
AIML231/DATA302 Techniques in ML:

AIML231/DATA302 —Techniques in Machine Learning

Week 9 Neural Networks (2)

Backpropagation
Dr Qi Chen

School of Engineering and Computer Science

Victoria University of Wellington

Qi.Chen@vuw.ac.nz

mailto:Qi.Chen@vuw.ac.nz

AIML231/DATA302 Techniques in ML:

Outline
• Walkthrough of Backpropagation

-Recap of Gradient Descent and Gradient
-What is Backpropagation
-How does Backpropagation work
-Derivatives and the Chain Rule

AIML231/DATA302 Techniques in ML:

Gradient Descent

• GD is an optimisation algorithm to update the weights in NN

• the update rule of GD

• ∇𝐿 𝑊! is the gradient of the loss function at the current

parameters ∇𝐿 𝑊! = "#
"$!

, "#
"$"

, … , "#
"$#

, partial derivatives

𝑾𝒊"𝟏 = 𝑾𝒊 − η𝜵𝑳(𝑾𝒊)

How sensitive the loss function is to the weight wp or

how much the loss will be reduced by changing the weight

for example: ∇𝐿 𝑊! = 2.1, … , 0.1, …

given the same change on w1 and w2,
the change cause by w1 to loss function will be 21 times greater than that of w2

w1 w2

AIML231/DATA302 Techniques in ML:

Backpropagation algorithm
• Central algorithm in network learning

How …

• Let 𝜂 be the learning rate

• Set all weights to smaller random values

• Until total error is small enough, repeat
- For each input example

‣ Feed forward pass to get predicted outputs
‣ Compute 𝛽! = 𝑑! − 𝑜! for each output node

‣ Compute 𝛽" = ∑#𝑤"→#𝑜# 1 − 𝑜# 𝛽#
‣ Compute the weight changes Δ𝑤%→" = 𝜂𝑜%𝑜" 1 − 𝑜" 𝛽"

- Add up weight changes for all input examples
- Change weights according to the update rule of GD

Backpropagation

AIML231/DATA302 Techniques in ML:

Simplify Notes

• Simplify notation: let 𝑥% = 1, 𝑏 = 𝑤% = 𝑤%𝑥%

• So we have one block of code for changing all the
”weights”, rather than changing weights and biases
separately

y = 𝜎 𝑊 % 𝑋 + 𝑏 = 𝜎 𝑤+𝑥+ +𝑤,𝑥, +⋯+𝑤-𝑥- + 𝑏

y = 𝜎 𝑊 % 𝑋 + 𝑏 = 𝜎 𝑤.𝑥. +𝑤+𝑥+ +⋯+𝑤-𝑥-

AIML231/DATA302 Techniques in ML:

Backpropagation

• How to calculate contribution of 𝑾 to the loss function C?

𝑎(0) = 𝜎 𝑤(0)𝑎 02+

give 𝑧(0) = 𝑤(0)𝑎 02+

𝑎(0) = 𝜎(𝑧(0))
Where 𝜎 is the activation function

Desired output

1

y

𝐶3 = 𝑎 0 − y
,

In this example = 0.88 − 1 ,

0.35 0.88

𝑎(0)𝑎(02+)

𝒘(𝑳)
0.1

𝒘(𝑳2𝟏)

𝑎(02,)

A simple NN

AIML231/DATA302 Techniques in ML:

Backpropagation-Output layer first

• How sensitive the loss 𝐶! is to small changes (e.g., 0.001) in the

weight 𝒘(𝑳), i.e., the derivative ")$
𝝏𝒘(𝑳)

- this tiny change to 𝒘(𝑳) causes some change to 𝒛(𝑳), (as 𝑧($) = 𝑤($)𝑎 $%&)

- which in turn causes some change to 𝑎($) , (𝑎($) = 𝜎 𝒛(𝑳))

- which directly influences the loss 𝐶' (𝐶' = 𝑎 $ − y
(
)

Desired output

1

y

𝒂 𝑳2𝟏𝒘(𝑳)

𝒛(𝑳)

y

𝐶3

𝒂 𝑳

0.35 0.88

𝑎(0)𝑎(02+)

𝒘(𝑳)
0.1

𝒘(𝑳2𝟏)

𝑎(02,)

A simple NN

AIML231/DATA302 Techniques in ML:

