

AIML 231/DATA 302 — Week 6

Dimensionality Reduction and Feature Selection

Dr Bach Hoai Nguyen

School of Engineering and Computer Science
Victoria University of Wellington

Bach.Nguyen@vuw.ac.nz

Week Overview

Introduction of Data Preparation/Preprocessing

- What data preparation include
- Why data preparation
- Types of data preparation techniques

Data Preparation Techniques

- Training vs Testing, k-fold cross validation
- Categorical Data Encoding
- Normalisation
- Discretisation

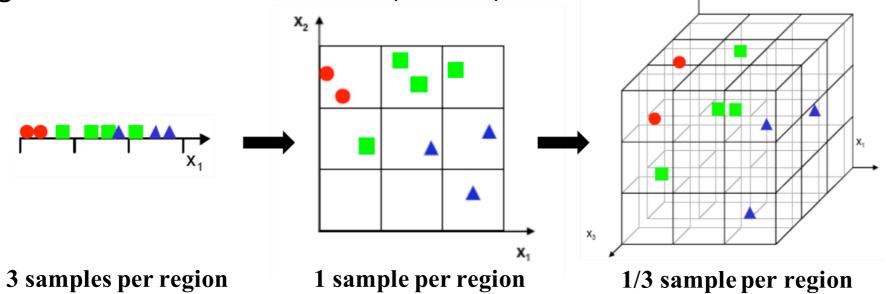
Dimensionality Reduction

- Feature Selection
- Feature Construction

Why Dimensionality Reduction?

"Curse of dimensionality"

Large number of features: 100s, 1000s, even millions,



Data density decreases exponentially with dimensionality 🗵

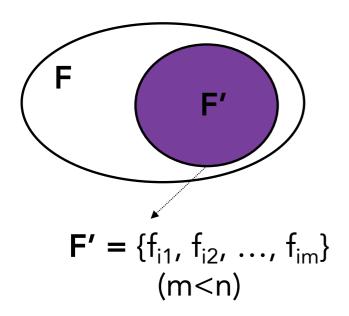
- Irrelevant features: no information for learning task
- Redundant features: same information as other features
- time, memory, and money

Feature Selection and Feature Construction

Feature selection (FS)

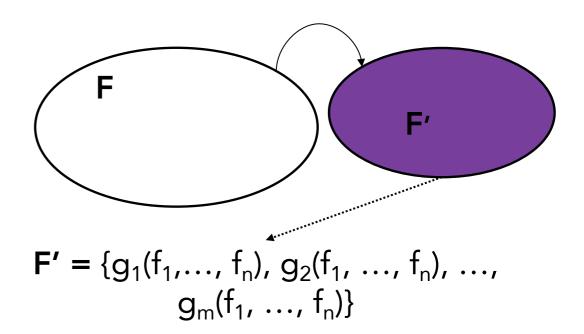
Select a subset of relevant features to achieve
 similar or better performance than using all features

$$F = \{f_1, f_2, ..., f_n\}$$



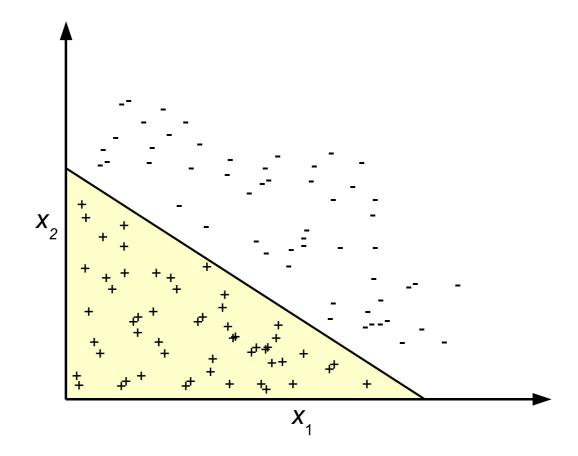
Feature construction (FC)

 Build new high-level features using the original features to improve the classification performance

