, and serves as an introduction to 
all those tools. You can run Python based on the template Jupyter notebook and 
Python code templates provided. 

1 Classifica&on using the SKLearn library [55 marks] 
This part of the assignment is to explore six classifiers supported by scikit-learn and 
investigate the performance impact of the control hyperparameter of each of these 
classifiers on three datasets by setting the hyperparameters to a range of plausible 
values and examining how well the classifiers performs on “held out” (i.e., test) data.  
 
To do this you can use the train-test-split() function from scikit-learn. To get better 
estimates, simply repeat 50 times with different random splits (set the seed to get 
reproducible results). For simplicity, use a 50:50 train:test split in all cases. For each 
setting of the hyperparameter, you then have a distribution over 50 different 
classification accuracies on the test set. A nice way to visualize these scores is to 
produce a box plot where the x-axis gives options for the hyperparameter of the 
classifier, while the y-axis indicates the spread for classification accuracies of the 
classifier. Titles and Axis Labels are needed for clarity. 
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1.1 Machine Learning Models: 

You will experimentally study the following classifiers in scikit-learn: 
(a) KNeighborsClassifier (K nearest neighbors) 
(b) DecisionTreeClassifier (A decision tree (DT)) 
(c) LogisticRegression (essentially, a perceptron) 
(d) RandomForestClassifier (Random Forest) 
(e) MLPClassifier (Neural Network) 
(f) SVC (SVM classifier) 
 
1.2 Datasets: 

You will test the above models on the following three classification datasets (you can 
easily download the datasets from the .csv files provided with this assignment). 

1. steel-plates-fault (csv file provided as part of this assignment) 

2. ionosphere (csv file provided as part of this assignment) 

3. banknotes (csv file provided as part of this assignment) 

Please note that you need to use funcVon StandardScaler().fit_transform() provided 
by the Python module sklearn.preprocessing to standardize the value range of each 
feature in the dataset by removing the mean and scaling to unit variance. 
 
1.3 Tasks: 

You should: 
(i) Build a 6-by-3 (6 classifiers and 3 datasets) table to present the boxplots on the 

classifier accuracy versus parameter values (as the example table below). It 
probably won’t fit into one summary figure. If so, you can structure it as 
separate main plots, one per classifier, each consisting of several subplots for 
different datasets. 

 steel-plates-fault ionosphere banknotes 
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You need to consider the hyperparameter and the corresponding values for each 
classifier as summarized in Table 1 below. Other hyperparameters should be left 
with their default values. 

 
Table 1: Parameters for 6 classifiers 

 
(ii) Present two summary tables, with rows being classifiers, and columns being 

datasets. 
Table (1) is to contain the lowest mean test errors (not the classification 
accuracies on the test set; not the classification accuracies on the training set; 
not the test errors on the training set); 
Table (2) is to contain the corresponding hyperparameter values for obtaining 
the lowest mean test errors obtained in Table (1). 

(iii) Complete the template code to generate the ROC curves with respect to the 
SVC and the RandomForestClassifier on the three classification datasets. For 
SVC, use the RBF kernel function. For RandomForestClassifier, use the max 
depth setting of 5. 

(iv) Write a short report to compare and analyze the overall results as captured in 
the two tables in (ii), including discussions regarding which model has the best 
performance and why. Discuss how sensitive these classifiers are to the control 
hyperparameters. In addition, compare the ROC curves with respect to the SVC 
and the RandomForestClassifier. Discuss which of the two classifiers appear to 
perform better with respect to each classification dataset, based on the 
corresponding ROC curves. 

  
2 Implement a simple K-Nearest Neighbor classifier [15 marks] 
In this part of the assignment, you will gain hands-on experience with one of the most 
straightforward and intuitive machine learning algorithms: the k-Nearest Neighbors 
(k-NN) classifier. You will implement the k-NN algorithm in Python based on the 

ID Classifier Hyper 
Parameter 

Values 

1 KNeighborsClassifier “n_neighbors” [1,2,3,4,5] 
2 DecisionTreeClassifier “max_depth” [1,2,3,4,5,6,7,8,9,10] 
3 LogisticRegression “C” [0.1,0.5,1.0,2.0,5.0] 
4 RandomForestClassifier “max_depth” [1,2,3,4,5,6,7,8,9,10] 
5 MLPClassifier “alpha” [1e-5,1e-3,0.1,10.0] 
6 SVC “kernel” ['linear','poly','rbf', 'sigmoid'] 
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code template (i.e., knn_template.py) provided and then test your implementation 
on a small dataset. 
 
You need to conduct the following tasks for this part of the assignment. 
(1) Implement a simple k-NN Classifier: 

• Write a funcVon knn_classifier that takes in three parameters: training data 
(train_data), training labels (train_labels), and test data (test_data), and an 
opVonal k parameter with a default value of 3. 

• Your funcVon should calculate the Euclidean distance between every point in 
test_data and each point in train_data. 

• Based on these distances, idenVfy the k nearest neighbors for each test data 
point and determine the most common class label among them. 

• The funcVon should return the predicted class labels for the test_data. 
 

(2) Load the classificaTon dataset: 
• Write Python code to load the banknotes dataset (csv file provided as part of 

this assignment). 
• Use funcVon StandardScaler().fit_transform() provided by the Python 

module sklearn. preprocessing to standardize the value range of each feature 
in the dataset by removing the mean and scaling to unit variance. 

