Class

Decision Tree classifier

e.g.

Consider V2, is it > 5.1? if yes: Consider V1, is it < 2.4? if no: Consider V4, is it > 0.3?

And recurse... \rightarrow tree of decisions. At the leaves of this tree, arrive at a classification

We can learn the tree, namely:

- which variables to consider, in order
- the thresholds

complexity control: scikit-learn suggests the max_depth

14	1/0	1/0	14
V1	V2	V3	V4
3.6216	8.6661	-2.8073	-0.44699
4.5459	8.1674	-2.4586	-1.4621
3.866	-2.6383	1.9242	0.10645
3.4566	9.5228	-4.0112	-3.5944
0.32924	-4.4552	4.57	-0.9888
4.3684	9.6718	3.5 .06	-3.1625
3.5912	3.0129	0 2888	0.56421
2.0922	-6.81	8 36	-0.60216
3.2032	5.7588	-0.753	-0.61251
1.5356	9.1772	-2.2718	-0.73535
1.2247	8.7779	-2.2135	-0.80647
0 0000	0 7000	0.00.40	0.00004

MACHINE

Two ways to think about SVMs:

≻like k-NN, we have a function

("kernel") that quantifies

"closeness" between two example X's

like the Perceptron, we draw a hyperplane in a space

But using math trickery, this very-highdim "space" is never explicitly realised, and the hyperplane is never explicitly computed!

https://static.javatpoint.com/tutorial/machine-learning/images/support-vector-machine-algorithm.png

MACHINE

LEARNING

Support Vector Machines / Kernel machines

- Very successful
- Largely robust to choice of kernel function
- Kernel trick decision boundary can be *linear* in high-dimensional space (nice math properties), & *non-linear* in the input space

Ensembles of classifiers

Several of the most popular and successful classifiers are based on *ensembles* of simple classifiers.

For example:

- Boosting (e.g. <u>GradBoost</u>)
- Random Forests (e.g. of trees / stumps)
- take hundreds of "base" classifiers which might each be very weak (e.g. "decision stumps", i.e. one-level decision trees)
- pull these simple predictions together to obtain an ensemble prediction.

complexity control: as with Decision Trees – the max_depth

Ensemble Learning

- Sometimes each learning technique yields a different hypothesis
- But no perfect hypothesis...
- Could we combine several imperfect hypotheses into a better hypothesis?

Analogies of Ensemble Learning

- Analogies:
 - Elections combine voters' choices to pick a good candidate
 - Committees combine experts' opinions to make better decisions
- Intuitions:
 - Individuals often make mistakes, but the "majority" is less likely to make mistakes.
 - Individuals often have partial knowledge, but a committee can pool expertise to make better decisions.

•

Definition of Ensemble Learning

- Definition: method to select and combine an ensemble of classifiers into a (hopefully) better classifier
 - Can enlarge classification capability:
 - Perceptrons, logistic regression, support vector machines:
 - linear separators
 - Ensemble of linear seperators:
 - polytope

•

Bagging

Majority voting

MACHINE

SUPERVISED

- Each tree is built from a bootstrap sample (i.e. a sample drawn with replacement) from the training set
- When splitting each node during the construction of a tree, the best split is found either from all input features or a random subset of features

https://www.tibco.com/reference-center/what-is-a-random-forest

Weighted Majority

- In practice
 - Hypotheses are rarely independent
 - Some hypotheses have less errors than others
- Let's take a weighted majority
- Intuition:
 - Decrease weight of bad/correlated classifiers in the ensemble
 - Increase weight of good classifiers in the ensemble

- · Very popular ensemble technique
- · Computes a weighted majority
- . Can "boost" a "weak learner"
- · Operates on a weighted training set

- Set all instance weights *w_i* to 1
- Repeat
 - $h_i \leftarrow learn(dataset, instance weights)$
 - Increase weight w_j of misclassified instances x_j
- Until sufficient number of hypotheses
- Ensemble hypothesis is the weighted majority of *h_i*'s with weights *c_i* proportional to the accuracy of *h_i*

Example of the Boosting Framework

Techniques in ML

Basic Performance Evaluation Metrics

٠

Classification Accuracy

 Accuracy – the number of objects which are correctly detected/classified as a percentage of the total number of desired objects in the data set.

$$Accuracy = \frac{N_{CorrClassified}}{N_{total}} * 100\%$$

- N_{CorrClassified}: the number of objects correctly detected or classified
- N_{total} : the number of desired objects in the data set.
- Error Rate: the number of objects incorrectly classified as a percentage of the number of objects.
 - Question: how to know the relative frequencies of false positive and the false negative errors?

