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Outline
Training NN

- High Level Overview
- Loss function
- Optimization algorithms: Gradient Descent, Backpropagation 
- Gradient variants
- Regularisation techniques

• Tutorial: Pytorch on NN Implementation 
– deliver by Dr. Junhong Zhao
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Before Training NN

An example of NN Prediction without training 

- A neural network processing a sample and assigning it to class 1
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Perceptron Learning

– Initialise weights and threshold randomly (or all zeros)

– Given a new example 𝑥1, 𝑥2,…, 𝑥p, 𝑑
‣ Input feature vector: 𝑥1, 𝑥2,…, 𝑥p
‣ Output (class label): 𝑑
‣ Predicted (by perceptron) output 𝑦

Basic learning algorithm:
• If 𝑦 = 0 and 𝑑 = 1:

- increase 𝑤i for positive 𝑥i, decrease 𝑤i for negative 𝑥i

• If 𝑦 = 1 and 𝑑 = 0:
- decrease 𝑤i for positive 𝑥i, increase 𝑤i for negative 𝑥i

• Repeat for each new example until achieve the desired behaviour

• Can also repeat all data and start again (multiple epochs)
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Overview-Training a NN
Intuitively: teach a neural network to learn from mistakes thus 
making correct predictions

• adjusting weights either up or down so the error is reduced

https://www.analog.com/en/resources/analog-dialogue/articles/training-convolutional-neural-networks-what-is-machine-learning-part-2.html
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Training a NN

• A process to find the optimal set of weights 𝑊∗ that results 
in the smallest cumulative loss across all the training data

𝑊∗ = argmin
"

+
#$%

&

𝐿(𝑦# , 0𝑦#)

- W represents the weights of the neural network
- L represents the loss/cost/error function, measures the 

difference between the predicted output $𝑦! and the actual 
target 𝑦!

- N is the total number of training samples

• A complex optimisation problem: often involving high 
dimensional search space, non-linear transformations…
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Training Loop 

1. Initialisation: set up neural network with initial settings
2. Input Feeding
3. Making Prediction (Forward Pass): give the network a piece of data to 

look at,  it attempts to predict the correct answer
4. Calculating Loss
5. Updating Parameters
6. Evaluate on a validation set (optional) – hyperparameters tuning

Optimisation step - often with
gradient descent
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Forward Pass: What does Network Compute?

• For the hidden layer j, the output is calculated as

• ReLU:                Tanh: !
!"!"!

!!#!"!

• …
• For the output layer k, the output is calculated in a similar 

fashion to the hidden layers, common activation functions
• Softmax for Multi-class Classification
• Sigmoid for Binary Classification
• Linear for Regression

𝑧 = 𝑊 ( 𝑋 + 𝑏

max 𝑧, 0
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Loss function
• The difference between the target and actual values arising 

at the output is referred to as the loss, and the associated 
function is the loss function
- the goal of neural network learning process is to define these 

parameters in a way that the loss function is minimized
- a feedback mechanism for adjusting the model's parameters
- different numerical optimization algorithms can be used to 

determine weights and biases
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Common Loss Functions

• Cross-entropy Loss for Classification
- total cross-entropy loss over a dataset of N examples

L 𝑊,𝑏 = − %
&
∑#$%& ∑'$%( 𝑦#,' log( 7𝑦#,')

‣ ∑$%&' 𝑦(,$ log( 6𝑦(,$) : the cross-entropy loss for a single example I
‣ often combine with the softmax function in the output layer

• Mean Squared Error for Regression

L 𝑊,𝑏 = %
&
∑#$%& 𝑦# − 8𝑦# *

‣ (𝑦! − $𝑦!)" : square difference between the true label and the estimation 
on a single example i
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Gradient Descent
• Optimisation in NNs primarily uses gradient descent 

• Key idea: iteratively adjusting the model's parameters in 
the direction opposite to the gradient
- the gradient points the most steeply direction 
- gradient is a vector of partial derivatives, each element 

represents how much the loss will be reduced by changing the 
weight

∇𝐿 𝑊( =
𝜕𝐿
𝜕𝑤&

,
𝜕𝐿
𝜕𝑤*

, … ,
𝜕𝐿
𝜕𝑤+

- why descent: finding a path from a randomly chosen starting 
point in the loss function that leads to the global minimum
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Gradient descent

• The update rule of gradient descent

- W represents the parameters of the model,
- η is the learning rate, a positive value determining the update 

step size at each iteration. A higher learning rate makes the 
model learn faster;

- ∇𝐿 𝑊# is the gradient of the loss function at the current 

parameters ∇𝐿 𝑊# = +,
+-!

