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e Neural Network Introduction

e Basic Concepts in NNs
- Perceptron
- Neurons, Layers, Weights and Bias
- NN Architectures
- Activation functions

e How NNs work - Forward Propagation
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Why Neural Networks

e Many successful applications

- Generative models: Large language models, Image/video generation
- Image processing: medical/game/self-driving vehicles

ChatGPT Scribe

@ AlphaCode
LUDE
GitHub

o
=
J Bard
Bard
C

ohere Generate

Duet Al

Synthesia @

https://www.turing.com/resources/generative-ai-tools



AIML231/DATA302 Techniques in ML:

Artificial Neural Networks

e A Neural Network is a machine learning (ML) model

designed to recognize patterns and solve complex problems

in @ manner that mimics human thought processes

- inspired by the structure and function of the human brain
- consists of layers of interconnected nodes, or "neurons," each
of which performs simple computations
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(Artificial) Neurons

e Neurons are the basic units of a neural network

also also referred to as a node or a unit,

the basic unit of computation, as a processing point for
carrying out specific calculations

The primary function of a neuron in a neural network is to
receive input, processes it, and generates output

the input x is transformed into an output y using weights W

and a bias b as: y = f(WX + b) where f is the activation
function
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Weights and Bias

e Weights are the numbers assigned to each connection
between one neuron in a layer and the neurons from the
previous layer

- each weight is an indication of the strength and influence of
the input signals on the neuron's output

e Bias: an additional parameter associated with each neuron

that allows the model to better fit the data.

- provides neuron the flexibility to shift the activation function
to the left or right

- the bias tells you how big that weighted sum needs to be
before the neuron gets meaningfully active

Weights
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Activation Function

o Activation function is a function that takes the weighted
input of @ neuron and produces an output, which is used as
the input for the next layer of neurons
- primary role: introduce non-linearities into the network and

enable complex learning
- regulate the output and prevent numerical instability
- affect the speed, accuracy and generalisation performance
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simplest neural network - Perceptron

e Perceptron: the simplest form of a neural network
- itis a binary linear classifier, based on a linear threshold unit

- calculate a weighted sum of the input features, apply a step
function, mathematically represented as y = Step(WXx)
makes decisions by weighing up evidence
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Problem with Perceptron

e Famous example of cannot solve the XOR problem (Minsky
1969)

AND OR XOR
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e XOR is not linearly separable, you cannot draw a single
straight line that separates the inputs that produce 1 from
those that produce 0
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Multi-layer Perceptron

e MLP: a class of feedforward artificial neural network (ANN)
that includes multiple layers of nodes

- all outputs of previous layer connected to all neurons of a
layer or the output of a neuron in one layer is fed as input to
neurons in the subsequent layers

- each node typically using a non-linear activation function

- solve problems that the single-layer perceptron cannot, such
as the XOR problem

- "universal approximation theorem®- can approximate virtually
any continuous function
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Layers of Neural Networks

e Input Layer: The first layer that receives the input signal to be
processed, neurons simply pass the data on to the subsequent
hidden layers without applying any transformation or
computation

e Hidden Layers: One or more layers that perform computations
through neurons and are not exposed to the input or output
directly

e Output Layer: The final layer that produces the output of the
model

X1 hl

X2 h2

input layer
hidden layer 1 hidden layer 2 X1 XOr X2 = (X1 AND NOT X2) OR (X2AND NOTX1)

e Why layers: layers break problems into bite-sized pieces
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Designing layers

e Input layer mirrors the format and structure of input data

- number of neurons in the input layer is typically equal to the number of
features in the input data

- e.g., with images of size 28x28 pixels, need 784 (28x28) neurons, each
representing one pixel value.

e the output layer is closely tied to the specific task

- for classification tasks, the number of neurons typically corresponds to the
number of classes, e.g., in a task to identify digits from 0 to 9, the output
layer would have 10 neurons,

- For regression tasks, the output layer usually contains a single neuron

e it can be quite an art to the design of the hidden layers
- determining #hidden layers and #neuron in each layer

- increasing the number of hidden layers can enable the network to learn
more complex patterns and features in the data

- use heuristics-how to trade-off the number of hidden layers against the time
required to train the network, trade-off between underfitting and overfitting
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Numbers of Weights and Bias in MLP

input layer
In a MLP, hidden layer 1 hidden layer 2

« each neuron in a given layer has as many weights as
there are neurons in the preceding layer

« each neuron typically has one bias

How many weights and bias in this feedforward NN?

#Weights =3X4+4X4+4=32
#Bias =4+4+1=9
In total =32 + 9 = 41
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Neural network architectures

e Various NN architectures designed for specific types of tasks

MLP Recurrent NN Convolutional NN
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Forward Propagation

e input data is passed forward through the network to

generate an output/prediction
- This sequence of operations is crucial for both training the network and
making predictions/inference

Input Layer Hidden Layer Output Layer

Information flows in forward direction only
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Tensor

e A tensor is a multidimensional array that represents a
collection of numerical values

- a block of numbers with a given number of dimensions and a
Size in each dimension

- the fundamental data structure used to store and operate on
data in various machine learning frameworks and libraries,
such as TensorFlow, PyTorch, and NumPy.
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e Sigmoid Function

AKA the Logistic function, maps input values to the range
(0, 1) using a smooth S-shaped curve, making it suitable

for binary classification tasks
- output can be interpreted as a probability
- nonlinear activation function

« Tanh (Hyperbolic Tangent) Function

Sigmoid
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similar to the sigmoid but maps input values to (-1, 1)

- providing a better symmetry around zero
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Activation Functions

e ReLU (Rectified Linear Unit) Function: a nonlinear
function that returns the input if it is positive, and zero
otherwise, max(0, z)

- one of the most widely used activation functions due to
simplicity and effectiveness

- encourages sparse representations by activating only a subset
of neurons for any given input

P 1
RELU
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o Softmax Function: maps the input to a probability
distribution over a set of possible outcomes, using an

exponential function

- convert a vector of numbers into a new vector that reflects
the probability distribution of the original vector's values
- commonly used in the output layer of a neural network for

multi-class classification tasks
- computationally expensive Output
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Which Activation function to use

o different activation functions may work better or worse for
different problems, architectures, and datasets

e no definitive answer or rule for selecting an activation
function

e some general guidelines
- type of problem: binary classification uses a sigmoid

activation function, multi-class classification softmax
activation function

- architecture of the neural network: may need a different
activation function for the hidden layers of your neural
network, deep neural network-> a RelLU activation function,
while a recurrent neural network-> a tanh activation function

- properties of the activation function: depending on the
properties of the activation function, such as the range, the
slope, the smoothness, the sparsity, etc.
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History of Neural Networks

Deep Neural Network
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Summary

e What is Neural Networks
e Why Neural Networks

e Neural network basic components
- Neurons, Weights and bias, Activation Function

e Types of Neural Networks

e Neural Network Working Mechanisms
- Various Activation functions
- Forward Propagation



