

AIML231/DATA302 — Week 04

Exploratory Data Analysis

Dr Bach Hoai Nguyen

School of Engineering and Computer Science

Victoria University of Wellington

Bach.Nguyen@vuw.ac.nz

Office Hour:1-2pm, Friday, Week 4-Week 7 Room: CO364

Week Overview

- Exploratory Data Analysis (EDA) Introduction
 - What is EDA
 - > Why need EDA, what can do with EDA
 - How to do EDA
- EDA Techniques
 - Groups of EDA Methods
 - Visualisation Methods
- EDA Tools
 - Python Modules for EDA
- EDA Case Studies

Thinking

• How to choose the most suitable algorithms for your dataset?

https://alastairrushworth.github.io/exploring_eda/EDA.html#1

- How to ensure you are ready to use machine learning techniques in a new project?
- Answer: Exploratory Data Analysis (EDA) helps to answer

Exploratory Data Analysis

- Exploratory Data Analysis (EDA) is a process for summarising, visualising, and becoming intimately familiar with the important characteristics of the data
- EDA is an iterative cycle:
 - Generate questions about your data:
 - Search for answers by visualising, transforming, and modelling your data
 - Use what you learn to refine your questions and/or generate new questions

What type of variation occurs within my variables? What type of covariation occurs between my variables?

https://duo.com/labs/research/gamifying-datascience-education

• EDA is *statisticians' way of story telling* where you explore data, find patterns and tells insights

Key Concepts of Exploratory Data Analysis

- 4 Objectives of EDA
 - Discover Patterns
 - Spot Anomalies
 - Frame Hypothesis
 - Check Assumptions
- Stuff done during EDA
 - Measures of central tendency: mean, median, mode
 - Spread measurement : standard deviation, variance
 - Shape of distribution: distribution, trends
 - Outlier
 - Correlations
 - Visual Exploration

Making Sense of Data – Distinguish Types of Attributes

- input takes the form of instances and attributes/features
 - information to a machine learning learner takes the form of a set of instances
 - each instance is described by a fixed predefined set of features or attributes:
 - Types: Numerical (Discrete and Continuous) and Nominal (Categorical)

Model	Year	Engine Fuel Type	Engine HP	Engine Cylinders	Transmission Type	Driven_Wheels	Number of Doors	Market Category	Vehicle Size	Vehicle Style	highway MPG	city mpg	Popularity	MSRP
1 Series M	2011	premium unleaded (required)	335.0	6.0	MANUAL	rear wheel drive	2.0	Factory Tuner,Luxury,High- Performance	Compact	Coupe	26	19	3916	46135
1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,Performance	Compact	Convertible	28	19	3916	40650
1 Series	2011	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,High- Performance	Compact	Coupe	28	20	3916	36350
1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,Performance	Compact	Coupe	28	18	3916	29450
1 Series	2011	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0	Luxury	Compact	Convertible	28	18	3916	34500
1 Series	2012	premium unleaded (required)	230.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,Performance	Compact	Coupe	28	18	3916	31200
1 Series	2012	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,Performance	Compact	Convertible	26	17	3916	44100
1 Series	2012	premium unleaded (required)	300.0	6.0	MANUAL	rear wheel drive	2.0	Luxury,High- Performance	Compact	Coupe	28	20	3916	39300

- EDA methods: generally classified into two ways
 - graphical or non-graphical/quantitative : summarising data in a visual way or calculation of summary statistics
 - univariate or multivariate: summary statistics for each feature/attribute or find relationship between features

	Univariate	Multivariate
Non-Graphical	 Categorical Variable: tabular representation of frequency Quantitative Variable: Location (mean, median) Shape and Spread Modality Outliers 	 One Categorical Variable and One Quantitative Variable: Standard univariable non-graphical statistics for the quantitative variable separately for each level of the categorial variable Two and more Quantitative Variable: Correlation, Covariance,
Graphical	 Categorical Variable: Bar Chart Quantitative Variable: Histogram Boxplot 	 One Categorical Variable and One Quantitative Variable: Side-by-side Boxplots Two and more Categorical Variable: Grouped Bar Chart Two and more Quantitative Variable: Scatter plot, Correlation Heatmap, Pairplot

Steps/activities involved in EDA:

- identification of variables and data types
- non-graphical and graphical univariate analysis
- bi-/multivariate analysis, correlation analysis
- detect missing values and anomalies
- detect outliers

A typical example:

https://www.researchgate.net/publication/342282008_Exploratory_Data_Analysis_and_Data_Envelo pment_Analysis_of_Construction_and_Demolition_Waste_Management_in_the_European_Economi c_Area/figures?lo=1

Visualisation

There are four basic presentation types

- Composition: pie chart...
- Comparison: bar chart, line chart...
- Distribution: histograms, box plot...
- Relationship: scatter plot...

