Basic Python
Programming

Reference books

Machine Learning (McGraw-Hill International Editions
Computer Science Series) Paperback — January 1, 1997

by Tom M. Mitchell (Author)
43 ke fede v 115 ratings See all formats and editions

This book covers the field of machine learning, which is the study of algorithms that allow computer programs to
automatically improve through experience. The book is intended to support upper level undergraduate and
introductory level graduate courses in machine learning.

Ej Report an issue with this product or seller

Print length Language Publisher Publication date Dimensions
1 UgU I--I._
] @ o Ot
414 pages English McGraw-Hill January 1, 1997 6.6x1.3x9.5
inches

Roll over image to zoom in

Reference books

<« Back to results

OREILLY"

A ou S

Introduction to
Machine .

Learning
with Python

A GUIDE FOR DATA SCIENTISTS

powered by
P

Jupyter

-~ Andreas C. Miiller & Sarah Guido

Roll over image to zoom in

Introduction to Machine Learning with Python: A Guide ™
for Data Scientists 1st Edition

by Andreas Miiller (Author), Sarah Guido (Author)
4.6 Yokl v 542 ratings

Part of: Learning Python (7 books) See all formats and editions

Machine learning has become an integral part of many commercial applications and research projects, but this field
is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book
will teach you practical ways to build your own machine learning solutions. With all the data available today,
machine learning applications are limited only by your imagination.

You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn
library. Authors Andreas Miiller and Sarah Guido focus on the practical aspects of using machine learning

algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get
even more from this book.

With this book, you'll learn:

¢ Fundamental concepts and applications of machine learning
¢ Advantages and shortcomings of widely used machine learning algorithms

v Read more

EJ Report an issue with this product or seller

ISBN-10 ISBN-13 Edition Publisher Publication date

Reference books

< Back to results

Roll over image to zoom in

Read sample

Deep Learning (Adaptive Computation and Machine th
Learning series)

by lan Goodfellow (Author), Yoshua Bengio (Author), Aaron Courville (Author)
43 e fedole v 2,163 ratings See all formats and editions

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background,
deep learning techniques used in industry, and research perspectives.

“Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.”

—Elon Musk, cochair of OpenAl; cofounder and CEO of Tesla and SpaceX

Deep learning is a form of machine learning that enables computers to learn from experience and understand the
world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no
need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy
of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of
these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.

The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability

theory and information theory, numerical computation, and machine learning. It describes deep learning techniques
used by practitioners in industry, including deep feedforward networks, reqularization, optimization algorithms,
v Read more

E Report an issue with this product or seller

ISBN-10 ISBN-13 Publisher Publication date Language

mn mu 2] [l Yz

Why Python?

» Python is the most popular language
» Python has many libraries

» Good documentation, good support
» Python is

» Concise/precise

Most Popular Coding Languages of 2014

» Easy for beginners

Install python on your own
computer

» Anaconda
» Python

» Jupyter notebook
» Main Python libraries: numpy, matplotlib, pandas, sklearn

» Others e.g., Spyder

Using Jupyter notebook

» Browse the directories

» Create a new folder and rename it (if you have
not done so using the operating system)

» Create a new file and give it a good name
» Write your first Python program

» Run the first Python program
» Ctrl+Enter / Shift+Enter

Variables

» Examples
name = "Alex"
age = 20
height = 1.79

smoking = False

course = "AIML231"

required course = True

size = 175

» Assignment statement
» =1is not “equals”, is "assign to", "bind name to"
» create a reference (address)

» Question: Why variables?

name
height

smoking

Variable has a data type

» Name, value, data type
» What data type?

» Boolean: bool, True or False.

» Integer: int.

» Real numbers: float.

» String: str

> ...

» list, dict, tuple, Series, DataFrame

» Why data type?

» Size, how they are represented/stored,
» Each type allow certain operations
» Error checking

Using variables, operators, expressio

course = "AIML231"
print("Welcome to " + course)

» Operators
» String concatenation: +

» Arithmetic operators: +, -, *, /, [// (integer division), %
(remainder), ** (to the power of)

x = 138

y = 7282488

z = 48 * x + y/2 + x * y + 32 * x **2
print (z)

» Expressions:

» An expression is a combination of values, variables, operators
» (Expressions can have calls to functions, later in the course).
» Arithmetic expressions,

» (Boolean expressions, later)

Input & output

» Write a birthday invitation

name = 1nput ("Enter a name here: ")
print ("Dear " + name)

print ("You are invited to my birthday
party")

» input is a built-in function

» ‘“enter a name here" is a string (str), the
prompt to user

» this function returns a string (str)

Build-in functions

» input(), print(), int(), float(), str(), len(), type(), round(), abs(),
min(), max(),...

