

AIML 231/DATA 302— Week 5

Data Preprocessing

Dr Bach Hoai Nguyen

School of Engineering and Computer Science

Victoria University of Wellington

Bach.Nguyen@vuw.ac.nz

Week Overview

Introduction of Data Preparation

- What data preparation include
- Why data preparation
- Avoid data leakage

Data Preprocessing

- Categorical Data Encoding
- Normalisation
- Discretisation
- Impute missing values

Feature Manipulation

- Dimensionality Reduction
- Feature Construction
- Feature Selection

Data Preprocessing/Preparation

- Prepare the final data set(s) for modelling
- Takes over 80% of time and effort in the project
- Five steps:
 - Data Selection: determine data sets to be used, select features, select instances
 - Data Cleaning: to correct, impute, or remove erroneous values, missing values
 - Data Construction: constructive data preparation operations, e.g. feature construction, instance generation, feature transformation
 - Integrate data: create new records or values by combined from multiple data source, merge data from different sources, aggregations
 - Format data: re-format data, convert to format convenient for modelling

Why Data Preprocessing?

- Data in the real world:
 - incomplete: missing attribute values
 - inconsistent: "03/07/2015", "March 07, 2015"
 - noisy: containing errors or outliers, gender="Male", pregnant = "Yes"
 - large-scale/big data: with a large number of features and instances
 - different types: numeric, nominal, text, Web data, images, audio/video

 Different ML tools use different data formats; Different ML methods have different requirements

Garbage in, garbage out

Data Leakage

- A Problem with naive data preparation data leakage
- Information/knowledge about the holdout dataset, e.g. a test dataset, leaks into the data used to train the model
- result in an incorrect estimate of model's perdiction performance

Data Preparation->Data Splitting-> Modelling

Data Splitting-> Data Preparation-> Modelling

Data Preprocessing

- Different types of data:
 - Numerical data: discrete (integers) vs continuous
 - Categorical data: nominal (colours) vs ordinal (education level)
 - other/special types of data (multi-media data):Text data,
 hyperlink data, image data
- Encoding categorical data: convert categorical data to numerical value
- Nomalisation/Scaling: transform columns/rows to a consistent set
- Discretisation: convert a numeric attribute to a nominal attribute
 - e.g. Temperature attribute from {50, 80} to {low, high}
- Impute missing values

AIML231/DATA302

Categorical Data Encoding Scheme

Categorical variables: contain label values rather than numeric values

- One Hot Encoding:
 - Nominal data
 - for each unique value in a categorical column, a new column is added
 - sklearn.preprocessing.OneHotEncoder

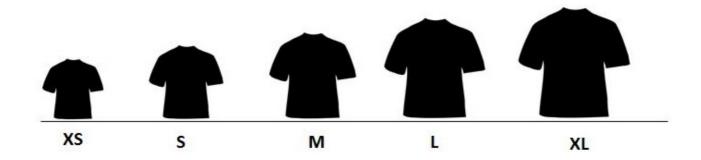
<u>dummy variables</u>

Country	
USA	
UK	
USA	
France	
USA	
UK	

USA	UK	France
1	0	0
0	1	0
1	0	0
0	0	1
1	0	0
0	1	0

Encoding Ordinal Variables

Ordinal data: categorical data that have a natural rank order



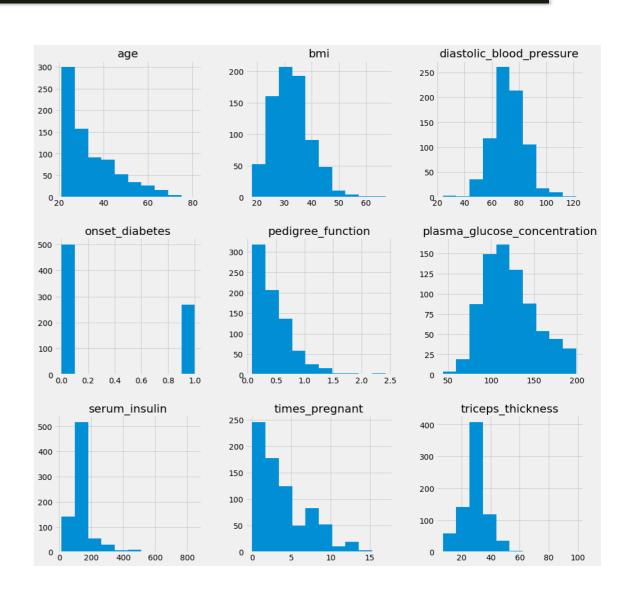
Ordinal encoding: assign integers to labels in certain order

