
AIML231  Techniques in ML

Decision Tree classifier
e.g.
Consider V2, is it > 5.1?
if yes: Consider V1, is it < 2.4?
if no: Consider V4, is it > 0.3?

And recurse…à tree of decisions.
At the leaves of this tree,
arrive at a classification

We can learn the tree, namely:
• which variables to consider, in order
• the thresholds

complexity control: scikit-learn suggests the max_depth
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https://docs.daft-pgm.org
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in many many 

many many 

dimensions

Support Vector Machines / Kernel machines

Two ways to think about SVMs:

Ølike k-NN, we have a function 
(“kernel”) that quantifies 
“closeness” between two 
example X’s

Ølike the Perceptron, we draw a 
hyperplane in a space
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But using math trickery, this very-high-
dim “space” is never explicitly realised, 
and the hyperplane is never explicitly
computed!
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https://static.javatpoint.com/tutorial/machine-learning/images/support-vector-
machine-algorithm.png



AIML231  Techniques in ML

Support Vector Machines / Kernel machines

• Very successful

• Largely robust to choice of kernel function

• Kernel trick - decision boundary can be linear in high-dimensional 
space (nice math properties), & non-linear in the input space
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Ensembles of classifiers

Several of the most popular and successful classifiers 
are based on ensembles of simple classifiers.

For example:
• Boosting (e.g. GradBoost)
• Random Forests (e.g. of trees / stumps)

• take hundreds of “base” classifiers which might each be very 
weak (e.g. “decision stumps”, i.e. one-level decision trees)

• pull these simple predictions together to obtain an ensemble 
prediction.

complexity control: as with Decision Trees – the max_depth
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https://en.wikipedia.org/wiki/Gradient_boosting
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Ensemble Learning

• Sometimes each learning technique yields a different 
hypothesis

• But no perfect hypothesis…
• Could we combine several imperfect hypotheses into 

a better hypothesis?
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Analogies of Ensemble Learning

• Analogies:
• Elections combine voters’ choices to pick a good 

candidate
• Committees combine experts’ opinions to make better 

decisions

• Intuitions:
• Individuals often make mistakes, but the “majority” is less 

likely to make mistakes.
• Individuals often have partial knowledge, but a committee 

can pool expertise to make better decisions.
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Definition of Ensemble Learning

• Definition: method to select and combine an ensemble 
of classifiers into a (hopefully) better classifier

• Can enlarge classification capability:
• Perceptrons, logistic regression, support vector machines:

• linear separators
• Ensemble of linear seperators:

• polytope

46



AIML231  Techniques in ML

Bagging
• Majority voting
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Random Forests
48

https://www.tibco.com/reference-center/what-is-a-random-forest

• Each tree is built from a bootstrap sample (i.e. a sample 
drawn with replacement) from the training set

• When splitting each node during the construction of a tree, 
the best split is found either from all input features or a 
random subset of features
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Weighted Majority
• In practice

• Hypotheses are rarely independent
• Some hypotheses have less errors than others

• Let’s take a weighted majority
• Intuition:

• Decrease weight of bad/correlated classifiers in the ensemble
• Increase weight of good classifiers in the ensemble
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Boosting

• Very popular ensemble technique
• Computes a weighted majority
• Can “boost” a “weak learner”
• Operates on a weighted training set

50



AIML231  Techniques in ML

Boosting Framework
51
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Example of the Boosting Framework
52
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Basic Performance Evaluation Metrics
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Classification Accuracy
• Accuracy – the number of objects which are correctly

detected/classified as a percentage of the total number of desired 
objects in the data set.

• 𝑁!"##!$%&&'(')*: the number of objects correctly detected or classified
• 𝑁+"+%$: the number of desired objects in the data set.

• Error Rate: the number of objects incorrectly classified as a 
percentage of the number of objects.

• Question: how to know the relative frequencies of false positive and
the false negative errors?
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TPR, TNR, FPR and FNR

• TPR – True Positive Rate (Fraction) – sensitivity
• The fraction of desired objects (actual Disease) in a database that are correctly

classified/detected by a classifier/detector.
• TPR = TP/(TP+FN)

• TNR – True Negative Rate (Fraction) – specificity
• The fraction of non-objects (actual non-Disease) in a database that are correctly

classified/detected as non-objects/background.
• TNR = TN/(FP+TN)
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Actual Situation
Disease Non-Disease

Diagnosed
Situation

Disease True Positive
(TP)

False Positive
(FP)

Non-
Disease

False Negative
( FN)

True Negative
(TN)
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TPR, TNR, FPR and FNR
• FPR – False Positive Rate (Fraction)

• The fraction of non-objects in a database that are incorrectly
classified/detected as objects.