» To call a build-in function
» function_name(data_to _use)

» data_to_use is called arguments.
» Some functions take one argument, some take more
» The data type of the arguments are important

» Some functions can take different number of arguments
» print("some text", "more text", some_variable)

» Some functions do not return any value

» Some functions return a value
» Use the value in some way

Example
round (4.29)

abs (-4.5)
1nt (458.0645889)

Function, arguments, returned value

Define your own function

» Functions are defined with three components:

» The header, which includes the def keyword, the name of the function, and an
parameters the function requires.

» Parameter: data required, optional

» Comment: optional, strongly recommended,
» triple quotes for method comments
» will be printed when using help()

» The body: must be indented, 4 spaces recommended (use tab key)

def hello() :
"""Prints 'Hello Everyone!' to the console."™"

print ("Hello Everyone! M)

Function with parameters

» Parameters are the variables for this function
def welcome (name, course, num) :
"""Print a welcome message.
It has three parameters:

name as a str, course as a str and num as an int

mwiivmn

print ("hello " + name)
print ("Welcome to " + course)
print ("There are " + str(num) +" students in our class")

» When you call a function, specify the data_to_use (arguments)
» Arguments are passed to the parameters

welcome ("Alex", ”AIML231"™, 180)
welcome ("Bob", 7“AIML231", 420)
welcome ("Sara", ”AIML232", 100)
(
(

welcome ("AIML231", "Alex", 180)

welcome ("AIML231", 180, "Alex")

Keyword arguments

» Specify the parameter name of the arguments
then the order is not important

welcome (name="Alex", num=180, course="COMP132")

» Positional arguments must be before keyword
arguments

welcome ("Liz", num=120, course="WRIT151")

Parameter with default values

» Define a function using parameters with
default values

def pay (hour, rate=25):
total = hour * rate

print (total)

» Call a function as normal
pay (2, 20)

» Call a function using default arguments
pay (2)

If else

num = float (input ("enter a number: "))
1f num >= 0:

print ("Positive or Zero")

else:
print ("Negative number") -
action alternate action
» Template l
if some_condition : .

do_something
else:
do something_else

Example

def greater less equal 5 (answer):
1f answer > 5:
return 1
elif answer < 5:
return -1
else:
return 0

print (greater less equal 5(4))
print (greater less equal 5(5))
print (greater less equal 5(6))

Exercise

» Define a function that adds 15% tax to an
amount

» Define a function that adds 10% tip to an
amount

» Call the functions to work out how much to
pay for a giving amount. If the taxed
amount is less than $100, no tip applies.

Libraries, modules

» Python have many useful functions
» Only a very small amount of them are built-in

» Most functions are organised in libraries of
code called Modules.

» A module is simply a file containing Python
definitions, functions, and statements.

» Must import the module

» Call a function: specify module name and then
function name

Two common ways to import a

» Can import the entire module and its
namespace

import math

print (math.pi) #
An 1mported data value
print (math.sqgrt (23.4506)) # An

imported function
» Or we can import selected data/functions
Into current namespace
from math import pi, sqgrt
print (pi)
print (sgrt (23.456))

LOOPS REPEAT

Using loops

> LOO p SO YOU DON'T HAVE TO

while the condition is true:

loop in the body

; —_amheWhilel.o _

Wew Hapoy ProgramemingGuide . com
\

> c‘for’) lOOp l R
» Executing a statement a given number of times —< "3'“;7—\

Next iem

==

|

» Using “for” loop on Strings

Typical for loop

for x 1n range (10): __4ﬁf3&"mwm
print (x) \\//’

print ("hello")

range() is a built-in function.

range(10) returns a special object that
when you iterate over it, gives you the
numbers 0 through 9

in is a built-in operator

Loop with a list
numbers = [6, 5, 3, 8, 4, 2, 5,

sum = 0

for val 1n numbers:

sum = sum+val

print ("The sum 1s", sum)

Enter loop

Break out of a loop

» To exit a loop

test expression
of loop

» Typically

for var in sequence:
if (condition):

break
Exit Loop
. \
for letter 1in ' PythOn' . Remaining body
of loop
1f letter == 'h':
break

print ('Current Letter :' + letter)

str data type: how to get a string?