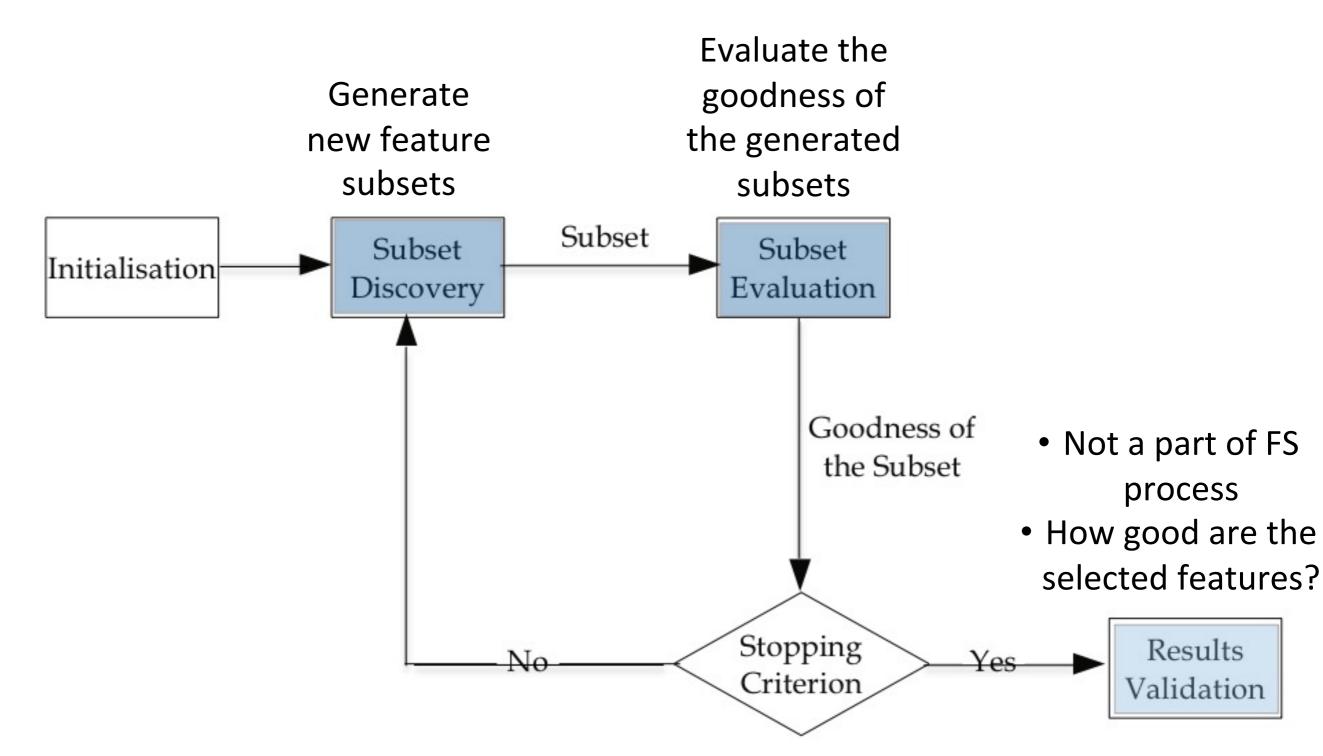


Feature Selection Challenges

- Large (exponential) search space (2ⁿ possible feature subsets- n is the number of features)
- Complex feature interactions:
 - Top relevant features can be redundant as they provide the same information about the class label
 - Weakly relevant features can be strongly relevant together complementary features



Overall FS System



- Number of iterations
- Number of features

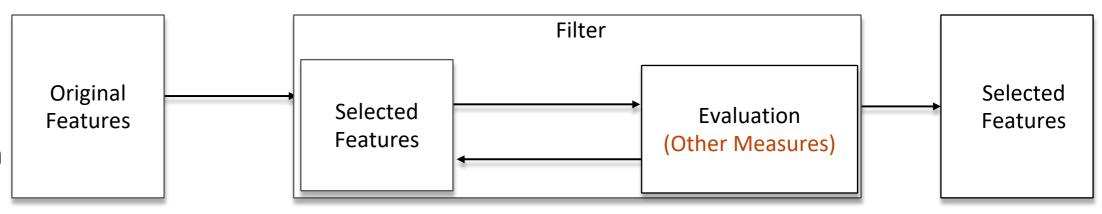
• ...

Filter, Wrapper and Embedded FS (1)