• FPR = FP/(FP+TN)

• FNR – False Negative Rate (Fraction)
• The fraction of objects in a database that are incorrectly classified/detected as 

non-objects (background).
• FNR = FN/(TP+FN)
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TPR, TNR, FPR and FNR
• FNR + TPR = 1
• FPR + TNR = 1
• The bigger the TPR and TNR, the better the classifier.
• Because of the interrelationships among these measures, it is

necessary only to indicate a single pair, either TPR and TNR or FNR
and FPR are employed.

• TPR, TNR, FPR and FNR
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Actual Situation
Disease Non-Disease

Diagnosed
Situation

Disease True Positive
Rate (TPR)

False Positive
Rate (FPR)

Non-
Disease

False Negative
Rate ( FNR)

True Negative
Rate (TNR)
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Example Question
• Suppose a classifier is applied to a two-class object classification

problem: class1 and class2.
• 200 objects for class1 and 300 objects for class2
• With some threshold, the classifier correctly classified 160 objects for 

class1 and 210 objects for class2 .
• What is the accuracy?
• What is the error rate?
• What is the TPR?
• What is the FPR?
• What is the TNR?
• What is the FNR?
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Example Question
• Suppose a classifier is applied to a two-class object classification

problem: class1 and class2.
• 200 objects for class1 and 300 objects for class2
• With some threshold, the classifier correctly classified 160 objects for 

class1 and 210 objects for class2 .
• What is the accuracy? (160+210)/500 = 74%
• What is the error rate? 26%
• What is the TPR? 160/200=80%
• What is the FPR? (300-210)/300 = 30%
• What is the TNR? 70%
• What is the FNR? 20%
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Receiver Operating Characteristic (ROC) Curve
61

Non-disease
cases

Disease
cases

Test result value
or

subjective judgement of likelihood that case has disease

Threshold

Ideally:
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ROC Curve
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Non-disease
cases

Disease
cases

more typically:

Test result value
or

subjective judgement of likelihood that case has disease
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ROC Curve
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ROC Curve
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ROC Curve
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ROC Curve
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ROC Curve
• ROC curve: Receiver Operating Characteristic curve or Relative

Operating Characteristic curve
• Standard ROC curves conventionally take the FPR as the x axis, and 

the TPR as the y axis. 
• A typical standard ROC curve:
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ROC Curve
• Different confidence thresholds correspond to different points, which 

represent different pairs of TPR and FPR.
• A higher ROC curve indicates greater discrimination capacity

• (the “good” case in the figure).
• A lower ROC curve indicates weaker classification capacity

• (the “poor” case in the figure).
• The worst classification or diagnostic system

• Usually, which has no discrimination between positives and negatives (the 
“worst case” in the figure).

• The ideal system represents perfect interpretation, and the ideal point
is TPR = 1.0 and FPR = 0.
• (the “ideal” case in the figure).
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AUC
Conversion of ROC curve to a single measure is necessary sometimes.
One commonly used measure is:
• Area under the ROC curve (AUC): the area that lies beneath the 

entire ROC curve.
• 0.5 < AUC <1.0
• AUC = 0.5 corresponds to the worst case
• AUC = 1.0 corresponds to the ideal case
• Difficult to calculate/estimate, especially when the points are not well spread 

across the ROC space, depends a lot on the non-interesting part of the ROC
curve (both TPR and FPR tend to 1.0).
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Example Question
• For a two-class classification task, if the classifier correctly achieved 

the following results under the corresponding thresholds,

• Present the ROC curve for class1. Assume we have 200 class 1 
cases and 300 class 2 cases.

70

class1
Threshold 0.40 0.50 0.60 0.70 0.80 0.90

N-O-C 200 200 180 160 120 100
N-O-Tot 500 400 300 240 180 130

N-O-IC 300 200 120 80 60 30
TPR
FPR
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class1
Threshold 0.40 0.50 0.60 0.70 0.80 0.90

N-O-C 200 200 180 160 120 100
N-O-Tot 500 400 300 240 180 130

N-O-IC 300 200 120 80 60 30
TPR 100% 100% 90% 80% 60% 50%
FPR 100% 66.6% 40% 26.7% 20% 10%
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Example two
72
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Precision & Recall
73
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Precision & Recall
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Precision & Recall
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Precision & Recall
76
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Precision vs. Recall
• Here are some sample precision/recall plots:
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Example Question
• Consider a disease screening test where a classifier is used to predict 

whether individuals have a disease (positive) or not (negative). After 
testing 100 individuals, the results are as follows:
• 30 people actually have the disease (positives), and 70 do not (negatives).
• The classifier identified 25 individuals as having the disease, of whom 20 

actually have the disease (TP = 20).
• The classifier incorrectly identified 5 healthy individuals as having the disease 

(FP = 5).
• The classifier correctly identified 65 individuals as not having the disease (TN 

= 65).
• The classifier missed 10 cases of the disease (FN = 10).

