
AIML427: Big Data

Week 10: Apache Spark

Dr Qi Chen

School of Engineering and Computer Science

Victoria University of Wellington

Qi.Chen@ecs.vuw.ac.nz

mailto:Bing.Xue@ecs.vuw.ac.nz?subject=
mailto:Bing.Xue@ecs.vuw.ac.nz?subject=

AIML427 Week10-11:2

Outline
• Apache Mahout and Hadoop Limitations.
• Spark components
• Spark architecture
• Transactions versus Actions
• Directed acyclic graph (DAG)
• Spark running modes
• Programming with Spark

- SparkContext, SparkConf and SparkSession
- Resilient distributed dataset (RDD)
- Function creation
- Data caching
- Closure
- Accumulator
- Pair RDD

• How to run Spark programs on Hadoop cluster.

AIML427 Week10-11:3

• Apache Mahout is a library of scalable machine-learning
algorithms.

• It is originally implemented on top of

Apache Hadoop using the MapReduce paradigm.

• Mahout algorithms:
- primarily focused on the areas of collaborative filtering,

clustering and classification.
- also provides Java libraries for common maths operations

(linear algebra and statistics) and primitive Java collections.

Apache Mahout

AIML427 Week10-11:4

Hadoop Limitations
• HDFS can’t handle a large number of small files (< the HDFS

block size, default is 128MB).

• Processing Speed – With parallel and distributed algorithm,
MapReduce processes requires a lot of time to perform map
and reduce tasks thereby increasing latency.

• Support only Batch Processing – not process streamed data.

• Vulnerable by nature – Hadoop is entirely written in Java
which is most heavily exploited by cyber-criminal.

• Security- Hadoop is missing encryption at storage and
network levels. Hadoop supports Kerberos authentication,
which is hard to manage.

• Iterative processing is not efficient in Hadoop. As it does not
support cyclic data flow where the input to the next stage is
the output from the previous stage.

AIML427 Week10-11:5

Mahout Samsara

• Starting with the release 0.10.0, Mahout shifts its focus to
building backend-independent programming environment,
code named "Samsara".

- http://mahout.apache.org/

http://mahout.apache.org/

AIML427 Week10-11:6

Apache Spark
• Apache Spark is a fast, in-memory, big data processing, and

general-purpose cluster computing framework

• Provides in-memory, fault tolerant data structure Resilient
Distributed Datasets (RDDs).

• Flexible APIs in Scala, Java, Python, SQL and R.

• Supports sophisticated APIs for advanced data analytics.

• Originally developed at the University of California, Berkeley's
AMPLab.

• Later donated to the Apache Software Foundation.

AIML427 Week10-11:7

Spark’s attractions

• Speed of computation

- Run programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk.

• Ease of cluster computing and deployment with different
cluster managers
- Spark can run on Hadoop, Mesos, Kubernetes, standalone,

or in the cloud. It can access diverse data sources including
HDFS, Cassandra, HBase, and S3.

AIML427 Week10-11:8

Spark’s attractions (cont.)
• Simplicity of data processing and computation

• Scalability and throughput across large-scale datasets

• Sophistication across diverse data types

• Working capabilities and supports with various big data
storage and sources

• Multiple options and libraries: Graph, SQL, ML, Streaming

• Diverse APIs are written in widely used and emerging
programming languages

AIML427 Week10-11:9

Spark and Hadoop

Hadoop Spark

Stores data in local disk Stores data in-memory

Slow speed due to a lot of read
write from disk

Faster by reducing the number of disk read
write operations.

Suitable for batch processing Suitable for batch and real-time processing
through Spark Streaming.

No built-in interactive mode Has interactive mode (Scala)

MapReduce runs very well on
commodity machines with standard
amounts of memory.

Spark requires a lot of RAM to run in-
memory.

Has a built-in distributed storage
system (HDFS)

No built-in distributed storage system. Need
to opt for a third party file organizing system.

AIML427 Week10-11:10

Spark Ecosystem

https://www.cazton.com/consulting/big-data-development/apache-spark

https://www.cazton.com/consulting/big-data-development/apache-spark

AIML427 Week10-11:11

Spark Core Component
• Responsible for:

- Memory management and fault recovery
- Scheduling, distributing, and monitoring jobs
- Interacting with storage systems.