Original values	Encoding values
XS	0
S	1
М	2
L	3
XL	4

• sklearn.preprocessing.OrdinalEncoder

Normalisation/Scaling

- Numerical data: feature values in different ranges
- Some machine learning methods e.g. KNN, SVM, gradient descent, are affected greatly by the scale of the data
- Normalisation transforms columns and/or rows to a consistent set of rules
- a common form transform all features to be between a consistent and static range of values, e.g.[0, 1]



Example of variables with vastly different scales

Min-Max Normalisation/Scaling

- To the range [0, 1]:
 - the min are all zeros and the max values are all ones

$$x' = \frac{x - X_{min}}{X_{max} - X_{min}}$$

• To a pre-defined range [Newmin, Newmax]:

$$x' = \frac{x - X_{min}}{X_{max} - X_{min}} (New_{max} - New_{min}) + New_{min}$$

Use sklearn.preprocessing.MinMaxScaler

Z-Score Standardisation

- Center scaling
- Center values around a mean of zero and a standard deviation of one utilising the statistical idea - a z-score/standard score

$$z = (x - \mu)/\sigma$$

 μ is the mean, σ is the standard deviation of the feature

• Use *sklearn.preprocessing.StandardScaler*



AIML231/DATA302

Normalisation or Standardisation?

- Standardisation can give values that are both positive and negative centered around zero
- Normalisation makes different variables to have the same range
- If the distribution is normal, then it should be standardised,
 otherwise => normalise
- If in doubt => normalise
- might be a good idea to have a mixture of standardised and normalised variables=> standardised followed by normalised

Discretisation

- Discretisation: a process of converting continuous values such as price, age, and weight into discrete intervals
- Some algorithms prefer/require categorical inputs, e.g. DT, rulebased algorithms
- For data smoothing, handle outliers

Two types:

- Unsupervised discretisation does not depending on class label
 - sklearn.preprocessing.KBinsDiscretizer
- Supervised discretisation depends on class label
 - 1RD, entropy-based

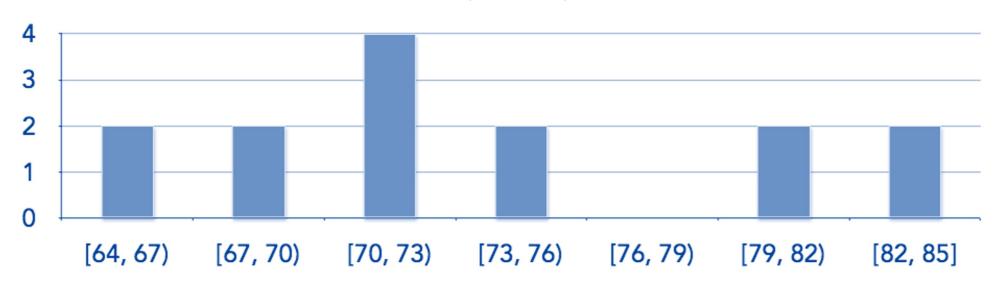
Discretisation: Equal-Width/Uniform

Convert a numerical attribute to an ordinal attribute with N possible values

- Find the Maximum and Minimum values of the attribute
- Divides the range [Min, Max] into N intervals of equal size
- The width of intervals: W=(Max Min)/N
- KBinsDiscretizer(n_bin=7, encode='ordinal', strategy='uniform')

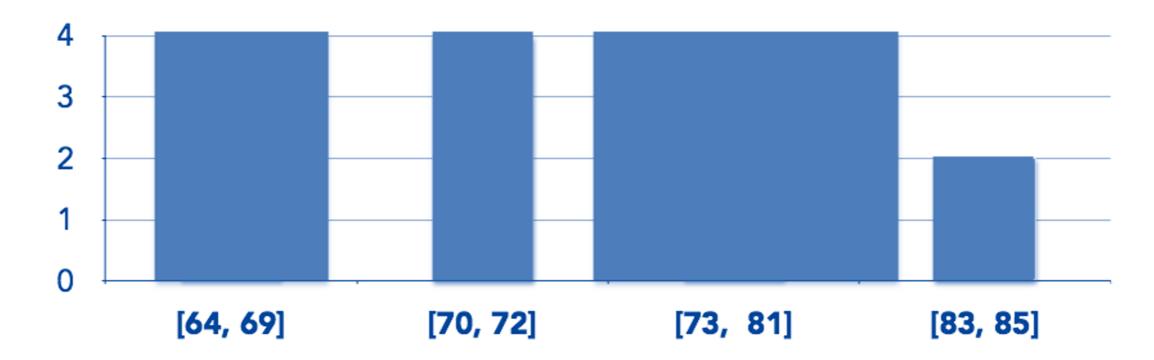
Example: Temperature values are 85, 80, 83, 70, 64, 65, 68, 71, 69, 72, 75, 75, 81,72

