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Week Overview

* What is clustering?

* Distance measures

* Clustering Models: K-Means, Agglomerative Clustering

* Clustering metric
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Clustering in Wireless Networks

Internet
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* Divide sensors into groups (clusters) by distance
* Each cluster is managed by a cluster head (CH)
° CH group gathers data from sensors and send data to the Base Station

°* Removes redundant data and reduces network energy consumption
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Customer Segmentation

« Divide customers into similar
groups based on common
characteristics:

« Historical purchases

« Geographical locations

* Products and services

« Socio-economic: income, education

« Each group has its own effective
marketing strategies

e Effective communication
« Better customer supports

* |ncrease revenue
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Other applications

Figure 2: Spatial Clusters of Crude COVID-19 Mortality Rates per 100,000, December 2020-
January 2021

Non-Significant High-low Outlier . High-high Cluster [Jli] Low-low Cluster Low-high Outlier

Chavez, Robert S., and Dylan D. Wagner. "Mass univariate testing biases the detection of interaction effects in whole-brain analysis of
variance." BioRxiv (2017): 130773.
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Clustering

Clustering: the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar to each
other than to those in other groups
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What is similarity?

.- Similarity is hard to define
. Typically measured by a distance or similarity measure
. Different measures lead to different clusters -> clustering is subjective
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Distance measures

Let O, and O, be two objects from the universe of possible

objects. The distance (dissimilarity) between O, and O, is a real
number denoted by D(0O,,0,)

Depends on the data types

- Numerical features: Euclidian distance, Manhattan distance, Cosine
distance

. Categorical features: Hamming distance



AIML231

Clustering methods
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Two main types of clustering

. Partitional algorithms: Construct various partitions and then evaluate them

by some criterion

. Hierarchical algorithms: Create a hierarchical decomposition of the set of

objects using some criterion
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K-Means

* A partitional method

1. Start with K random cluster centres, aka centroids

2. Reassign: assign each instance/object to the nearest centroids

3. Updating: compute the new centroid for each cluster as the
mean of the objects assigned to the cluster

4. Repeat step 2 until no change to the centroids
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K-means Clustering: Step 1

Clustering:
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K-means Clustering: Step 2
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K-means Clustering: Step 3

Clustering:

@
IS
2 & ¢
& ® @ ¢
“ k30
1 &Ko ®
° IS
XS o ¢




AlIML231 Clustering:

K-means Clustering: Step 4
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Comments on K-Means

. Very simple and flexible algorithms
. Scale well with large numbers of samples and features

Limitations:

Need to specify K in advance
Need to re-run to obtain clustering with different numbers of clusters

- Applicable when mean is defined, what about categorical data?
. Stochastic algorithm: different initialised centroids -> different clusters

Usually convert to local optima



AlML231 Clustering: 16

Hierarchical Clustering (1)

- How would you describe data like this?
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k=2, 5, 6, ...

maybe it’s “really” a tree?
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Dendrogram

Clustering: 17

* The hierarchy of clusters is represented as a tree/dendrogram

 The dissimilarity between two observations is related to the

vertical height at which they first get merged into the same
cluster. The greater the height, the greater the dissimilarity
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Cutting a dendrogram

« Cutting a dendrogram horizontally gives a natural clustering. The
height of the cut determines the number of clusters

* No need to re-run to get different number of clusters
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Cutting a dendrogram

4 clusters
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Hierarchical Clustering (2)

- There are two ways to do hierarchical clustering:

- Agglomerative or bottom-up clustering where we start with the observations in n

clusters — the leaves of the tree —and then merge clusters — forming branches — until
there is only 1 cluster, the trunk of the tree

- Divisive or top-down clustering where we start with the observations in 1 cluster and
then split clusters until we reach the leaves

- We will focus on agglomerative clustering as it is generally much more efficient
than divisive clustering
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<&
<«

| | | | |
Step4 Step3  Step2 Stepl Step0

Divisive



AlIML231 Clustering: 21

Agglomerative Clustering (1)

We begin with a distance matrix which contains the distances
between every pair of objects in our database.
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Agglomerative Clustering (2)

Starting with each item in its own cluster, find the best pair to merge into a new
cluster. Repeat until all clusters are fused together.

Consider all [ l

possible
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> Choose
£ the best
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Agglomerative Clustering (3)

Consfg:er all Choose
possibie the best
merges...

Consider all Choose
possible the best

merges...
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Agglomerative Clustering (4)
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Agglomerative Clustering (5)—
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Linkage Methods (1)

Agglomerative Clustering merges clusters based on distance
between clusters — defined by linkage method

Single: compute the minimum pairwise “ Sile Linksge =
dissimilarity where one observation is in s
. ] O inimum Distance O

cluster A and the other is in cluster B.

Cluster 1 Cluster 2
Complete: compute the maximum pairwise . Complete Linkage
dissimilarity where one observation is in e
cluster A and the other is in cluster B e

Cluster 1 Cluster 2
Average Llnkag

Q";
Average Distance

Cluster 1 Cluster 2

Average: compute the average pairwise
dissimilarity where one observation is in
cluster A and the other is in cluster B
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Linkage Methods (2)

Generally,
e Complete and average linkage produce more balanced
dendrograms;

* Single linkage can produce trailing clusters in which single
observations are merged one-at-a-time.

Average Linkage Complete Linkage Single Linkage
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FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.
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Agglomerative clustering algorithm

With the choice of dissimilarity measure and linkage method,
agglomerative clustering proceeds as follows:

* Treat each observation as its own cluster, n clusters. Compute all pairwise

;) = n(n2—1) pairwise

dissimilarities (such as Euclidean distance) of all the (
dissimilarities.

e Fori=nn-—1,..2
« (a) Find the pair of clusters that are the least dissimilar and merge them

The dissimilarity between these two clusters indicates the height on the
dendrogram where the merge is shown.

« (b) Compute all pairwise dissimilarities between the (i-1) remaining clusters

Note that there is no random initialisation, so agglomerative clustering is a
deterministic algorithm
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Comments on Agglomerative clustering

* A potential drawback of hierarchical
clustering is that clustering obtained
by cutting the dendrogram at a certain
height is necessarily nested within the
clustering obtained by cutting at a

Do not need to specify K in advance

Do no need to re-run to obtain
clustering with different numbers of

clusters

Applicable to categorical data?

Deterministic algorithm

greater height

Computationally expensive given a
large number of samples due to pair-
wise distances
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nce
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Compactness: how tightly-packed a cluster is.
Clusters should be as compact as possible, so as to ensure that only the

most related/similar instances have been grouped together.

Measured by intra-cluster distance - minimised

Separability: how well neighbouring clusters are separated in the

feature space.
Measured by inter-cluster distance - maximised

Intra-cluster
distances are
minimized

Inter-cluster
distances are
maximized
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Silhouette Score

b(z) — a(i)
max{a(z),b(i)}

* gafi)is the average distance between instance i and all other
instances in its cluster;

* b(i)is the minimum average distance between instance i and the
instances in each other cluster.

Silhouette(i) =

* Measures how well a given instance is matched to its cluster
* The average silhouette computed across all instances in a partition

gives a measure of how good the partition is
* Implicitly balances both the intra- and inter-cluster metrics.

* 1 indicates an instance is perfectly clustered
-1 indicates it should be in a neighbouring cluster;
 Oindicates itis on the border of two clusters



AIML231 Clustering: 32

Other metrics

. Davies-Bouldin index
. Dunn index
. Calinski-Harabasz Index

nttps://scikit-
earn.org/stable/modules/clustering.html#clustering-
nerformance-evaluation




