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K-means clustering 
• In K-means clustering, have to specify K, the number of clusters 

we want. 

• The aim of K-means is then to choose the K clusters so that the 
total within-cluster variation is minimised. 
- a simple objective to state, but rather difficult to obtain precisely –

there are almost "! ways to cluster the observations! 

• Let C1 , . . . , CK denote the K disjoint (non-overlapping) clusters, i.e.
sets containing the indices of the observations in each cluster.
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where !(#$) is a measure of within-cluster variation

• The idea behind is a good clustering is one for which the within-cluster 
variation is as small as possible

• See also ISLR 10.3.1 
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Within-cluster variation 
• By far the most common measure of within-cluster variation is based on 

the squared Euclidean distance: 
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where xij is the jth component of xi, i.e. the value of feature j for 
observation i, and |Ck| is the number of observations in cluster k

• Sum of all of the pairwise squared Euclidean distances between the 
observations in the kth cluster, divided by the total number of 
observations in the kth cluster 

• The squared Euclidean distance is a measure of dissimilarity between 
pairs of observations 
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∑% ∈ $! )% is the centroid of cluster k.



AIML427 Week7:

K-means algorithm 
Main steps of K-means:

• Initialise C1 , . . . , CK by randomly assigning each observation a 
number from 1 to K

• Repeat until the the cluster assignments don’t change: 
- (a) Compute the centroid for each cluster 
- (b) Assign each observation to the cluster whose centroid is 

closest in Euclidean distance 

• Algorithm 10.1 of ISLR 

• The algorithm finds a local minimum of the objective function 
∑#$!% +('#).
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K-means algorithm [2] K -means algorithm

ISLR Figure 10.6: K -means algorithm in operation
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K-means algorithm [2] K -means algorithm

ISLR Figure 10.7: Di↵erent starting points can lead to di↵erent local minima
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Iris example 
• The Iris dataset is a famous dataset. The data is labelled so 

it’s usually used as a common example for classification 

• Note that n = 150 and p = 4
• We’ll see how clustering performs on this dataset 

[2] Iris example

The Iris dataset is a famous dataset due to Fisher. The data is labelled so it’s usually
used as a stock example for classification

> data(iris)
> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Note that n = 150 and p = 4

We’ll see how clustering performs on this dataset
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Iris example 
• The function kmeans performs K-means clustering in R. First, 

let’s ask for 2 clusters: 

> km = kmeans(iris[,1:4],2) 

[2] Iris example

The function kmeans performs K -means clustering in R. First, let’s ask for 2 clusters:

> km = kmeans(iris[,1:4],2)
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K = 2 clustering shown for the first 2 principal components
18 / 51



AIML427 Week7:

Iris example 
• Now try K = 3, since we know there are 3 classes! We’ll also 

ask for the best clustering from 50 random initialisations

[2] Iris example

Now try K = 3 – since we know there are 3 classes! We’ll also ask for the best clustering
from 50 random initializations

> km = kmeans(iris[,1:4],3,nstart=50)
> km

K-means clustering with 3 clusters of sizes 50, 62, 38

Cluster means:
Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.006000 3.428000 1.462000 0.246000
2 5.901613 2.748387 4.393548 1.433871
3 6.850000 3.073684 5.742105 2.071053

Clustering vector:
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[41] 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2
[81] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 2
[121] 3 2 3 2 3 3 2 2 3 3 3 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2 3 3 2

Within cluster sum of squares by cluster:
[1] 15.15100 39.82097 23.87947
(between_SS / total_SS = 88.4 %)
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Iris example [2] Iris example

> table(km$cluster,iris[,5])

setosa versicolor virginica
1 50 0 0
2 0 48 14
3 0 2 36
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Iris example 
• Of course, if we ask for more clusters, K-means will find 

them: 

> km = kmeans(iris[,1:4],6,nstart=50) 

[2] Iris example

Of course, if we ask for more clusters, K -means will find them:

> km = kmeans(iris[,1:4],6,nstart=50)

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

PC1

P
C
2

21 / 51



AIML427 Week7:

Comments on K-means 
• Have to predefine K: no guidance on how to choose K 

• K-means is based on spherical clusters, which might not always be 
appropriate.

• Sensitive to initial seeds, local minima 

• Sensitive to outliers

• Generalising the distance function is possible, e.g.
K-medians clustering defines centroids via 
component-wise median and assignment to a 
cluster is in terms of the Manhattan distance (aka 
taxicab geometry, 0"-norm) 

• Care needs to be taken in high dimensions; 
irrelevant features can conceal information about 
clusters. Idea of distance also breaks down –
curse of dimensionality again. 
- Dimension reduction prior to clustering is a good 

idea 