Chain Rule

")$
𝝏𝒘(𝑳)

= "4(()

𝝏𝒘(𝑳)
"5(()

"4(()
")$
"5(()

How much does a change to
𝒘(𝑳) change 𝒛(𝑳)

How much does a change to
𝒛(𝑳) change 𝒂(𝑳)

How much does a change to
𝑎(𝑳) change𝐶$

• the chain rule states how to compute the derivative of a
composite function

• the chain rule allows to efficiently compute how small
changes in the weight of one layer affect the loss function,
by breaking down the computation into smaller, more
manageable steps

chain rule

𝒂 𝑳2𝟏𝒘(𝑳)

𝒛(𝑳)

y

𝐶3

𝒂 𝑳

AIML231/DATA302 Techniques in ML:

The Constituent Derivative

• break down ")$
𝝏𝒘(𝑳)

into separate derivatives according to
chain rule

")$
𝝏𝒘(𝑳)

= "4(()

𝝏𝒘(𝑳)
"5(()

"4(()
")$
"5(()

• now just need to compute the values of the three individual
derivatives

• To compute each derivative, we’ll use some relevant
formula from the way we’ve defined our neural network

𝑧(#) = 𝑤(#)𝑎 #67 → "4(()

𝝏𝒘(𝑳)
= 𝑎 #67

𝑎(#) = 𝜎(𝑧(#)) → "5(()

"4(()
= 𝜎8(𝑧(#))

𝐶!= 𝑎 # − y
9
→ ")$

"5(()
= 2(𝑎 # − y)

• It is straightforward once you know which equation to start from

AIML231/DATA302 Techniques in ML:

Putting it all together

• Putting constituent derivatives together
")$
𝝏𝒘(𝑳)

= "4(()

𝝏𝒘(𝑳)
"5(()

"4(()
")$
"5(()

= 𝑎 #67 𝜎8(𝑧(#)) 2(𝑎 # − y)

• This formula tells us how a change to that one particular
weight in the last layer will affect the loss for that one
particular training example

AIML231/DATA302 Techniques in ML:

More …

• The full loss function for the network is the average all the

individual lost for each training 𝐶 = 7
:
∑!;%:67𝐶!

• To get the derivative of 𝐶 with respect to the weight

")
𝝏𝒘(𝑳)

= 7
:
∑!;%:67 ")$

𝝏𝒘(𝑳)

• Also, to compute the full gradient, we will also need all the
other derivatives with respect to all the other weights in the
entire network

𝛁𝑪 =

𝜕𝐶
𝝏𝒘(𝟏)

𝜕𝐶
𝝏𝒘(𝟐)

⋮
𝜕𝐶
𝝏𝒘(𝑳)

0.35 0.88

𝑎(0)𝑎(02+)

𝒘(𝑳)
0.1

𝒘(𝑳2𝟏)

𝑎(02,)

AIML231/DATA302 Techniques in ML:

Previous Layers’ Weights

• For other weights lie in earlier layers of the network
- For the second-to-last layer,

- consider $%!
$&(#$%)

first
")$

"5(()!)
= "4(()

"5(()!)
"5(()

"4(()
")$
"5(()

- the derivative of the loss with respect to 𝒘(𝑳6𝟏) looks very
similar with that of 𝒘(𝑳)

'(!
𝝏𝒘(𝑳$𝟏)

= '+('$()

𝝏𝒘(𝑳$𝟏)
',('$()

'+('$()
'+(')

',('$()
',(')

'+(')
'(!
',(')

= '+('$()

𝝏𝒘(𝑳$𝟏)
',('$()

'+('$()
=>&

=?(()*)

𝒂 𝑳2𝟏𝒘(𝑳)

𝒛(𝑳)

y

𝐶3

𝒂 𝑳

𝒂 𝑳2𝟐

𝒛(𝑳2𝟏)

𝒘(𝑳2𝟏)

0.35 0.88

𝑎(0)𝑎(02+)

𝒘(𝑳)
0.1

𝒘(𝑳2𝟏)

𝑎(02,)

𝒂 𝑳2𝟏𝒘(𝑳)

𝒛(𝑳)

y

𝐶3

𝒂 𝑳

AIML231/DATA302 Techniques in ML:

More Complicated Networks
• Each layer has more than one neuron

• Loss of the NN

0.35 0.88

𝑎A(0)𝑎B(02+)

𝒘𝒋𝒌
(𝑳)

0.4

0.2

0.1

𝐶!= ∑ 𝑎= # − 𝑦=
9

𝜕𝐶!
𝝏𝒘𝒋𝒌

(𝑳) ?