, +,
+-"

, … , +,
+-#

𝑊(#& = 𝑊( − η∇𝐿(𝑊()
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Backpropogation
• Gradients are computed backwards 

- start at the output layer and compute the gradient of the loss 
function with respect to each output. 

- this typically involves finding how much a change in each output 
value affects the overall loss.

• Calculate the contribution of each weight to the loss function

• Backward propagating the gradient of the error
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Backpropagation Algorithm

• Let 𝜂 be the learning rate

• Set all weights to smaller random values

• Until total error is small enough, repeat
- For each input example

‣ Feed forward pass to get predicted outputs
‣ Compute 𝛽! = 𝑑! − 𝑜! for each output node

‣ Compute 𝛽" = ∑#𝑤"→#𝑜# 1 − 𝑜# 𝛽#
‣ Compute the weight changes Δ𝑤%→" = 𝜂𝑜%𝑜" 1 − 𝑜" 𝛽"

- Add up weight changes for all input examples
- Change weights
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Notes on BP algorithm

• Convergence: The algorithm repeats until the error across the 
network does not improve significantly, or a predetermined 
number of epochs is reached.

• Epoch: one complete pass through the entire training dataset

• Too few epochs ->underfitting, too many epochs ->overfitting

• Training may require thousands of epochs

• A convergence curve will help to decide when to stop
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Adjusting Learning Rate

• We can improve learning by changing the learning rate, 
however …

- When η is too large (a), we can jump right over a deep valley
- When η is too small (b), we can slowly descend into a local 

minimum, and miss the deeper valley.
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Variants of Gradient Descents

• Stochastic/Mini Batch Gradient Descent: Gradient descent 
with minibatches, which uses subsets of the training data 
for each gradient descent step—the minibatch
- Batch: the subset of training data used to update weights in 

one iteration.
- Stochastic gradient descent with a batch size of one

- using smaller minibatches often leads to models that perform 
better than those trained with larger minibatches

• Momentum:modify vanilla gradient descent to include 
a momentum term, a fraction of the previous step’s update

𝑣. = 𝛾𝑣./% + η∇𝐿(𝑊.)
w=w−η𝑣.
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Adaptive learning rate methods 

• AdaGrad: adapts the learning rate to the parameters, 
performing larger updates for infrequent parameters and 
smaller updates for frequent ones. Particularly useful for 
dealing with sparse data.

• RMSprop: a modification to Adagrad, works by maintaining 
a moving average of the squares of gradients and dividing 
the gradient by the square root of this average

• Adam(Adaptive Moment Estimation): combines the best 
properties of the AdaGrad and RMSprop, works by 
maintaining two moving averages for each parameter; one 
for the gradients (like RMSprop) and one for the square of 
the gradients (like AdaGrad). It then uses these estimates 
to adjust the learning rate for each parameter individually
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Avoid Overfitting Through Regularisation

• Great flexibility of the network also means that it is prone to 
overfitting the training set

• The most popular regularization techniques for neural 
networks

- Early Stopping: interrupt training when its performance on 
the validation set starts dropping

- ℓ1 and ℓ2 Regularisation: modifying the cost function by adding 
λ 𝑊6 or λ 𝑊6

- Data Augmentation: generating new training instances from 
existing ones, artificially boosting the size of the training set
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Tools and Libraries

• TensorFlow (Google)
• Keras (integrated with TensorFlow , high-level API)
• PyTorch (Meta)
• Microsoft Cognitive Toolkit (CNTK): commercial-grade 

distributed deep learning
• Apache MXNet
• JAX (known for its ability to automatically differentiate)