٠

TPR, TNR, FPR and FNR

		Actual Situation	
		Disease	Non-Disease
Diagnosed	Disease	True <i>Positive</i>	False Positive
Situation		(TP)	(FP)
	Non-	False Negative	True Negative
	Disease	(FN)	(TN)

• TPR – True Positive Rate (Fraction) – sensitivity

- The fraction of desired objects (actual Disease) in a database that are correctly classified/detected by a classifier/detector.
- TPR = *TP/(TP+FN*)
- TNR True Negative Rate (Fraction) **specificity**
 - The fraction of non-objects (actual non-Disease) in a database that are correctly classified/detected as non-objects/background.
 - TNR = *TN/(FP+TN)*

•

٠

TPR, TNR, FPR and FNR

- FPR False Positive Rate (Fraction)
 - The fraction of non-objects in a database that are incorrectly classified/detected as objects.
 - FPR = *FP/(FP+TN)*
- FNR False Negative Rate (Fraction)
 - The fraction of objects in a database that are incorrectly classified/detected as non-objects (background).

True Class

• FNR = *FN/(TP+FN)*

TPR, TNR, FPR and FNR

- FNR + TPR = 1
- FPR + TNR = 1
- The bigger the TPR and TNR, the better the classifier.
- Because of the interrelationships among these measures, it is necessary only to indicate a single pair, either TPR and TNR or FNR and FPR are employed.
- TPR, TNR, FPR and FNR

		Actual Situation	
		Disease	Non-Disease
Diagnosed	Disease	True <i>Positive</i>	False Positive
Situation		Rate (TP R)	Rate (FP R)
	Non-	False Negative	True Negative
	Disease	Rate (FN R)	Rate (TN R)

Example Question

- Suppose a classifier is applied to a two-class object classification problem: class1 and class2.
- 200 objects for class1 and 300 objects for class2
- With some threshold, the classifier correctly classified 160 objects for class1 and 210 objects for class2.
 - What is the accuracy?
 - What is the error rate?
 - What is the TPR?
 - What is the FPR?
 - What is the TNR?
 - What is the FNR?

Example Question

- Suppose a classifier is applied to a two-class object classification problem: class1 and class2.
- 200 objects for class1 and 300 objects for class2
- With some threshold, the classifier correctly classified 160 objects for class1 and 210 objects for class2.
 - What is the accuracy? (160+210)/500 = 74%
 - What is the error rate? 26%
 - What is the TPR? 160/200=80%
 - What is the FPR? (300-210)/300 = 30%
 - What is the TNR? 70%
 - What is the FNR? 20%

Receiver Operating Characteristic (ROC) Curve

Test result value or subjective judgement of likelihood that case has disease

- ROC curve: Receiver Operating Characteristic curve or Relative
 Operating Characteristic curve
- Standard ROC curves conventionally take the FPR as the x axis, and the TPR as the y axis.
- A typical standard ROC curve:

- Different confidence thresholds correspond to different points, which represent different pairs of TPR and FPR.
- A higher ROC curve indicates greater discrimination capacity
 - (the "good" case in the figure).
- A lower ROC curve indicates weaker classification capacity
 - (the "poor" case in the figure).
- The worst classification or diagnostic system
 - Usually, which has no discrimination between positives and negatives (the "worst case" in the figure).
- The ideal system represents perfect interpretation, and the ideal point is TPR = 1.0 and FPR = 0.
 - (the "ideal" case in the figure).

SLT AUC False Alarms Conversion of ROC curve to a single measure is necessary sometimes.

One commonly used measure is:

- Area under the ROC curve (AUC): the area that lies beneath the entire ROC curve.
 - 0.5 < AUC <1.0
 - AUC = 0.5 corresponds to the worst case
 - AUC = 1.0 corresponds to the ideal case
 - Difficult to calculate/estimate, especially when the points are not well spread across the ROC space, depends a lot on the non-interesting part of the ROC curve (both TPR and FPR tend to 1.0).