Based on the evaluation component

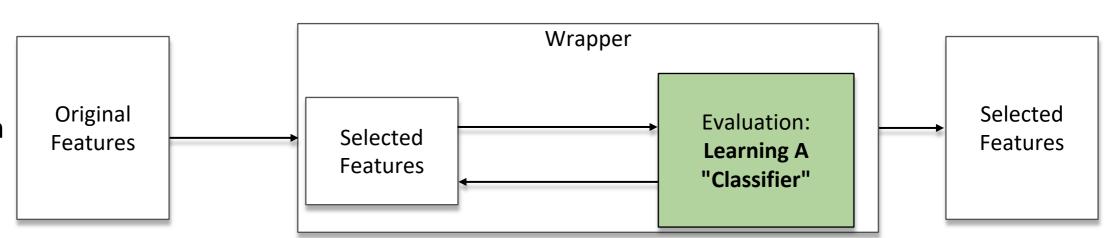
Filter

Uses existing measures, no learning algorithm



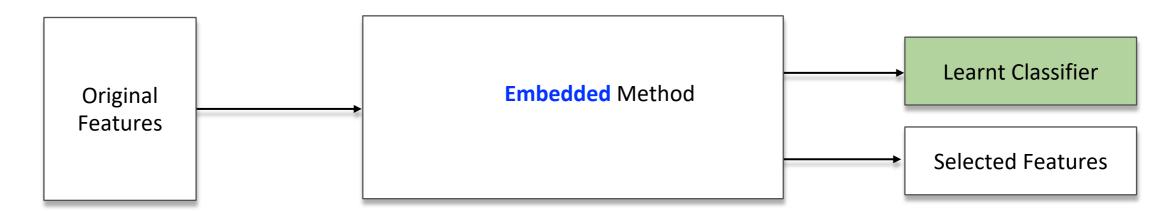
Wrapper

Uses learning performance, train ML models **many times**



Embedded

Train ML model
once
Select features
based on the
learned model



Filter, Wrapper and Embedded FS (2)

- Filter FS: can use the following metrics to calculate the relevance between features and labels
 - Mutual information
 - Pearson correlation
 - Relief score
- Embedded FS examples:
 - Decision tree: features used in the tree are considered selected features
 - Linear SVM: features with larger weights are considered important features

Filter, Wrapper and Embedded FS (3)

- Wrapper FS: can use any classification algorithm to evaluate the feature subset
 - Divide the training set into sub-training set and sub-test set
 - Train the "wrapped" classification algorithm on the sub-training set
 - Examine the obtained classifier on the sub-test set
 - The performance on the sub-test set can be used as the quality of the feature subsets
 - Can apply K-fold cross validation to split the training set but it is more time-consuming

Feature Ranking vs Subset Selection

Based on the Search Mechanism

Feature ranking:

- Evaluate features individually
- Rank features and select top-ranked features
- Simple, efficient
- Ignore feature interactions (can select redundant features)

Feature subset selection:

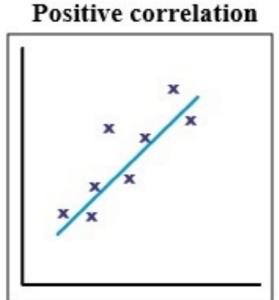
- Evaluate the whole feature subset
- Often an iterative process to improve the feature subset
- Sequential feature selection is an example
- Consider feature interactions, usually better performance
- More complicated search, usually more expensive than ranking

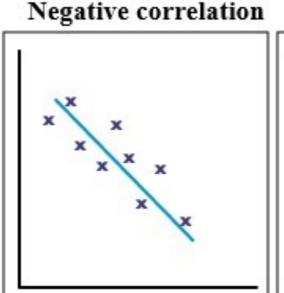
Univariate FS - Correlation based methods

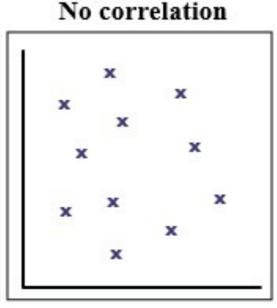
Univariate methods measure correlation between each input feature and the target variable/class label

- Pearson correlation: between -1 and 1
- Two variables move in the same direction/opposite directions, then have a positive correlation/negative correlation
- Rank features based on the absolute values of feature correlation
- The higher the correlation, the better the feature

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$







sklearn.feature_selection.r_regression

Some Other Filter Measures for FS (1)

- Mutual information measures the reduction in uncertainty for one variable given a known value of the other variable, measures mutual dependency
- I(X; Y) measures the common information between two X and Y.
- Rank features based on the mutual information between each feature and the class label
- The higher the mutual information, the more relevant the feature

Use <u>sklearn.feature_selection.mutual_info_classif</u>
 <u>sklearn.feature_selection.mutual_info_regression</u>

Some Other Filter Measures for FS (2)

- Spearman: for continuous features/variable, nonlinear correlation, use <u>scipy.stats.spearmanr</u>
- ANOVA: between continuous feature and discreate label use sklearn.feature selection.f classif

