
Basic Python
Programming

Reference books

Reference books

Reference books

Why Python?
uPython is the most popular language

uPython has many libraries

uGood documentation, good support

uPython is
u Concise/precise

u Easy for beginners

Install python on your own
computer

uAnaconda
u Python

u Jupyter notebook

u Main Python libraries: numpy, matplotlib, pandas, sklearn

u Others e.g., Spyder

Using Jupyter notebook

uBrowse the directories

uCreate a new folder and rename it (if you have
not done so using the operating system)

uCreate a new file and give it a good name

uWrite your first Python program

uRun the first Python program
u Ctrl+Enter / Shift+Enter

Variables
u Examples

name = "Alex"
age = 20

height = 1.79

smoking = False

course = ”AIML231"

required_course = True
size = 175

u Assignment statement
u = is not “equals”, is "assign to", "bind name to"
u create a reference (address)

u Question: Why variables?

Variable has a data type
u Name, value, data type
u What data type?

u Boolean: bool, True or False.
u Integer: int.
u Real numbers: float.
u String: str
u …

u list, dict, tuple, Series, DataFrame

u Why data type?
u Size, how they are represented/stored,

u Each type allow certain operations
u Error checking

Using variables, operators, expressions
course = "AIML231"
print("Welcome to " + course)

u Operators
u String concatenation: +
u Arithmetic operators: +, - , *, / , // (integer division), %

(remainder), ** (to the power of)
x = 138

y = 7282488

z = 48 * x + y/2 + x * y + 32 * x **2

print(z)

u Expressions:
u An expression is a combination of values, variables, operators
u (Expressions can have calls to functions, later in the course).
u Arithmetic expressions,
u (Boolean expressions, later)

Input & output
uWrite a birthday invitation

name = input("Enter a name here: ")

print("Dear " + name)

print("You are invited to my birthday
party")

u input is a built-in function
u "enter a name here" is a string (str), the

prompt to user
u this function returns a string (str)

Build-in functions
u input(), print(), int(), float(), str(), len(), type(), round(), abs(),

min(), max(),…
u To call a build-in function

u function_name(data_to _use)

u data_to_use is called arguments.
u Some functions take one argument, some take more
u The data type of the arguments are important

u Some functions can take different number of arguments
u print("some text", "more text", some_variable)

u Some functions do not return any value

u Some functions return a value
u Use the value in some way

Example
round(4.29)

abs(-4.5)

int(458.645889)

Function, arguments, returned value

Define your own function
u Functions are defined with three components:

u The header, which includes the def keyword, the name of the function, and any
parameters the function requires.
u Parameter: data required, optional

u Comment: optional, strongly recommended,
u triple quotes for method comments

u will be printed when using help()

u The body: must be indented, 4 spaces recommended (use tab key)

def hello():

"""Prints 'Hello Everyone!' to the console."""

print("Hello Everyone! ")

Function with parameters
u Parameters are the variables for this function

def welcome(name, course, num):

"""Print a welcome message.

It has three parameters:

name as a str, course as a str and num as an int

"""

print("hello " + name)

print("Welcome to " + course)

print("There are " + str(num) +" students in our class")

u When you call a function, specify the data_to_use (arguments)
u Arguments are passed to the parameters

welcome("Alex", ”AIML231", 180)

welcome("Bob", ”AIML231", 420)

welcome("Sara", ”AIML232", 100)

welcome(”AIML231", "Alex", 180)

welcome(”AIML231", 180, "Alex")

Keyword arguments
uSpecify the parameter name of the arguments,

then the order is not important

welcome(name="Alex", num=180, course="COMP132")

uPositional arguments must be before keyword
arguments
welcome("Liz", num=120, course="WRIT151")

Parameter with default values

uDefine a function using parameters with
default values
def pay(hour, rate=25):

total = hour * rate

print(total)

uCall a function as normal
pay(2, 20)

uCall a function using default arguments
pay(2)

If else

num = float(input("enter a number: "))
if num >= 0:

print("Positive or Zero")
else:

print("Negative number")

u Template
if some_condition :

do_something
else:

do something_else

Example
def greater_less_equal_5(answer):

if answer > 5:
return 1

elif answer < 5:
return -1

else:
return 0

print(greater_less_equal_5(4))
print(greater_less_equal_5(5))
print(greater_less_equal_5(6))

Exercise
uDefine a function that adds 15% tax to an

amount

uDefine a function that adds 10% tip to an
amount

uCall the functions to work out how much to
pay for a giving amount. If the taxed
amount is less than $100, no tip applies.

Libraries, modules
u Python have many useful functions
u Only a very small amount of them are built-in
u Most functions are organised in libraries of

code called Modules.
u A module is simply a file containing Python

definitions, functions, and statements.

u Must import the module
u Call a function: specify module name and then

function name

Two common ways to import a module
uCan import the entire module and its

namespace
import math

print(math.pi) #
An imported data value

print(math.sqrt(23.456)) # An
imported function

uOr we can import selected data/functions
into current namespace
from math import pi, sqrt

print(pi)

print(sqrt(23.456))

Using loops
uLoop

while the condition is true:

loop in the body

u“for” loop
u Executing a statement a given number of times

u Using “for” loop on Strings

Typical for loop
for x in range(10):

print(x)
print("hello")

range() is a built-in function.
range(10) returns a special object that
when you iterate over it, gives you the
numbers 0 through 9

in is a built-in operator

Loop with a list
numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

sum = 0

for val in numbers:

sum = sum+val

print("The sum is", sum)