•

Example Question

 For a two-class classification task, if the classifier correctly achieved the following results under the corresponding thresholds,

	class1							
Threshold	0.40	0.50	0.60	0.70	0.80	0.90		
N-O-C	200	200	180	160	120	100		
N-O-Tot	500	400	300	240	180	130		
N-O-IC	300	200	120	80	60	30		
TPR								
FPR								

Present the ROC curve for class1. Assume we have 200 class 1 cases and 300 class 2 cases.

	class1								
Threshold	0.40	0.50	0.60	0.70	0.80	0.90			
N-O-C	200	200	180	160	120	100			
N-O-Tot	500	400	300	240	180	130			
N-O-IC	300	200	120	80	60	30			
TPR	100%	100%	90%	80%	60%	50%			
FPR	100%	66.6%	40%	26.7%	20%	10%			

Example two

- Precision and recall measure:
 - widely used in the area of *information retrieval*.
 - also used in object recognition/detection sometimes.
- Precision as known in many pattern recognition
 - the measure of how 'good' the information retrieved by a system is.
 - Originally, precision refers to the number of relevant documents retrieved by a system as a percentage of the number of documents retrieved, such as:

 $precision = \frac{NO.Relevant Documents Retrieved}{Total NO.Documents Retrieved}$ * 100%

 In object detection/recognition --- the number of objects correctly reported by a detection system as a percentage of the total number of objects reported.

- As in the detection rate/false alarm rate,
 - For a single class,

-
$$Precision_{i} = \frac{\sum_{j=1}^{n} N_{true}(i,j)}{\sum_{j=1}^{n} N_{reported}(i,j)} * 100\%$$

- The overall precision for a detection system,

- Precision =
$$\frac{\sum_{j=1}^{n} \sum_{i=1}^{m} N_{true}(i,j)}{\sum_{j=1}^{n} \sum_{i=1}^{m} N_{reported}(i,j)} * 100\%$$

- Recall or sensitivity
 - a measure of how much of the relevant information was retrieved by a system.
- In information retrieval
 - the number of relevant documents retrieved by a system as a percentage of of the total number of documents in a database.

• $recall = \frac{NO.Relevant Documents Retrieved}{Total NO. Relevant Documents in Database} * 100\%$

- In object recognition/detection
 - the number of objects correctly reported by a detection system as a percentage of the total number of desired known objects in a database.

• For a single class,

-
$$Recall_i = \frac{\sum_{j=1}^n N_{true}(i,j)}{\sum_{j=1}^n N_{known}(i,j)} * 100\%$$

• The overall recall for a detection system,

- Recall =
$$\frac{\sum_{j=1}^{n} \sum_{i=1}^{m} N_{true}(i,j)}{\sum_{j=1}^{n} \sum_{i=1}^{m} N_{known}(i,j)} * 100\%$$

- Recall is identical to detection rate, accuracy, or TPR.
- The range of recall and precision is [0, 1] or [0, 100%].

AIML231

Precision vs. Recall

• Here are some sample precision/recall plots:

- Consider a disease screening test where a classifier is used to predict whether individuals have a disease (positive) or not (negative). After testing 100 individuals, the results are as follows:
 - 30 people actually have the disease (positives), and 70 do not (negatives).
 - The classifier identified 25 individuals as having the disease, of whom 20 actually have the disease (TP = 20).
 - The classifier incorrectly identified 5 healthy individuals as having the disease (FP = 5).
 - The classifier correctly identified 65 individuals as not having the disease (TN = 65).
 - The classifier missed 10 cases of the disease (FN = 10).
 - Question: What are the precision, recall and F1 score of this classifier?

٠

AIML231

Techniques in ML

Learning Decision Tree Classifiers

Decision Tree is Human Interpretable

- Each internal node tests an attribute *x_i*
- One branch for each possible attribute value $x_i = v$
- Each leaf assigns a class *y*
- To classify input x: traverse the tree from root to leaf, output the label y of the leaf finally reached

Human interpretable!

Learning Capability of Decision Tree

 Question: How many different classification functions can we build using decision trees on a training dataset?

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

What functions can be represented?

- Decision trees can represent any function of the input features.
- For Boolean functions, each path from root to leaf in a decision tree corresponds to one row of the truth table.
- A decision tree may include an exponential number of nodes.

AIML231

Complexity of Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem
- Resort to a greedy heuristic:
 - Start from an empty decision tree
 - Iteratively split on the best next feature
 - Repeat

Greedily Learn a Decision Tree Repeatedly

Repeated Construction of Decision Tree

Second Level of the Decision Tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Create a Full Decision Tree

Choose the Suitable Feature to Split

- Should we choose x₁ or x₂ to split?
- Idea:
 - Any splitting on a feature should reduce our uncertainty of the class labels to be applied to each partition after splitting.
 - Use counts at leaves to define probability distributions, so we can measure uncertainty.