𝑧=(#) = 𝑤=%(#)𝑎% #67 +𝑤=7(#)𝑎7 #67 +𝑤=9(#)𝑎9 #67

")$
𝝏𝒘𝒋𝒌

(𝑳) =
"4,(()

𝝏𝒘𝒋𝒌
(𝑳)

"5,(()

"4,(()
")$

"5,(()

Essentially identical to what we have before,
Only difference is we keep track of more
indices, j and k

AIML231/DATA302 Techniques in ML:

More Complicated Networks

")$
𝝏𝒂𝒌

(𝑳)𝟏)=∑=;%
:(67 "4,(()

𝝏𝒂𝒌
(𝑳)𝟏)

"5,(()

"4,(()
")$

"5,(()

=∑AE.
F(2+𝒘𝒋𝒌

(𝑳)𝜎G(𝑧A(0))
=>&
=?,(()

")$
𝝏𝒘𝒌𝒎

(𝑳)𝟏)=
"4/(()!)

𝝏𝒘𝒌𝒎
(𝑳)

"5/(()!)

"4/(()!)
")$

𝝏𝒂𝒌
(𝑳)𝟏)

0.35 0.88

𝑎A(0)𝑎B(02+)

𝒘𝒋𝒌
(𝑳)

0.4

0.1

0.25

𝒘𝒌𝒎
(𝑳2𝟏)

𝑎I(02,)

𝑎B(02+) influence the loss function
through multiple paths

• How about ")$
𝝏𝒘𝒌𝒎

(𝑳)𝟏) ?

")$
𝝏𝒘𝒌𝒎

(𝑳)𝟏)=𝑎A(#69) 𝜎8(𝑧=(#67)) ∑=;%
:(67𝒘𝒋𝒌

(𝑳)𝜎8(𝑧=(#))
")$

"5,(()

AIML231/DATA302 Techniques in ML:

Partial Derivatives

𝑎A(0)𝑎B(02+)

𝒘𝒋𝒌
(𝑳)

𝑎I(02,)

𝜕𝐶!
𝝏𝒘𝒋𝒌

(𝑳) =

𝑎B(#67)𝜎8(𝑧=(#))𝟐 𝒂𝒋 𝑳 − 𝒚𝒊 , 𝒘𝒋𝒌 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒍𝒂𝒔𝒕 𝒍𝒂𝒚𝒆𝒓

𝑎B(#67)𝜎8(𝑧=(#)) I
=;%

:(0!67

𝒘𝒋𝒌
(𝑳D𝟏)𝜎8(𝑧=(#D7))

𝜕𝐶!
𝜕𝑎=(#D7)

, 𝒐𝒕𝒉𝒆𝒓𝒔

𝑎A(0J+)𝑎A(0)

𝒘𝒋𝒌
(𝑳)

𝑎B(02+)

Varied for different loss functions

AIML231/DATA302 Techniques in ML:

Again, more …

• To get the derivative of L with respect to the weight, take
the average over all training data

"#
𝝏𝒘(𝑳)

= 7
:
∑!;%:67 "#$

𝝏𝒘(𝑳)

• also need all the other derivatives with respect to all the
other weights in the entire network

• Then update weights with 𝑾𝒊D𝟏 = 𝑾𝒊 − η𝜵𝑳(𝑾𝒊)

∇𝐿 𝑊! =
𝜕𝐿
𝜕𝑤7

,
𝜕𝐿
𝜕𝑤9

, … ,
𝜕𝐿
𝜕𝑤E

AIML231/DATA302 Techniques in ML:

Summary

• Backpropagation is a fundamental algorithm in neural
network training, used to train NNs by adjusting the
weights of connections

• Gradient descent is an optimization technique that updates
the weights by moving in the direction of the steepest
descent of the loss function

• Derivatives and gradients give us a concrete way to find a
minimum loss

• The chain rule - decompose a complicated network of
influences to understand how sensitive that cost function is
to each and every weight and bias