Break out of a loop
u To exit a loop

u Typically

for var in sequence:
if (condition):

break

for letter in 'Python':

if letter == 'h':

break

print('Current Letter :' + letter)

str data type: how to get a string?
u Built-in data type
u Create a str object, can use " ", ' ' , ''' '''

string_name = "any words you like"

s = "python language"

• str() converts other data type to str data type
num_string = str(44848.45)

• Call a function that returns a str
course = input("enter the course code here: ")

u Many functions return a string, e.g., read a file line by line

String and its index
u You can think of a Python string as a list of characters.
u The string "PYTHON" has six characters,
u numbered 0 to 5, as shown below:

| P | Y | T | H | O | N |

0 1 2 3 4 5

u So if you wanted "Y", you could just type "PYTHON"[1]
u (always start counting from 0!)

one_letter = "MONTY"[2]

print(one_letter)

m = "keep calm and carry on"

print(m[3])

String slicing
Name = ‘Fudge’

String methods
u s is a string object, e.g. s ="PYTHON is cool!"

u s.split()

u s.lower()

u s.upper()

u s.startswith("hi") # can be used as the Boolean condition in if statement

u s.endswith("!") # can be used as the Boolean condition in if statement

u s.find("TH")

u s.count("o")

u s.replace(), s.format(), s.isnumeric(), ….

u Documentation:
https://docs.python.org/3/library/stdtypes.html#textseq

u A good one with examples at
u https://www.programiz.com/python-programming/methods/string

https://docs.python.org/3/library/stdtypes.html
https://www.programiz.com/python-programming/methods/string

How to get a list
u How to create a list

words = ["Every", "question", "is", "a", "good", "question"]

nums = [2, 4, 2, 9, 1, 0]

u The built-in function list() can convert other type to a list
vowel_string = 'aeiou'

print(list(vowel_string))

list(range(10))

list(range(1,5))

u Many functions/methods return a list
text = "I know what I am doing"

mylist = text.split()

print(mylist)

list is an indexed data structure
u Each element has an index

u Starting from zero

u To access an element
u List_name[index_number]

names = ["Liz", "Sam", "Alex", "Tom"]

names[0]

u To change an element
names[1] = "Bob"

(use index can change the list item)

u To get a sublist
 names[1:3]
u list_name[start_at : end_before: stride]

List methods
u Methods that can be called from a list object using dot notation

u Most methods can change the list

 e.g., data = ["a", "list", "of", "data"]

 data.reverse()

 data.sort()

 data.insert()

 data.remove()

 data.append()

 data.count()

Many more

u Documentation: https://docs.python.org/3/library/index.html

u Learn with examples: https://www.programiz.com/python-programming/methods/list

u https://www.w3schools.com/python/python_ref_list.asp

https://docs.python.org/3/library/index.html
https://www.programiz.com/python-programming/methods/list
https://www.w3schools.com/python/python_ref_list.asp

List operators
u Addition operator +:

u Multiplication operator *:

u Del operator:

odd = [1, 3, 5]
print(odd + [9, 7, 5])
print(odd)

odd = [1, 3, 5]
print(odd * 3)

my_list = ['p', 'r', 'o', 'b', 'l', 'e', 'm']

delete one item
del my_list[2]

print(my_list)

del my_list

tuple
u A tuple is a type of sequence that is very similar to list, but the

length is fixed and it is immutable
u If you have a sequence that does not change, the right data

structure should be tuple

u Create a tuple using ()
u fruit=("apple", "banana", "pear") ok without the ()
u type(fruit)
u Tuple with a single element n =(3,)

u Convert other type to a tuple
u tuple([1,5,7,3])
u tuple("aeuio")

u Many functions/methods return a tuple (when a method
returns many values, it is easy to pack them into a tuple)
u e.g., when you use Scipy to find the peaks, they are returned as a tuple, you

need to use result[0] to get them.

A function that returns a tuple

def test():
 return 'abc', 100, [0, 1, 2]

a, b, c = test()

print(a)
abc

print(b)
100

print(c)
[0, 1, 2]

Special use of tuple
uSwap two variables

a, b = 1, 2

b, a = a, b

Understand Python dictionary
u Dictionary is a data structure that has a key and a

value.
u Each key must be unique in the dictionary

u Example dictionaries
u A phone book:

u Key – The phone number

u Value – The persons’ name

u A physical dictionary (hence where the name of this data structure
comes from)
u Key – The word
u Value – The description of the word (i.e., the definition).

u A Student record at a university
u Key – the student ID
u Value – The student’s name

Create a dictionary
uCreate a dictionary

empty dictionary
my_dict = {}

dictionary with integer keys
my_dict = {1: 'apple', 2: 'ball'}

dictionary with mixed keys
my_dict = {'name': 'John', 1: [2, 4, 3]}

using dict()
my_dict = dict({1:'apple', 2:'ball'})

from sequence having each item as a pair
my_dict = dict([(1,'apple'), (2,'ball')])

Handle all elements of a dictionary

uUse a for loop to process all key-value pairs
in a dictionary

squares = {1: 1, 3: 9, 5: 25, 7: 49, 9: 81}
for k,v in squares.items():
 print(k)
 print(v)