» Built-in data type
» Create a str object, can use

))
string_name = "any words you like"
s = "python language"

- str() converts other data type to str data type
num string = str(44848.45)

- Call a function that returns a str

course = input ("enter the course code here: ")

» Many functions return a string, e.g., read a file line by line

String and its index

» You can think of a Python string as a list of characters.
» The string "PYTHON" has six characters,
» numbered 0 to 5, as shown below:

[PIYITIH]O|N|
01 2 3 4 5

» So if you wanted "Y", you could just type "PYTHON"[1]

» (always start counting from 0!)

one letter = "MONTY" [2]

print (one letter)

m = "keep calm and carry on"

print (m[3])

Name = ‘Fudge’

Slice Notation

* Slice Notation is used to extract a substring.
* Examples:

*Name[©9:2]

*Name[2:5]

*Name| : 4|

*Name[:] ==

*Name[1:-1]

String methods

» sis a string object, e.g. s ="PYTHON is cool!"

v

s.split()

» s.lower()
» s.upper()

» s.startswith("hi") # can be used as the Boolean condition in if statement
» s.endswith("!") # can be used as the Boolean condition in if statement

» s.find("TH")
» s.count("0")

» s.replace(), s.format(), s.isnumeric(),

» Documentation:
https://docs.python.org/3/library/stdtypes. html#textseq

» A good one with examples at
» https://www.programiz.com/python-programming/methods/string

https://docs.python.org/3/library/stdtypes.html
https://www.programiz.com/python-programming/methods/string

How to get a list

» How to create a list

words = ["Every", "question",
nums = [2, 4, 2, 9, 1, 0]
» The built-in function list() can convert other type to a list

vowel string = 'aeiou'

lS", "a", "good"’ "question"]

print (list (vowel string))

list (range (10))
list (range (1,5))

» Many functions/methods return a list
text = "I know what I am doing"
mylist = text.split ()
print (mylist)

list is an indexed data structure

» Each element has an index |,
» Starting from zero Indexes °©o 1 2 3 4 5
» To access an element .
» List_name[index_number]
names = ["Liz", "Sam", "Alex", "Tom"]

names [0]

» To change an element

names|[1] = "Bob"

(use index can change the list item)
» To get a sublist

names|[1l:3]

» list_name[start_at : end_before: stride]

List methods

» Methods that can be called from a list object using dot notation
» Most methods can change the list

e.g., data = ["a", "list", "of", "data"]

data.reverse()

data.sort()

data.insert()

data.remove()

data.append()

data.count()

Many more

» Documentation: https://docs.python.org/3/library/index.html

» Learn with examples: https://www.programiz.com/python-programming/methods/list

» https://www.w3schools.com/python/python ref list.asp

https://docs.python.org/3/library/index.html
https://www.programiz.com/python-programming/methods/list
https://www.w3schools.com/python/python_ref_list.asp

List operators

» Addition operator +: odd = [1, 3, 5]
print (odd + [9, 7, 51])
print (odd)

» Multiplication operator *; odd = [1, 3, 5]
print (odd * 3)

» Del operator: my_list = ['p', 'r', ‘o', b,

delete one item
del my list([2]

print (my list)

del my list

tuple

» Atupleisaty cFe of sequence that is very similar to list, but the
length is fixed and it is immutable

» If you have a sequence that does not change, the right data
structure should be tuple

» Create a tuple using ()
» fruit=("apple”, "banana”, "pear”) ok without the ()
» type(fruit)
» Tuple with a single element n =(3,)
» Convert other type to a tuple
» tuple([1,5,7,3])
» tuple("aeuio”)
» Many functions/methods return a tuple (when a method
returns many values, it is easy to pack them into a tuple)

» e.g., when you use Scipy to find the peaks, they are returned as a tuple, you
need to use result[0] to get them.

A function that returns a tuple

def test () :
return 'abc', 100, [0, 1, 2]

a, b, c¢c = test()

print (a)
abc

print (b)
100

print (c)
[0, 1, 2]

Special use of tuple

» Swap two variables
a,b=1,2
b,a=a, b

Understand Python dictionary

» Dictionary is a data structure that has a key and a

value.

» Each key must be unique in the dictionary

» Example dictionaries

» A phone book:
» Key - The phone number

» Value - The persons’ name
» A physical dictionary (hence where the name of this data structure

comes from)
» Key - The word

Key (Student ID Number)

Value (Persons Name)

127323 ‘Mike’
187428 ‘Tomoki’
493209 ‘Raoul’

» Value - The description of the word (i.e., the definition).

» A Student record at a university

» Key - the student ID

» Value - The student’s name

Create a dictionary

» Create a dictionary

empty dictionary
my dict = {}

dictionary with integer keys
my dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys
my dict = {'name': 'John', 1: [2, 4, 3]}

using dict ()
my dict = dict({1l:'apple', 2:'ball'})

from sequence having each item as a pair
my dict = dict ([(1, 'apple'), (2,'ball")])

Handle all elements of a dictionary

» Use a for loop to process all key-value pairs
in a dictionary

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}
for k,v in squares.items () :

print (k)

print (v)

