AIML231/DATA302 - Techniques in ML

Week 1

Machine Learning Overview

Dr Qi Chen

School of Engineering and Computer Science
Victoria University of Wellington
Qi.Chen@vuw.ac.nz

Week Overview

\star AI and Machine Learning
\star Machine Learning Scope: Data, Task, Model, and Algorithm
\star Data in Machine Learning

ڤ Machine Learning Tasks

Artificial Intelligence and Machine Learning

- Artificial Intelligence is the broader concept of machines being able to carry out tasks in a way that we would consider "smart".
- Machine Learning is a current application of AI based around the idea that giving machines access to data and let them learn for themselves.

Machine Learning

- science of getting computers to act without being explicitly programmed.
- a branch of artificial intelligence focuses on the development of algorithms and statistical models
- based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention.
- a method of data analysis that automates analytical model building.

Machine Learning Applications

Five Tribes of Machine Learning

Domingos, Pedro. "A few useful things to know about machine learning." Communications of the ACM 55, no. 10 (2012): 78-87.

The Scope of Machine Learning

ML involves a wide variety of each of these:

- data
- task
- model
- algorithm
- Today we'll address a couple of aspects of data.
- Next lecture: the tasks in Machine Learning
- Then in the following weeks: on to the most common models and algorithms

Data

- datahub.io
- openml.org
- Kaggle, UCI
e.g.
o iris -- https://www.openml.org/d/61
o penguins -- https://www.openml.org/d/42585
o diabetes -- https://www.openml.org/d/37
o banknotes -- https://www.openml.org/d/1462
○ ...

Data

- there are lots of new tools all the time, but near-generic tools at the moment:
o python
o numpy
o sklearn
- pandas
- matplotlib
- jupyter notebooks

Data

- Consider banknotes.csv:
- V1-V4 are values of 4 "features"
- the Class is 1 (legit) or 2 (forged)
- Common to talk separately about X and Y :

V1	V2	V3	V4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	- 4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1

V1	V 2	V3	
3.6216	8.6661	-2.8073	-0.44699
4.5459	8.1674	-2.4586	-1.4621
3.866	-2.6383	1.9242	0.10645
3.4566	9.522°	4.0112	-3.5944
0.32924	-4.4552	4.5718	-0.9888
4.3684	9.6718	3.9606	-3.1625
3.5912	3.0129	0.72888	0.56421
2.0922	-6.81	8.4636	-0.60216
3.2032	5.7588	-0.75345	-0.61251
1.5356	9.1772	-2.2718	-0.73535
1.2247	8.7779	-2.2135	-0.80647

~ 1300 rows in this case. The "Class=2" ones are further down.

Data as "Vectors" in a "Space"

- each row is one data item, here consisting of a pairing:

- we might talk about $X=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ instead of the names v_{1}, etc specific to this dataset.
- \boldsymbol{X} is a 4-dimensional vector
- x_{i} is the value for the $i^{\text {th }}$ dimension

Data as points in a space

A "row" can be thought of as a "point" in a "space" of data It's easy to visualise when dimensionality is low:

1 dimension, e.g. just V1
2 dimensions, easy
3 dimensions, easy

V1	2	V3	V4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1

Data as Points in a Vector Space

Humans can't see in more than 3d
Some of our intuitions hold, some fail

V1	V2	V3	V4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1
	- 0 nn			

Data in High dimensions

```
for dims in range(1,21):
    print(dims, countInside(1000000,dims))
```

Eg: I made a million data points that were d-dimensional, with each dimension being randomly chosen in range -1 to +1 . i.e. in a "box" of side 2.	

A ball with diameter 2 fits snugly inside this box. Out of a million random points, how many land inside the ball?

The Curse of Dimensionality

Challenges and limitations when dealing with high-dimensional data
data sparsity, difficult to find meaningful correlations in data training the model becomes much slower multicollinearity: two or more variables are found to be highly correlated with one another