• RDD: Support in-memory computation => overcomes
MapReduce’s drawback.
- Resilient: if the data in memory (or on a node) is lost, it can be

recreated
- Distributed: data is chunked into partitions and stored in

memory across the cluster as a single unit.
- Dataset: initial data come from a file or created

programmatically.

• RDDs are read-only and immutable. => allows them to be
shared among all different processing systems.

AIML427 Week10-11:12

Spark Other Components
• Spark SQL: for querying and processing large-scale

structured data.

• SparkR for statistical computing that provides distributed
computing using programming language R at scale.

• GraphX: for large-scale graph data processing.

• Spark Streaming: for handling large-scale real-time
streaming data to provide a dynamic working environment to
static machine learning.

• MLlib: implements machine learning algorithms such as
clustering, regression, classification and collaborative filtering.
From Spark 2.0, MLlib switches from RDD-based API to
DataFrame-based API.

AIML427 Week10-11:13

Two Types of Data Operations
• Transformation: return a new dataset from an existing one.

- Narrow transformation: does not require the shuffling of data
across a partition: map(), filter(), sample(), …

- Wider transformation: groupByKey(), reduceByKey(), union(),…

• Action: return a value from an input dataset.
- count(), first(), reduce(), saveAsTextFile(), …

AIML427 Week10-11:14

Spark Directed Acyclic Graph (DAG)
• In Spark, a DAG of consecutive computation stages is formed to

optimise the execution plan.

• When an Action is called on Spark RDD at a high level, Spark submit the
created DAG to DAG Scheduler which further splits the graph into the
stages of the task.

• A stage contains tasks based on the partition of the input data. Wide
transformation results in stage boundaries.

• The DAG scheduler pipelines operators together. The DAG Optimizer
rearrange and combine operators wherever possible.

• The stages are passed on to

the Task Scheduler. It

launches task through

cluster manager.

AIML427 Week10-11:15

• Apache Spark follows a master/slave architecture with:
- A single master running the Master/Driver process.
- Any number of workers running the Slave Processes.
- A cluster manager.

Spark Architecture

AIML427 Week10-11:16

Spark Architecture (Cont.)

• Spark Driver – Master Node of a Spark Application
1. runs the main() function of the application and is the place where

the Spark Context is created.
2. creates a logical plan DAG which is converted to physical execution

plan with set of stages.
3. create tasks under each stage to send to executors.
4. schedules job execution, negotiates with the cluster manager.
5. defines and stores the metadata about all the RDDs and their

partitions distributed on the cluster.
6. sends tasks to the cluster manager based on data placement after

the cluster manager launches executors on the worker nodes on
behalf of the driver.

7. monitors all the executors and tasks.
8. exposes the information about the running spark application

through a Web UI.

AIML427 Week10-11:17

Spark Architecture (Cont.)

• Spark Executor - a distributed agent responsible for the
execution of tasks.
- registers themselves with the driver program
- performs tasks.
- interacts with the storage systems. Reads from and writes

data to external sources.
- stores the computation results data in-memory, cache or on

hard disk drives.

• Cluster Manager - an external service responsible for
- acquiring resources on the spark cluster.
- allocating them to a spark job.

AIML427 Week10-11:18

Launching Applications In Different Modes

• A Spark application can be run either:
- locally (on a single JVM)
- clustered

‣ Spark Standalone: Spark’s own built-in clustered environment.
‣ Spark on Apache Mesos
‣ Spark on Hadoop YARN

• Launching application using bin/spark-submit:
./bin/spark-submit \

--class <main-class> \ % Entry point for the application
--master <master-url> \ % The master URL for the cluster
--deploy-mode <deploy-mode>
--conf <key>=<value> \
... # other options
<application-jar> \
[application-arguments]

AIML427 Week10-11:19

Launching Applications In Different Modes (Cont.)

• --deploy mode: specify where the driver process runs.
- "cluster" mode: the framework launches the driver in a

worker node of the cluster.
- "client" mode (default): the submitter launches the driver

locally as an external client.
• Examples:

Run application locally on 8 cores

./bin/spark-submit --class org.apache.spark.examples.SparkPi

--master local[8] /path/to/examples.jar 100

Run on a Spark standalone cluster in client deploy mode

./bin/spark-submit --class org.apache.spark.examples.SparkPi

--master spark://207.184.161.138:7077 --executor-memory 20G

--total-executor-cores 100 /path/to/examples.jar 1000

AIML427 Week10-11:20

Launching Applications In Different Modes (Cont.)