• Split the data into a training set (50%) and a tesVng set (50%) with a fixed 
random seed, such as 0. 

 

(3) TesTng your classifier: 
• Amer implemenVng the k-NN algorithm, apply it to the banknotes dataset. 
• Report the accuracy1 of your classifier on the test set. 

 
(4) ExperimentaTon: 

• Experiment with different values of k (e.g., 1, 3, 5, 7) and observe how the test 
accuracy changes with different k values. Provide a short paragraph to 
interpret your observaVons. 

 

3 Implement a basic Decision Tree classifier [30 marks] 
In this part of the assignment, you will gain hands-on experience of building a 
decision tree learning algorithm. You will implement the decision tree learning 

 
1 The percentage of test data instances that have been classified correctly. 
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algorithm in Python based on the code template (i.e., decision_tree_template.py) 
provided and then test your implementation (test code is provided in the code 
template). 
 
You need to conduct the following tasks for this part of the assignment: 
 
(1) Complete the implementaTon of the decision tree learning algorithm: 

• Based on the code template provided, complete the implementaVon of the 
decision tree learning algorithm. 

• The Python code template for the decision tree classifier follows a binary tree 
structure. This means that each internal node has two separate branches, i.e., 
the lem child node and the right child node. At each internal node, a condiVon 
is checked to determine whether a categorial feature has a specific value (we 
assume that all features of the classificaVon problem are categorical features). 
If the condiVon is met (i.e., the feature has the specific categorial value), we 
move to the lem child node to conVnue the classificaVon process. Conversely, 
if the condiVon is not met (i.e., the feature has a different value), the 
classificaVon process proceeds down the right child node. 

• At each internal node of the decision tree classifier, the spliong method used 
is the informaTon gain metric. In other words, we choose a condiVon 
"feature==value" that maximizes the informaVon gain amer spliong an 
internal node. 

• To control the complexity of the decision tree classifier, the code template 
currently uses the maximum tree depth as a control parameter (the depth of 
the root node is 0). Whenever a node of the decision tree reaches the 
maximum tree depth provided by the user, no further spliong will be 
performed. The corresponding node will be treated as a leaf node. As an 
enhancement, add an addiTonal complexity control mechanism based on 
the minimum parTTon size. In other words, whenever the number of training 
instances associated with a node is less than a threshold provided by the user, 
the node will be treated as a leaf node. 

 

(2) Test the implemented algorithm: 
• Run the test code provided in decision_tree_template.py to test the correct 

funcVoning of the decision tree learning algorithm implemented. 
• You should record the predicted class labels for two test data instances 

included in decision_tree_template.py. You should also present the detailed 
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structure of the decision tree constructed by your decision tree learning 
algorithm. 

 

(3) Report: 
• Write a short report that includes: 

• A brief explanaVon of how the decision tree learning algorithm works. 
Your explanaVon should be supported by either a flowchart diagram or an 
algorithm pseudo-code. 

• Present the predicted class labels for the two test data instances included 
in decision_tree_template.py. Explain how your learned decision tree 
makes its classificaVon decisions with respect to each test data instance. 

• Present a diagram that shows the detailed structure of the decision tree 
constructed by your decision tree learning algorithm. 

• IdenVfy the feature and its value selected by the root node of the 
constructed decision tree. Calculate the entropy of the dataset associated 
with the root node and the informaVon gain achieved by the 
corresponding split at the root node. Show the details of the calculaVon, 
including the mathemaVcal formulas used. 

 
Assessment 
Format: You can use any font to write the report, with a minimum of single spacing 
and 11-point size (handwriting is not permitted unless with approval from the 
lecturers). Reports are expected to be 2-8 pages that cover all the three parts 
described above. Reports exceeding this maximum page limit will be penalized. 
 
Communication: A key skill required of a scientist is the ability to communicate 
effectively. No matter the scientific merit of a report, if it is illegible, grammatically 
incorrect, mispunctuated, ambiguous, or contains misspellings, it is less effective and 
marks will be deducted. 
 
Late Penalties: Late submissions for assignments will be managed under the "Three 
Late Day Policy". You will have three automatic extension days, which can be applied 
to any assignments throughout the course. No formal application is required; instead, 
any remaining late hours will be automatically deducted when submitting 
assignments after the due date. You have the flexibility to use only a portion of your 
late day and retain the remainder for future use. Please note that these three days 
are for the whole course, not for each assignment. The penalty for assignments that 
are handed in late without prior arrangement (or use of "late days") is one grade 
reduction per day. Assignments that are more than one week late will not be marked. 
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Plagiarism: Plagiarism in programming (copying someone else’s code) is just as 
serious as written plagiarism and is treated in the same manner. Make sure you 
explicitly write down where you got code from (and how much of it) if you use any 
other resources asides from the course material. Using excessive amounts of others’ 
code (including code generated by AI tools) may result in the loss of marks, but 
plagiarism could result in zero marks! 
 
Submission 
You are required to submit a single .pdf report PLUS the python code files (.ipynb 
and/or .py) through the web submission system from the AIML231 course website by 
the due time. Provide a README.txt file if you use any non-standard python libraries. 
 