• Question: What are the precision, recall and F1 score of this 
classifier?
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Learning Decision Tree Classifiers
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Decision Tree is Human Interpretable

• Each internal node 
tests an attribute 𝑥'

• One branch for each 
possible attribute 
value 𝑥' = 𝑣

• Each leaf assigns a 
class 𝑦

• To classify input 𝑥: 
traverse the tree from 
root to leaf, output the 
label 𝑦 of the leaf 
finally reached
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Learning Capability of Decision Tree
• Question: How many 

different classification 
functions can we build 
using decision trees 
on a training dataset?

81



AIML231  Techniques in ML

What functions can be represented?
82

• Decision trees can represent 
any function of the input 
features.

• For Boolean functions, each 
path from root to leaf in a 
decision tree corresponds to 
one row of the truth table.

• A decision tree may include 
an exponential number of 
nodes.
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Complexity of Learning Decision Trees

• Learning the simplest (smallest) decision tree is an 
NP-complete problem

• Resort to a greedy heuristic:
• Start from an empty decision tree
• Iteratively split on the best next feature
• Repeat
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Greedily Learn a Decision Tree Repeatedly
84
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Repeated Construction of Decision Tree
85
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Second Level of the Decision Tree
86
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Create a Full Decision Tree
87
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Choose the Suitable Feature to Split
• Should we choose 𝑥! or 
𝑥" to split?

• Idea:
• Any splitting on a feature 

should reduce our 
uncertainty of the class 
labels to be applied to 
each partition after 
splitting.

• Use counts at leaves to 
define probability 
distributions, so we can 
measure uncertainty.
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Measure Uncertainty
• Good split if we are more certain about classification after 

split
• Deterministic good (all true or all false)
• Uniform distribution bad

• Question: What about distributions in between?
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Entropy
• Entropy of a random variable 𝑌

• Entropy measures the uncertainty over the value of a random variable
• More uncertainty, more entropy!
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High and Low Entropy

• High entropy
• 𝑌 follows a uniform like (flat) distribution
• Values sampled from 𝑌 are less predictable

• Low entropy
• 𝑌 follows a varied (peaks and valleys) distribution
• Values sampled from 𝑌 are more predictable
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Entropy Calculation Example
92
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Conditional Entropy
• Conditional entropy 𝐻(𝑌|𝑋) of a random variable 𝑌 conditioned on 

another random variable 𝑋
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Information Gain
• Decrease in entropy (uncertainty) after using a feature for splitting
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Algorithm to Learn Decision Trees
95
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Decision Trees can Overfit
96
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Decision Trees can Overfit
• Standard decision trees have learning bias

• The learned decision tree can be very large.
• The accuracy on the training set can be high.
• However, the accuracy on the test set can be poor.

• To address overfitting, we must introduce a learning bias 
towards simple trees
• Set the maximum tree depth
• Set the minimum partition size of each node (including the leaf 

node)

• Pruning
• Pre-pruning: stops the tree from growing before it perfectly 

classifies the training data
• Post-pruning: grows a full tree first and then simplify the tree.
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Handle Real-Valued Features
• What should we do if some of the input features have real 

values?
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Threshold based Split
• Binary tree: split on any 

feature 𝑥 based on 
threshold 𝑡
• Branch 1: 𝑥 < 𝑡
• Branch 2: 𝑥 ≥ 𝑡

• Small change of the 
learning algorithm is 
required
• Allow repeated split of the 

same input feature based 
on different thresholds
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Determine All Possible Thresholds
• For any input feature 𝑋, only a finite number of thresholds are 

potentially important
• How to identify important thresholds?

• Sort data according to 𝑋 into 𝑥!, 𝑥", ⋯ , 𝑥#

• Consider the split threshold of the form $!%$!"#
"

• Further simplification: only splits between data instances of different classes 
matter
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Choose the Best Threshold
101
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Supervised Learning for Classification
• So far …

• K-nearest neighbors
• Perceptron
• Logistic regression
• SVMs
• Decision trees
• Neural networks

• Which technique should we pick?
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