Run on a YARN cluster
export HADOOP_CONF_DIR=XXX
./bin/spark-submit

--class org.apache.spark.examples.SparkPi
--master yarn
--deploy-mode cluster # can be client for client mode
--executor-memory 20G
--num-executors 50 %limit amount of cores used by all executors

/path/to/examples.jar 1000

• In the cluster deploying mode, --supervise is used to make
sure that the driver is automatically restarted if it fails with
a non-zero exit code

Run on a Spark standalone cluster in cluster deploy mode with
supervise
./bin/spark-submit --class org.apache.spark.examples.SparkPi

--master spark://207.184.161.138:7077
--deploy-mode cluster --supervise
--total-executor-cores 100 %limit amount of cores used by all executors

/path/to/examples.jar 1000
https://spark.apache.org/docs/latest/submitting-applications.html

https://spark.apache.org/docs/latest/submitting-applications.html

AIML427 Week10-11:21

SparkContext

• The first thing a Spark program must do is
- to create a SparkContext object, which tells Spark how to

access a cluster.
• To create a SparkContext:

- A SparkConf object should be created to contain information
about your application.

- http://spark.apache.org/docs/latest/configuration.html

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;

SparkConf conf = new SparkConf().setMaster("local").setAppName("My App");
JavaSparkContext sc = new JavaSparkContext(conf);

- local is a special value that runs Spark on one thread on the local
machine, without connecting to a cluster.

- AppName is to identify your application on the cluster manager’s
UI if you connect to a cluster.

http://spark.apache.org/docs/latest/configuration.html

AIML427 Week10-11:22

Spark Session

• SparkContext is a Scala implementation entry point
• JavaSparkContext is a java wrapper of sparkContext.
• Since Spark 2.x.x, SparkSession is the unified entry point of

Spark.
• However, we can still convert SparkSession to SparkContext

- sparkSession.sparkContext()

import org.apache.spark.sql.SparkSession;

SparkSession spark = SparkSession
.builder()
.appName("My App")
.config("spark.master", "local[2]")
.getOrCreate();

https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/sql/SparkSession.html

https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/sql/SparkSession.html

AIML427 Week10-11:23

• RDD is the main abstraction Spark core provides.
• RDD is an immutable distributed collection of objects

- It can not be changed once created.
- It is split into multiple partitions (similar to splits in Hadoop),

which may be computed on different nodes of the cluster.
- The objects have the same type which can be any type

including user-defined classes.
• When data files, blocks, or data structures are converted to

RDDs, the data is:
- broken down into partitions and
- distributed among the nodes for parallel processing.

Resilient distributed dataset (RDD)

AIML427 Week10-11:24

RDD Types

AIML427 Week10-11:25

Creating RDDs

• Users create new RDDs in two ways:

- Using textFile() to load data from text file, sequence file,

Hadoop input format, CSV, TSV, TXT, MD, JSON, etc. in any

storage source such as local file system, HDFS, etc.

JavaRDD<String> distFile = sc.textFile("data.txt");

- From existing collection using parallelize().

‣ this way is not widely used since it requires that you have your

entire dataset in memory on one machine.

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize(data);

AIML427 Week10-11:26

Define Functions - Method 1

• Create an anonymous inner class implementing the
Function interfaces in org.apache.spark.api.java.function
and pass an instance of it to Spark.

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(

new Function<String, Integer>() {
public Integer call(String s) { return s.length(); }

}); //define map() to return the length of the given string.

int totalLength = lineLengths.reduce(

new Function2<Integer, Integer, Integer>() {
public Integer call(Integer a, Integer b) { return a + b; }

}); //define reduce() to return the sum of two given integers.

AIML427 Week10-11:27

Standard Java Function Interfaces

Function name
Method to
implement Usage

Function<T, R> R call(T)

Take in one input of type T and
return one output of type R, for use
with operations like map() and
filter().

Function2<T1,
T2, R>

R call(T1, T2)

Take in two inputs of type T1 and
T2, and return one output of type R,
for use with operations like
aggregate() or fold().

FlatMapFunction
<T, R>

Iterable<R>
call(T)

Take in one input of type T and
return zero or more outputs of type
R, for use with operations like
flatMap().

