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Week Overview

* Main Concepts in Regression

* Linear regression

* Regression metrics
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Regression Methods
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House price?

Housing Prices

700

Machine Learning Project
on House Price Prediction

Price (in 1000s of dollars)

0.0 05 10 15 20 25 3.0 35 4.0
Size (feet?)x1000

* How to predict the house price based on the size of the house?

* Collect data from sold houses
* Each sold house is a green data point
* Task: find a straight line that is as close to all the data points as possible

* More than just size?
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Machine Learning Project
on House Price Prediction
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Regression Analysis A

MACHINE
LEARAUNG

Produce a regression equation
* Regression analysis is widely used for prediction

* Describe the relationships between a set of independent
variables and the dependent variable

* Describe how the changes in each independent variable (X))
are related to changes in the dependent variable (Y)

?n?

 Difference between Regression and Classific
Output: A continuous!uantify output vs. A discrete class label
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Simple Linear Regression

MACHI
LEAD

\
A simple linear regression can investigate the average B y
relationship between two variables |
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* There is only one feature/predictor in the regression task

 Assume a linear relationship between the feature (Study time) and the
output (Grade)

* Linear relationship means fitting all datapoints into a singe straight line
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Vi = Wo+ Wy X;+€—

\
A simple linear regression can investigate the average y
relationship between two variables
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representa 1D
straight line

Find wy and wythat minimise the total square error

€2+ 6%+ ...+ €,

= (J’A}_Wo —wy X1)* + (Yo—Wo — Wy X3)% + o4+ (P—Wo — Wy Xp,)*
= 2ic1(Vi— wo— w; xi)z
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Multiple Linear Regression

* in 1-d: fit a straight line...
* in more dimensions: fit a hyperplane
* one intercept, but many slopes, usually called coefficients/weights

intercept slopes error
Vi = Wg+ Wi Xj1+ Wy Xjp+ o+ WgXig + €
d
Yi = Z Wi Xi + € (d+1) weights for d
k=0 features

Find weight vector w = (wy, wyq, ...,w,4) and that minimises the
total square error

SquaredError = ¥ (yi— Xii=o Wi Xix)?

sklearn.linear model.LinearRegression



https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
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Regularisation

e If wis not controlled:

* they can explode
* hence, overfitting

* Add a penalty to control w -> regularisation

* L2 regularisation/Ridge regression

SquaredError + a Y.%_, w2

* shrinks the coefficients towards zero but does not set them exactly to zero

|1 regularisation/Lasso regression

SquaredError + a Y.4_, |wy|
* setting some coefficients exactly to zero

 effectively performing embedded feature selection

* Each weight is associated to an original feature
 |f a weight is O, the corresponding feature is not selected
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Lasso Regression vs Ridge Regression

Toy example: Predict number of shark attacks

e  swimmers: number of swimmers

e Temp: average temperature
« watched jaws: Percentage of swimmers who watched iconic Jaws movies

 stock price: The price of your favourite tech stock that day (irrelevant feature)
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https://www.atakanekiz.com/technical/understanding-lasso-and-ridge-regression/
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Lasso Regression vs Ridge Regression

10

Coefficients
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Horizontal axis: lambda (parameter for regularization - « in slide 9)

Vertical axis: coefficient values

Larger lambda reduces the absolute values of the coefficients

Lasso Regression forces some weights to be exactly 0 — performs feature
selection: log(lambda)= 0.2 -> {stock_price} is removed, log(lambda)=1.5 ->
{stock_price, temp} are removed

https://www.atakanekiz.com/technical/understanding-lasso-and-ridge-regression/
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Non-linear Regression (bonus)

* Polynomial Regression

« (Gaussian Process Regression
« Exponential Growth Regression
* Logistic Growth Regression

* Genetic Programming: no model assumption &
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Thinking

https://becominghuman.ai/introduction-to-evaluation-metrics-e1254b81a1e8



https://becominghuman.ai/introduction-to-evaluation-metrics-e1254b81a1e8
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Mean Squared Error

« Mean Squared Error (MSE) — the most commonly used metric

N

1 ~\2

MSE = N Z()’i — Vi)
[=

« MSE basically measure average squared error of the predictions
« Very commonly used measure

« |If you don’t have any specific preferences of the solutions to the
problem

« |f you don’t known any other metrics
« Sensitive to outliers
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Root Mean Squared Error

« Root Mean Squared Error (RMSE)
« Aims to make the scale of errors to be the same scale of target.

1 ~
.+ RMSE = [LSX, (v - 5)? = VWISE

« Connection to MSE:

MSE(a) > MSE(b) < RMSFE(a) > RMSE(b)

« Difference from MSE for gradient based methods:
ORMSE _ 1 OMSE

0y;  2VMSE 07;
« Travelling along MSE and RMSE is the same, but with a different
learning rate, depends on MSE itself.

« Gradients are different:

« Mostly, not recommended. Unless there are requirements to use
it.
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Relative Squared Error

« RSE: a more interpretable measure
Iiv=1(3’i — 71)?

RSE = —
Iiv=1(3’i — ¥i)?

_ 1 N

* Vi T g 4i=1)i

« takes the total squared error and normalizes it by the total squared error
of the simple predictor

« compare between models whose errors are measured in the different
units

« should be <1 for a good model

« R Squared / Coefficient of Determination: 1-RSE, often use for linear
regression

« Most of the time, we recommend to optimise RSE
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Mean Absolute Error

« Mean Absolute Error --- not sensitive to the outliers.
L
MAE = WZ;\%‘ — Ui
1=

« Compare to MSE:

 |ts penalty is smaller than that of MSE.
« [tis less sensitive to outliers in comparison to MSE.