- Max=85, Min=64, N=7, W = (85-64)/7=3



Discretisation: Equal-Depth/Frequency/Quantile

- Divides the range [Max, Min] into N intervals
- Each interval including approximately same number of instances
- KBinsDiscretizer(n_bin=4, encode='ordinal', strategy='quantile')
- Example:
 - Sort the 14 Temperature values
 - 64, 65, 68, 69, 70, 71, 72, 72, 75, 75, 80, 81, 83, 85
 - N=4



Missing Values

 Values for one or more variables are missing from recorded observations

Missing data is a common issue in almost every real dataset

- Caused by varied factors:
 - high cost involved in measuring variables
 - failure of sensors
 - reluctance of respondents in answering certain questions or
 - an ill-designed questionnaire

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	?	No
2	? NaN	?	100K	No
3	No	Single	70K	No
4	Yes	Married	?	No
5	No	?	95K	Yes
6	?	Married	60K	No
7	Yes	Divorced	220K	No
8	No	?	?	Yes
9	?	Married	75K	No
10	No	Single	90K	Yes

Type of Missing Data

Three types of missing data:

- Missing completely at random (MCAR)
 - missing is unrelated to the variable of interests and other variables
 - e.g. survey responses are missing due to occasional data entry errors -> unrelated to respondents or survey questions
- Missing at random (MAR)
 - missing depends on other observed variables but not on the value of the missing data itself
 - e.g. if the likelihood of missing income data in a survey depends on the respondent's education level, but not on the actual income itself
- Missing not at random (MNAR)
 - missing depends on both other observed variables and the missing data itself
 - e.g. high-income individuals are less likely to disclose their income -> missingness is higher for individuals with higher actual incomes

AIML231/DATA302

Data Preprocessing: 18

Handling missing values

- Deletion approaches
 - Omits all records containing missing values. Only applies:
 - Missing data introduced in the MCAR mode,
 - When data contains less than 5% of missing values
- Imputation (estimation) approaches
 - Fill missing values with plausible values
 - Mean/Mode imputation
 - KNN imputation

Delete Imcomplete Data Observations

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	?	Married	?	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	?	Divorced	?	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	?	?	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
10	No	Single	90K	Yes

Delete Data Attributes with Missing Values

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	?	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	?	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	?	Married	75K	No
10	No	Single	90K	Yes

Tid	Marital Status	Taxable Income	Cheat
1	Single	125K	No
2	Married	100K	No
3	Single	70K	No
4	Married	120K	No
5	Divorced	95K	Yes
6	Married	60K	No
7	Divorced	220K	No
8	Single	85K	Yes
9	Married	75K	No
10	Single	90K	Yes

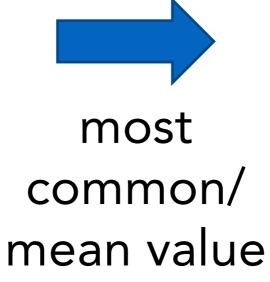
Imputation Approaches

- Mean imputation: for continuous attributes
 - Fills with average complete values
 - sklearn.impute.SimpleImputer (strategy='mean')
- Mode imputation: for categorical attributes
 - Fills with the most frequent value
 - sklearn.impute.SimpleImputer (strategy='most_frequent')

- KNN imputation
 - Find K nearest neighbours using observed values
 - Estimate the missing value by the mean/mode from the K neighbours
 - sklearn.impute.KNNImputer()

Estimate Missing Values

Tid	Refund	Marital Status	Taxable Income	Cheat
1	?	Single	125K	No
2	No	?	?	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	?	Yes
6	No	?	60K	No
7	Yes	Divorced	220K	No
8	?	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes
	No	Single	105K	



Tid	Refund	Marital Status	Taxable Income	Cheat
1	No	Single	125K	No
2	No	Single	105K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	105K	Yes
6	No	Single	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

KNN imputation

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	?	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	?	Divorced	95K	Yes	
6	?	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Tid	Refund	Marital Status	Taxable Income	Cheat
1	?	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	?	Divorced	95K	Yes
6	?	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	No	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Imputation Approaches

Mean/Mode imputation:

- (+) Simple, fast
- (+) Doesn't change the mean/mode of attributes
- (-) Loss of information, depends on data types

KNN imputation

- (+) Capture complex relationship
- (+) Flexible
- (-) High computational complexity, Parameters

Summary

- Data preprocessing is an important step in KDD/DM
- Encoding categorical data
- Data normalisation
- Data discretisation
- Missing data