To determine which is best suited

- How many variables in a single chart?
- How many data points display for each variable?
- Will you display values over a period of time, or among items or groups

https://raw.githubusercontent.com/areski/python-nvd3 https://www.tatvic.com/blog/7-visualizations-learn-r/

Visual Aids

Common charts in EDA:

- Pie chart
- Histogram
- Bar & Stack Bar Chart
- Box Plot & Violin plot
- Area Chart
- Scatter Plot
- Correlogram
- Heatmap

Pie chart

- Pie chart: circle divided to sectors, to communicate proportions
- a common method for representing categorical variables

- ✓ simple and easy-to-understand
 ✓ understand information guickly
- difficult to compare a few pieces
- unhelpful when observing trends
 over time

Histogram

 Histogram: a plot of the frequency distribution of numeric variable by splitting values to small equal-sized bins, provide a visual summary of central tendency, spread, and shape.

https://stackoverflow.com/questions/37911731/seaborn-histogram-with-4-panels-2-x-2-in-python

- skewness is a measure of the lack of symmetry
- a distribution, or data set, is symmetric if it looks the same to the left and right of the center point (mean≈median≈mode)
- Positive vs Negative vs Zero skewness

- Kurtosis: measures the degree to which the tails of a distribution differ from those of a normal distribution.
- Leptokurtic (positive) kurtosis: heavier tale
- Platykurtic (negative) kurtosis: lighter tale
- Mesokurtic (zero) kurtosis: normal tale

- Bar charts: a way of summarizing a set of categorical data, displays data using bars, each representing a particular category, the height is proportional to a specific aggregation
- Bars can be horizontal or vertical

https://chartio.com/learn/charts/bar-chart-complete-guide/

- Box plot: box and whisker plot, displays a summary of a large amount of data in five numbers, a good indication of how the values in the data are spread out with in groups
- plot a combination of categorical and continuous variables
- Violin plot: similar as box plot, additionally shows the kernel density estimation of the underlying distribution

- base on the line chart, areas between axis and line are commonly emphasized with colours
- share features with bar charts and line charts, compare two or more quantities, work better for large difference and multiple values over time

https://levelup.gitconnected.com/data-visualization-with-pandas-in-action-part-2-2cc8674da1d0

- use a Cartesian coordinates system to display values of two variables for a set of data
- show the relationship between two variables, referred to as correlation plots

Iris Data set

Correlogram

• Correlogram: AKS correlation matrix, to analyse the relationship between each pair of numeric variables

- Heatmap: a two-dimensional graphical representation of data where the individual values that are contained in a matrix are represented as colors
- useful to see which intersections of the categorical values, have higher concentration of the data compared to the others

Choose the Most Suitable Plots

https://www.tatvic.com/blog/7-visualizations-learn-r/

Clustering Analysis for EDA

Clustering in EDA to find new insights

K-Means clustering can be used to detect possible outliers Hierarchical clustering can be used to find underlying connectivity properties

Dimensionality Reduction for EDA

 Reduce the dimensions of the data into fewer dimensions would help describing the relationship between variables

T-distributed stochastic neighbor embedding (T-SNE) and Principal Component Analysis (PCA)

https://www.programmersought.com/article/92363395092/

What to look for in your plots?

- Turn the information into useful questions
 - O Which values are the most common? Why?
 - \odot Which values are rare? Why?
 - o Can you see any unusual patterns? What might explain them?

- Clusters suggest that subgroups exist in your data.
 - \odot How can you explain or describe the clusters?
 - $\,\circ\,$ How are the observations within each cluster similar to each other?
 - \odot How are the observations in separate clusters different from each other?