

Techniques in ML

AIML231 — Techniques in Machine Learning

Machine Learning Tasks

★ AI and machine learning

★ Machine learning scope: data, task, model, and algorithm

★ Data handle by machine learning

★ Machine learning tasks

★ Machine learning pipeline

Artificial Intelligence Companies

AIML231

Artificial Intelligence Companies

cf in Aotearoa : https://newzealand.ai/nz-ai-companies

Not This - This is Application

Not this either - this is the process of ML

AIML231

Techniques in ML 7

This is the process of ML

MATLAB gives the following ontology of ML

But it's a lot richer than this

https://www.mathworks.com/help/stats/machine-learning-in-matlab.html

Supervision available to the learner

lots:

Supervised learning: The environment contains a teacher that provides the correct response for certain environmental states. The goal is for the learner to output the correct response: "do what the teacher would do".

none:

Unsupervised learning: No such teacher to say whether the learner's output is correct. Instead, the learning system has an internally defined teacher with a prescribed goal that does not need utility feedback of any kind.

some:

Reinforcement learning: Again, no such teacher to say whether the learner's output is correct. Instead of a label, the environment provides reward or punishment to indicate the utility of actions that were actually taken by the system.

3-way split

http://www.cognub.com/index.php/cognitive-platform/

Outcomes (outputs) – can be simple... or more informative

- Notice that different outcomes can have different amounts of information content
- e.g. here, a classifier classifies ③ some novel input pattern

The main divisions within learners

	Supervised Learni	ng Unsupervised Learning
Discrete	Classification (categorisation)	Clustering
Continuous	Regression	Dimension Reduction

(leaving Reinforcement learning aside)

The main divisions within learners

	Supervised Learni	ng Unsupervised Learning
Discrete	Classification (categorisation)	Clustering
Continuous	Regression	Dimension Reduction

Semi-supervised Learning?

Adapted from: https://www.slideshare.net/GirishKhanzode/supervised-learning-52218215

Types of Input

Could be... i.i.d. (independent, identically distributed) or a sequence, like this:

						_
٧1		V2	V3	V4	Class	
	3.6216	8.6661	-2.8073	-0.44699	1	
	4.5459	8.1674	-2.4586	-1.4621	1	
	3.866	-2.6383	1.9242	0.10645	1	
	3.4566	9.5228	-4.0112	-3.5944	1	
	0.32924	-4.4552	4.5718	-0.9888	1	
	4.3684	9.6718	-3.9606	-3.1625	1	
	3.5912	3.0129	0.72888	0.56421	1	
	2.0922	-6.81	8.4636	-0.60216	1	
	3.2032	5.7588	-0.75345	-0.61251	1	
	1.5356	9.1772	-2.2718	-0.73535	1	
	1.2247	8.7779	-2.2135	-0.80647	1	
		0 7000	0.0040	0.00004		

or...?

Classification

V1	V2	V3	V4	Class
3.6216	8.6661	-2.8073	-0.44699	1
4.5459	8.1674	-2.4586	-1.4621	1
3.866	-2.6383	1.9242	0.10645	1
3.4566	9.5228	-4.0112	-3.5944	1
0.32924	-4.4552	4.5718	-0.9888	1
4.3684	9.6718	-3.9606	-3.1625	1
3.5912	3.0129	0.72888	0.56421	1
2.0922	-6.81	8.4636	-0.60216	1
3.2032	5.7588	-0.75345	-0.61251	1
1.5356	9.1772	-2.2718	-0.73535	1
1.2247	8.7779	-2.2135	-0.80647	1
0.0000	0 7000	0.0040	0.00004	

Predict a category (class)

species of iris:
(a 3-way
classification)

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	lris setosa
2	4.9	3.0	1.4	0.2	lris setosa
51	7.0	3.2	4.7	1.4	Iris versicolor
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	lris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

Classification

https://www.mathworks.com/help/stats/machine-learning-in-matlab.html

Regression

Predict one or more floats

Clustering

Finding groups of items that are "similar"

Clustering is *unsupervised*: class of an example is not known

Success often measured subjectively – it is fundamentally

Dimension Reduction

Raw data is often high-dimensional, which is a problem:

- 1. data with >3 dimensions is hard for humans to interpret / work with!
- 2. ML algorithms also struggle with high-dimensional data (ultimately, due to the curse of dimensionality)

banknote-authentication	
active Image: ARFF Image: Publicly available Image: Visibility: public Uploaded 21-05-2015 by Rafael Gomes Man Image: Solution of the state	tovani ' study_98 study_99 uci
Author: Volker Lohweg (University of Applied Sciences, Ostwestfalen-Lippe) Source: [UCI](https://archive.ics.uci.edu/ml/datasets/banknote+authentication) - 2012 Please cite: [UCI](https://archive.ics.uci.edu/ml/citation_policy.html) Dataset about distinguishing genuine and forged banknotes. Data were extracted from images t genuine and forged banknote-like specimens. For digitization, an industrial camera usually used was used. The final images have 400x 400 pixels. Due to the object lens and distance to the inve	Loading wiki

Hence, interest in ML methods that can identify the main directions of interest in data, for example (e.g. PCA: Principle Components Analysis, and others)

Some Others

Some Others

Tasks	Description	Algorithms	Examples
Classification	Predict if a data point belongs to one of the predefined classes. The prediction will be based on learning from a known data set.	Decision trees, neural networks, Bayesian models, induction rules, k-nearest neighbors	Assigning voters into known buckets by political parties, e.g., soccer moms Bucketing new customers into one of the known cus- tomer groups
Regression	Predict the numeric target label of a data point. The prediction will be based on learning from a known data set.	Linear regression, logistic regression	Predicting unemployment rate for next year Estimating insurance pre- mium
Anomaly detection	Predict if a data point is an outlier compared to other data points in the data set.	Distance based, density based, local outlier factor (LOF)	Fraud transaction detection in credit cards Network intrusion detection
Time series	Predict the value of the target variable for a future time frame based on historical values.	Exponential smoothing, autoregressive integrated moving average (ARIMA), regression	Sales forecasting, produc- tion forecasting, virtually any growth phenomenon that needs to be extrapolated
Clustering	Identify natural clusters within the data set based on inherit proper- ties within the data set.	k-means, density-based clustering (e.g., density- based spatial clustering of applications with noise [DBSCAN])	Finding customer segments in a company based on transaction, web, and cus- tomer call data
Association analysis	Identify relationships within an item set based on transaction data.	Frequent Pattern Growth (FP-Growth) algorithm, Apri- ori algorithm	Find cross-selling opportu- nities for a retailer based on transaction purchase history