
AIML427 Week7:

K-means clustering
• In K-means clustering, have to specify K, the number of clusters

we want.

• The aim of K-means is then to choose the K clusters so that the
total within-cluster variation is minimised.
- a simple objective to state, but rather difficult to obtain precisely –

there are almost "! ways to cluster the observations!

• Let C1 , . . . , CK denote the K disjoint (non-overlapping) clusters, i.e.
sets containing the indices of the observations in each cluster.

$%&
'1 , . . . , ') ∑#$!% +(')) ,

where !(#$) is a measure of within-cluster variation

• The idea behind is a good clustering is one for which the within-cluster
variation is as small as possible

• See also ISLR 10.3.1

AIML427 Week7:

Within-cluster variation
• By far the most common measure of within-cluster variation is based on

the squared Euclidean distance:

W #! = "
|$!|

∑%,%" ∈ $!()% −)%")(=
"
|$!|

∑%,%" ∈ $! ∑)*"+ ()%) −)%"))(,

where xij is the jth component of xi, i.e. the value of feature j for
observation i, and |Ck| is the number of observations in cluster k

• Sum of all of the pairwise squared Euclidean distances between the
observations in the kth cluster, divided by the total number of
observations in the kth cluster

• The squared Euclidean distance is a measure of dissimilarity between
pairs of observations

W #! = 1
|#!|

-
%,%" ∈ $!

()% −)%")(= 2 -
% ∈ $!

()% −/!)(

where /! = "
|$!|

∑% ∈ $!)% is the centroid of cluster k.

AIML427 Week7:

K-means algorithm
Main steps of K-means:

• Initialise C1 , . . . , CK by randomly assigning each observation a
number from 1 to K

• Repeat until the the cluster assignments don’t change:
- (a) Compute the centroid for each cluster
- (b) Assign each observation to the cluster whose centroid is

closest in Euclidean distance

• Algorithm 10.1 of ISLR

• The algorithm finds a local minimum of the objective function
∑#$!% +('#).

AIML427 Week7:

K-means algorithm [2] K -means algorithm

ISLR Figure 10.6: K -means algorithm in operation
15 / 51

AIML427 Week7:

K-means algorithm [2] K -means algorithm

ISLR Figure 10.7: Di↵erent starting points can lead to di↵erent local minima
16 / 51

AIML427 Week7:

Iris example
• The Iris dataset is a famous dataset. The data is labelled so

it’s usually used as a common example for classification

• Note that n = 150 and p = 4
• We’ll see how clustering performs on this dataset

[2] Iris example

The Iris dataset is a famous dataset due to Fisher. The data is labelled so it’s usually
used as a stock example for classification

> data(iris)
> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Note that n = 150 and p = 4

We’ll see how clustering performs on this dataset

17 / 51

AIML427 Week7:

Iris example
• The function kmeans performs K-means clustering in R. First,

let’s ask for 2 clusters:

> km = kmeans(iris[,1:4],2)

[2] Iris example

The function kmeans performs K -means clustering in R. First, let’s ask for 2 clusters:

> km = kmeans(iris[,1:4],2)

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

PC1

P
C
2

K = 2 clustering shown for the first 2 principal components
18 / 51

AIML427 Week7:

Iris example
• Now try K = 3, since we know there are 3 classes! We’ll also

ask for the best clustering from 50 random initialisations

[2] Iris example

Now try K = 3 – since we know there are 3 classes! We’ll also ask for the best clustering
from 50 random initializations

> km = kmeans(iris[,1:4],3,nstart=50)
> km

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053

Clustering vector:
[1] 1
[41] 1 1 1 1 1 1 1 1 1 1 2 2 3 2 3 2 2
[81] 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2
[121] 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2

Within cluster sum of squares by cluster:
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %)

19 / 51

AIML427 Week7:

Iris example [2] Iris example

> table(km$cluster,iris[,5])

setosa versicolor virginica
1 50 0 0
2 0 48 14
3 0 2 36

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

K-means

PC1

P
C
2

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Actual

PC1

P
C
2

20 / 51

AIML427 Week7:

Iris example
• Of course, if we ask for more clusters, K-means will find

them:

> km = kmeans(iris[,1:4],6,nstart=50)

[2] Iris example

Of course, if we ask for more clusters, K -means will find them:

> km = kmeans(iris[,1:4],6,nstart=50)

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

PC1

P
C
2

21 / 51

AIML427 Week7:

Comments on K-means
• Have to predefine K: no guidance on how to choose K

• K-means is based on spherical clusters, which might not always be
appropriate.

• Sensitive to initial seeds, local minima

• Sensitive to outliers

• Generalising the distance function is possible, e.g.
K-medians clustering defines centroids via
component-wise median and assignment to a
cluster is in terms of the Manhattan distance (aka
taxicab geometry, 0"-norm)

• Care needs to be taken in high dimensions;
irrelevant features can conceal information about
clusters. Idea of distance also breaks down –
curse of dimensionality again.
- Dimension reduction prior to clustering is a good

idea

