
AIML231/DATA302 Techniques in ML:

AIML231/DATA302 —Techniques in Machine Learning

Week 8 Neural Networks (1)
Training Neural Networks

Dr Qi Chen
School of Engineering and Computer Science

Victoria University of Wellington

Qi.Chen@vuw.ac.nz

mailto:Qi.Chen@vuw.ac.nz

AIML231/DATA302 Techniques in ML:

Outline
Training NN

- High Level Overview
- Loss function
- Optimization algorithms: Gradient Descent, Backpropagation
- Gradient variants
- Regularisation techniques

• Tutorial: Pytorch on NN Implementation
– deliver by Dr. Junhong Zhao

AIML231/DATA302 Techniques in ML:

Before Training NN

An example of NN Prediction without training

- A neural network processing a sample and assigning it to class 1

AIML231/DATA302 Techniques in ML:

Perceptron Learning

– Initialise weights and threshold randomly (or all zeros)

– Given a new example 𝑥1, 𝑥2,…, 𝑥p, 𝑑
‣ Input feature vector: 𝑥1, 𝑥2,…, 𝑥p
‣ Output (class label): 𝑑
‣ Predicted (by perceptron) output 𝑦

Basic learning algorithm:
• If 𝑦 = 0 and 𝑑 = 1:

- increase 𝑤i for positive 𝑥i, decrease 𝑤i for negative 𝑥i

• If 𝑦 = 1 and 𝑑 = 0:
- decrease 𝑤i for positive 𝑥i, increase 𝑤i for negative 𝑥i

• Repeat for each new example until achieve the desired behaviour

• Can also repeat all data and start again (multiple epochs)

AIML231/DATA302 Techniques in ML:

Overview-Training a NN
Intuitively: teach a neural network to learn from mistakes thus
making correct predictions

• adjusting weights either up or down so the error is reduced

https://www.analog.com/en/resources/analog-dialogue/articles/training-convolutional-neural-networks-what-is-machine-learning-part-2.html

AIML231/DATA302 Techniques in ML:

Training a NN

• A process to find the optimal set of weights 𝑊∗ that results
in the smallest cumulative loss across all the training data

𝑊∗ = argmin
"

+
#$%

&

𝐿(𝑦# , 0𝑦#)

- W represents the weights of the neural network
- L represents the loss/cost/error function, measures the

difference between the predicted output $𝑦! and the actual
target 𝑦!

- N is the total number of training samples

• A complex optimisation problem: often involving high
dimensional search space, non-linear transformations…

AIML231/DATA302 Techniques in ML:

Training Loop

1. Initialisation: set up neural network with initial settings
2. Input Feeding
3. Making Prediction (Forward Pass): give the network a piece of data to

look at, it attempts to predict the correct answer
4. Calculating Loss
5. Updating Parameters
6. Evaluate on a validation set (optional) – hyperparameters tuning

Optimisation step - often with
gradient descent

AIML231/DATA302 Techniques in ML:

Forward Pass: What does Network Compute?

• For the hidden layer j, the output is calculated as

• ReLU: Tanh: !
!"!"!

!!#!"!

• …
• For the output layer k, the output is calculated in a similar

fashion to the hidden layers, common activation functions
• Softmax for Multi-class Classification
• Sigmoid for Binary Classification
• Linear for Regression

𝑧 = 𝑊 (𝑋 + 𝑏

max 𝑧, 0

AIML231/DATA302 Techniques in ML:

Loss function
• The difference between the target and actual values arising

at the output is referred to as the loss, and the associated
function is the loss function
- the goal of neural network learning process is to define these

parameters in a way that the loss function is minimized
- a feedback mechanism for adjusting the model's parameters
- different numerical optimization algorithms can be used to

determine weights and biases

AIML231/DATA302 Techniques in ML:

Common Loss Functions

• Cross-entropy Loss for Classification
- total cross-entropy loss over a dataset of N examples

L 𝑊,𝑏 = − %
&
∑#$%& ∑'$%(𝑦#,' log(7𝑦#,')

‣ ∑$%&' 𝑦(,$ log(6𝑦(,$) : the cross-entropy loss for a single example I
‣ often combine with the softmax function in the output layer

• Mean Squared Error for Regression

L 𝑊,𝑏 = %
&
∑#$%& 𝑦# − 8𝑦# *

‣ (𝑦! − $𝑦!)" : square difference between the true label and the estimation
on a single example i

AIML231/DATA302 Techniques in ML:

Gradient Descent
• Optimisation in NNs primarily uses gradient descent

• Key idea: iteratively adjusting the model's parameters in
the direction opposite to the gradient
- the gradient points the most steeply direction
- gradient is a vector of partial derivatives, each element

represents how much the loss will be reduced by changing the
weight

∇𝐿 𝑊(=
𝜕𝐿
𝜕𝑤&

,
𝜕𝐿
𝜕𝑤*

, … ,
𝜕𝐿
𝜕𝑤+

- why descent: finding a path from a randomly chosen starting
point in the loss function that leads to the global minimum

AIML231/DATA302 Techniques in ML:

Gradient descent

• The update rule of gradient descent

- W represents the parameters of the model,
- η is the learning rate, a positive value determining the update

step size at each iteration. A higher learning rate makes the
model learn faster;

- ∇𝐿 𝑊# is the gradient of the loss function at the current

parameters ∇𝐿 𝑊# = +,
+-!

, +,
+-"

, … , +,
+-#

𝑊(#& = 𝑊(− η∇𝐿(𝑊()

AIML231/DATA302 Techniques in ML:

Backpropogation
• Gradients are computed backwards

- start at the output layer and compute the gradient of the loss
function with respect to each output.

- this typically involves finding how much a change in each output
value affects the overall loss.

• Calculate the contribution of each weight to the loss function

• Backward propagating the gradient of the error

AIML231/DATA302 Techniques in ML:

Backpropagation Algorithm

• Let 𝜂 be the learning rate

• Set all weights to smaller random values

• Until total error is small enough, repeat
- For each input example

‣ Feed forward pass to get predicted outputs
‣ Compute 𝛽! = 𝑑! − 𝑜! for each output node

‣ Compute 𝛽" = ∑#𝑤"→#𝑜# 1 − 𝑜# 𝛽#
‣ Compute the weight changes Δ𝑤%→" = 𝜂𝑜%𝑜" 1 − 𝑜" 𝛽"

- Add up weight changes for all input examples
- Change weights

AIML231/DATA302 Techniques in ML:

Notes on BP algorithm

• Convergence: The algorithm repeats until the error across the
network does not improve significantly, or a predetermined
number of epochs is reached.

• Epoch: one complete pass through the entire training dataset

• Too few epochs ->underfitting, too many epochs ->overfitting

• Training may require thousands of epochs

• A convergence curve will help to decide when to stop

AIML231/DATA302 Techniques in ML:

Adjusting Learning Rate

• We can improve learning by changing the learning rate,
however …

- When η is too large (a), we can jump right over a deep valley
- When η is too small (b), we can slowly descend into a local

minimum, and miss the deeper valley.

AIML231/DATA302 Techniques in ML:

Variants of Gradient Descents

• Stochastic/Mini Batch Gradient Descent: Gradient descent
with minibatches, which uses subsets of the training data
for each gradient descent step—the minibatch
- Batch: the subset of training data used to update weights in

one iteration.
- Stochastic gradient descent with a batch size of one

- using smaller minibatches often leads to models that perform
better than those trained with larger minibatches

• Momentum:modify vanilla gradient descent to include
a momentum term, a fraction of the previous step’s update

𝑣. = 𝛾𝑣./% + η∇𝐿(𝑊.)
w=w−η𝑣.

AIML231/DATA302 Techniques in ML:

Adaptive learning rate methods

• AdaGrad: adapts the learning rate to the parameters,
performing larger updates for infrequent parameters and
smaller updates for frequent ones. Particularly useful for
dealing with sparse data.

• RMSprop: a modification to Adagrad, works by maintaining
a moving average of the squares of gradients and dividing
the gradient by the square root of this average

• Adam(Adaptive Moment Estimation): combines the best
properties of the AdaGrad and RMSprop, works by
maintaining two moving averages for each parameter; one
for the gradients (like RMSprop) and one for the square of
the gradients (like AdaGrad). It then uses these estimates
to adjust the learning rate for each parameter individually

AIML231/DATA302 Techniques in ML:

Avoid Overfitting Through Regularisation

• Great flexibility of the network also means that it is prone to
overfitting the training set

• The most popular regularization techniques for neural
networks

- Early Stopping: interrupt training when its performance on
the validation set starts dropping

- ℓ1 and ℓ2 Regularisation: modifying the cost function by adding
λ 𝑊6 or λ 𝑊6

- Data Augmentation: generating new training instances from
existing ones, artificially boosting the size of the training set

AIML231/DATA302 Techniques in ML:

Tools and Libraries

• TensorFlow (Google)
• Keras (integrated with TensorFlow , high-level API)
• PyTorch (Meta)
• Microsoft Cognitive Toolkit (CNTK): commercial-grade

distributed deep learning
• Apache MXNet
• JAX (known for its ability to automatically differentiate)

