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Why Need Evolutionary Computation?

« We have discussed several methods and algorithms in ML

« But they have limitations:
- Local optima
- Unreasonable assumptions

- Needs to predefine/fix the structure/model of the solution, and
only learns the parameters/coefficients

- Many parameters to learn (high-dimensional optimisation)

« Evolutionary Computation (EC) is one technique that can avoid
some of the problems
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Evolutionary Computation and Learning

« In computer science, evolutionary computation is a family of
“nature inspired” Al algorithms for global optimisation.

« In technical terminology, they are a family of population-based
trial-and-error problem solvers with a metaheuristic or stochastic
optimisation character.

 Evolutionary Learning is the use of evolutionary computation
methods for tackling machine learning tasks

« Source: https://en.wikipedia.org/wiki/Evolutionary_computation
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EC Techniques

« Evolutionary algorithms (EAS)

- (Genetic algorithms (the biggest branch)
- Evolutionary programming
- Evolutionary strategies

» Genetic Programming (Koza, 1990s, fast growing area)

« Swarm intelligence (SI)
- Ant colony optimisation

- Particle swarm optimisation (PSO)
. Artificial immune systems

« QOther techniques
. Differential evolution
- Estimation of distribution algorithms
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Evolutionary Algorithms

- Search for the best individual by evolving a population with
reproduction (e.g. crossover, mutation)

Population Population Population

Selection

Current generation

New generation

Genetic operations/evolution : : :
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Mating pool Mating pool
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Evolutionary Search

« Search space of candidate solutions
Not space of partial solutions
Modify whole solutions rather than extending partial solutions

 (Genetic beam search
Keep track of a set of good solutions
Not all candidate solutions, unlike best first or Ax

Not only the best candidates, unlike in hill climbing or gradient
descent

« Combine good candidates to construct new candidates
- Can modify candidates in isolation (mutation)
- Or different candidates can interact in evolution (crossover)
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Key Characteristics

 One (or more) populations of individuals

 Dynamically changing populations due to the birth and death of
individuals (through crossover, mutation, ...)

« A fitness function which reflects the ability of an individual to
survive and reproduce (“survival of the fittest”)

« Variational inheritance: offspring closely resemble their parents,
but are not identical

 Final solution (individual): the one with the best fitness
« Fitness could be accuracy, cost, error, ...
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Key Design Questions

‘Representation
How can we represent individuals (solutions)?

« Evaluation

How can we evaluate individuals (fitness function)?

- A fitter individual should have a better objective value (e.g.
smaller error)

Selection

How to select individuals into the mating pool (selection
scheme)?

Fitter individuals should be more likely to survive/reproduce
- Selection pressure

Genetic Operators

How to generate new individuals (crossover, mutation
operators)?

 Children inherit strong parts of parents
Maintain diversity (jump out of local optima)

Other parameters
population size, mating pool size, stopping criteria, ...
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Individual Representation
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 Problem dependent

« Binary string (e.qg. feature selection)
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Fitness Evaluation

* Fitness function: reflect the quality of individuals
- Must correspond to optimality property
- Must be computable
- Smoothness:

- Small changes to candidate -> small changes to
quality/fitness

- Large changes to candidate -> large changes?

 Depending on the problem, the fitness function could be:
- the larger, the better --- maximisation
- the smaller, the better --- minimisation
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Selection

 Uniform selection
- Each individual has the same chance to

be selected
[]

-

* Roulette wheel selection
- The probability of being selected Is
proportional to the fithess
« Assume fitness iIs maximised e vt whee et
e K-tournament selection finess chromasome
1 a
« Truncate selection : . . ickthe best
. . . 7 5 K chromosomes
« Select the best k individuals . . at random .
: ;
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Genetic Operators

« Depends on the problem - individual representation
- Swap a bit of a binary vector
Resample an element of a continuous vector
- Shuffle a part of a sequence

* A representative: Genetic Algorithms
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Genetic Algorithm

 Representation: binary string
« An individual is also called a chromosome

Initial strings Crossover Mask Offspring
Single-point crossover:

11101001000 11101010101

— \ 11111000000  _#"

00001010101 / \ 00001001000
Two-point crossover:

11101001000 11001011000

— \ 00111110000 /(

00001010101 e S 00101000101
Uniform crossover:

11101001000 10001000100

\ 10011010011 /
00001010101 / \ 01101011001

Point mutation: 11101001000 » 11101011000

 Other representations as well: continuous vector, permutation, ...
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A Basic Genetic Algorithm

 Randomly initialise a population of chromosomes

AIML231/DATA302

 Repeat until stopping criteria are met:
« Construct an empty new population
- Repeat until the new population is full:

. Select two parents from the population by roulette wheel
selection

- Apply crossover to the two parents to generate two children

. Each child has a probability (mutation rate) to undergo
mutation

- Put the two children into the new population
- End Repeat
- Move to the new population (new generation)

« End Repeat

« Qutput the best individual from the final population
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A Basic Genetic Algorithm
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Generate an
initial population

Standard Evolutionary Algorithm
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A Simple GA Example

OneMax Problem
- Targetto (11111...1)

More zeros means worse: far away from the target
- Simple “benchmark” problem!

Representation: bit string

Fitness function: 1+ ), x; (the larger the better)
Crossover: single-point crossover

« Mutation: point mutation

Assume our algorithm does not know the problem or
fitness function!
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A Simple GA Example
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« 10 bits (Optimal fithness = 11)
« population size = 20
 mutation rate = 0.25 (25%)

 Run for 10 generations
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Genetic Programming

 Genetic programming (GP) inherits properties from EC
techniques (e.g. GAs) and automatic programming

 GP uses a similar evolutionary process to the general evolutionary
algorithms (e.g. GAs)

+ GA uses bit strings to represent solutions;
GP uses tree-like structures that can represent computer
programs

- GA bit strings use a fixed length representation;
GP trees can vary in length

- The term GP originates from the notion that computer
programs can be represented as a tree-structured genome

« Automatically learning a set of computer programs for a particular
task is a dream of computer scientists

 GP is such a technique that can help us achieve this goal
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Programs as Tree Structures

.- Representation: Tree Structures
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- Programs are constructed from a terminal set & function set

- Terminals and functions are also called primitives
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GA vs GP: Representation

Genetic Algorithm Genetic Programming
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» Bit string representation »Tree-like structure
»Fixed in length »Vary in length (D
»Inflexible » Flexible
(D OI,
1 (o1 l1]o]z]o]z]1]o0 oooooo
DI,
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A Basic GP algorithm

« Initialise the population

« Repeat until the stopping criteria is met:
Evaluate the fitness of each program in the current population

- Create an empty new population
Repeat until the new population is full:

. Select programs in the current generation
(often tournament selection)

- Apply genetic operators to the selected programs to
generate offspring (e.g. 80% crossover, 15% mutation, 5%

reproduction).
- Insert the children programs into the new generation.

« Qutput the best individual program in the population.
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Summary

- Evolutionary computing overview

- Main idea and process

- Representations of candidate solutions
- Selection and genetic operators

- Genetic algorithms

- Genetic programming (GP)

- Other EC algorithms and technigues