Measure Uncertainty

- Good split if we are more certain about classification after split
 - Deterministic good (all true or all false)
 - Uniform distribution bad

• Question: What about distributions in between?

•

Entropy

- Entropy of a random variable Y $H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$
- Entropy measures the uncertainty over the value of a random variable
 - More uncertainty, more entropy!

AIML231

High and Low Entropy

- High entropy
 - Y follows a uniform like (flat) distribution
 - Values sampled from *Y* are less predictable
- Low entropy
 - Y follows a varied (peaks and valleys) distribution
 - Values sampled from *Y* are more predictable

Entropy Calculation Example

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

$$P(Y=t) = 5/6$$

 $P(Y=f) = 1/6$

 $H(Y) = -5/6 \log_2 5/6 - 1/6 \log_2 1/6$ = 0.65

X ₁	X ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional Entropy

• Conditional entropy *H*(*Y*|*X*) of a random variable *Y* conditioned on another random variable *X*

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

$$H(Y|X_1) = -4/6 (1 \log_2 1 + 0 \log_2 0)$$

- 2/6 (1/2 log₂ 1/2 + 1/2 log₂ 1/2)
= 2/6

Information Gain

• Decrease in entropy (uncertainty) after using a feature for splitting

$$IG(X) = H(Y) - H(Y \mid X)$$

In our running example:

$$IG(X_1) = H(Y) - H(Y|X_1) = 0.65 - 0.33$$

 $IG(X_1) > 0 \rightarrow$ we prefer the split!

Algorithm to Learn Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

 $\arg\max_i IG(X_i) = \arg\max_i H(Y) - H(Y \mid X_i)$

Recurse

Decision Trees can Overfit

Decision Trees can Overfit

- Standard decision trees have learning bias
 - The learned decision tree can be very large.
 - The accuracy on the training set can be high.
 - However, the accuracy on the test set can be poor.

- To address overfitting, we must introduce a learning bias towards simple trees
 - Set the maximum tree depth
 - Set the minimum partition size of each node (including the leaf node)
- Pruning
 - Pre-pruning: stops the tree from growing before it perfectly classifies the training data
 - Post-pruning: grows a full tree first and then simplify the tree.

AIML231

Handle Real-Valued Features

What should we do if some of the input features have real values?

	mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
	good	4	97	75	2265	18.2	77	asia
	bad	6	199	90	2648	15	70	america
<i>c</i>	bad	4	121	110	2600	12.8	77	europe
)T	bad	8	350	175	4100	13	73	america
split	bad	6	198	95	3102	16.5	74	america
	bad	4	108	94	2379	16.5	73	asia
	bad	4	113	95	2228	14	71	asia
	bad	8	302	139	3570	12.8	78	america
	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:
	good	4	120	79	2625	18.6	82	america
5	bad	8	455	225	4425	10	70	america
	good	4	107	86	2464	15.5	76	europe
	bad	5	131	103	2830	15.9	78	europe
6								

Threshold based Split

- Binary tree: split on any feature x based on threshold t
 - Branch 1: *x* < *t*
 - Branch 2: $x \ge t$
- Small change of the learning algorithm is required
 - Allow repeated split of the same input feature based on different thresholds

Determine All Possible Thresholds

- For any input feature *X*, only a finite number of thresholds are potentially important
- How to identify important thresholds?
 - Sort data according to X into $\{x_1, x_2, \dots, x_n\}$

- Consider the split threshold of the form $\frac{x_i + x_{i+1}}{2}$
- Further simplification: only splits between data instances of different classes matter

- Suppose X is real valued with threshold t
- Want **IG(Y | X:t)**, the information gain for Y when testing if X is greater than or less than t
- Define:
 - H(Y|X:t) = p(X < t) H(Y|X < t) + p(X >= t) H(Y|X >= t)
 - IG(Y|X:t) = H(Y) H(Y|X:t)
 - IG*(Y|X) = max_t IG(Y|X:t)
- Use: IG*(Y|X) for continuous variables

Supervised Learning for Classification

- So far ...
 - K-nearest neighbors
 - Perceptron
 - Logistic regression
 - SVMs
 - Decision trees
 - Neural networks
- Which technique should we pick?