Subset Selection: Sequential Search

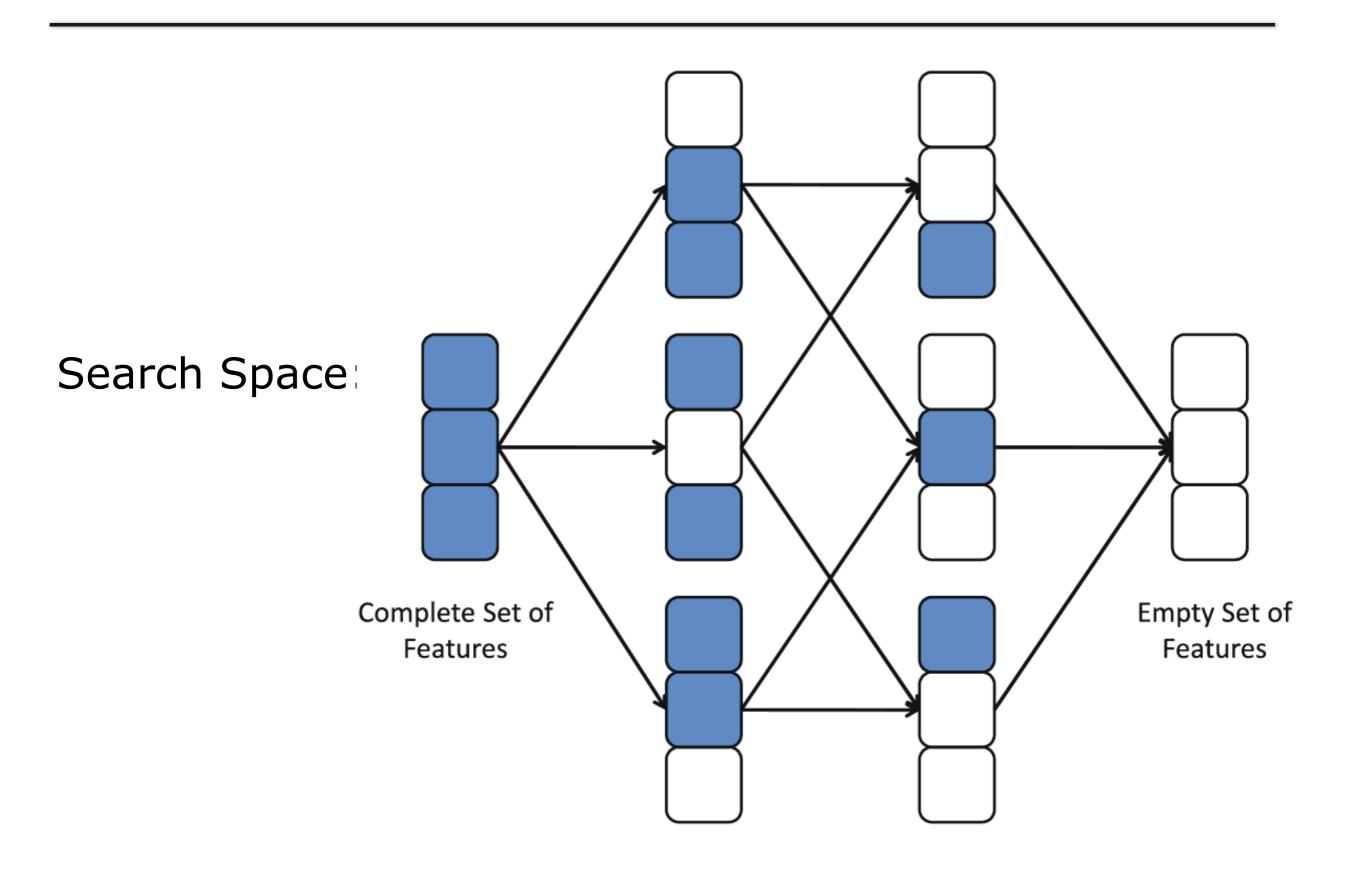
Sequential Forward Feature Selection (SFFS):

- starting from an empty set of features
- sequentially add the feature X that results in the highest objective value when combined with the current set
- stop when a pre-defined number of features is selected
- works best when the optimal subset has a small number of features

Sequential Backward Feature Selection (SBFS):

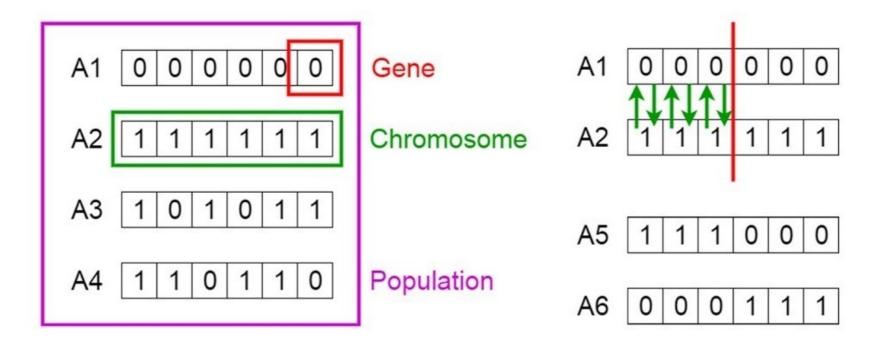
- starting from the full set
- sequentially remove the feature X that results in the highest objective value
- stop when a pre-defined number of features is selected
- works best when the optimal subset has a large number of features

Subset Selection Illustration



More advanced FS Methods

Genetic Algorithm for FS



Particle Swarm Optimization for feature selection