AIML427 Week10-11:28

Define Functions - Method 2

• Create a named inner class implementing the Function
interfaces and pass an instance of it to Spark.

class GetLength implements Function<String, Integer> {
public Integer call(String s) { return s.length(); }

}

class Sum implements Function2<Integer, Integer, Integer> {
public Integer call(Integer a, Integer b) { return a + b; }

}

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines.map(new GetLength());
int totalLength = lineLengths.reduce(new Sum());

AIML427 Week10-11:29

Define Functions - Method 3

• Use lambda expressions to concisely define an
implementation
- supported from Java 1.8

(https://databricks.com/blog/2014/04/14/spark-with-java-
8.html)

JavaRDD<String> lines = sc.textFile("data.txt");

JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

int totalLength = lineLengths.reduce((a, b) -> a + b);

• Can you figure out in the above three lines of code:

- which is a transformation operator?

- which is an action operator?

https://databricks.com/blog/2014/04/14/spark-with-java-8.html
https://databricks.com/blog/2014/04/14/spark-with-java-8.html

AIML427 Week10-11:30

How does it works?

1. JavaRDD<String> lines = sc.textFile("data.txt");

- dataset is not loaded in memory,

- lines is merely a pointer to the file.

2. JavaRDD<Integer> lineLengths = lines.map(s -> s.length());

- no immediately computation due to lazy evaluation.

3. int totalLength = lineLengths.reduce((a, b) -> a + b);

- Computation is broken into tasks running on separate machines

- Each machine runs its part of the map and a local reduction,

- returning only its answer to the driver program.

● Note that after each action, the entire RDD must be computed “from

scratch.” => What happens if we want to have many actions?

AIML427 Week10-11:31

map() and filter()

import org.apache.commons.lang.StringUtils;

JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4));
JavaRDD<Integer> mapResult = rdd.map(x -> x*x);
JavaRDD<Integer> filterResult = rdd.filter(x -> x != 1);
System.out.println(StringUtils.join(result.collect(), ","));

• Filter lines containing “error” in a log file.
JavaRDD<String> inputRDD = sc.textFile("log.txt");
JavaRDD<String> errorsRDD = inputRDD.filter(x -> x.contains("error"));

AIML427 Week10-11:32

Transformations

rdd: {1, 2, 3, 3}

Function name Purpose Example (Scala) Result

map(func)
Apply a function to each
element in the RDD and return
an RDD of the result.

rdd.map
(x => x + 1) {2, 3, 4, 4}

flatMap(func)

Apply a function to each
element in the RDD and return
an RDD of the contents of the
iterators returned. Often used to
extract words.

rdd.flatMap(x
=> x.to(3))

{1, 2, 3,
2, 3,
3,
3}

filter(func)
Return an RDD consisting of
only elements that pass the
condition passed to filter().

rdd.filter
(x => x != 1) {2, 3, 3}

distinct() Remove duplicates. rdd.distinct() {1, 2, 3}

sample(
withReplacement,
fraction, [seed])

Sample an RDD, with or
without replacement.

rdd.sample
(false, 0.5,
123)

AIML427 Week10-11:33

• flatMap(): Apply a function to each element in the RDD and
return an RDD of the contents of the iterators returned.
- “flattening” the iterators returned to it
- outputs an RDD of the elements in the lists instead of an RDD

of lists as in map().

JavaRDD<String[]> mappedRDD = RDD1.map(s -> s.split(" "));

JavaRDD<String> flatMappedRDD = RDD1.flatMap(s -> Arrays.asList
(s.split(" ")).iterator());

map() and flatMap()

AIML427 Week10-11:34

Transformations (Cont.)

rdd: {1, 2, 3, 3}
other: {3, 4, 5}

Function name Purpose Example (Scala) Result

union(RDD) Produce an RDD containing
elements from both RDDs. rdd.union(other) {1, 2, 3,

3, 4, 5}

intersection
(RDD)

RDD containing only
elements found in both
RDDs.

rdd.intersection(other) {3}

subtract
(RDD)

Remove the contents of one
RDD (e.g., remove training
data).

rdd.subtract(other) {1, 2}

cartesian
(RDD)

Cartesian product with the
other RDD. rdd.cartesian(other) {(1, 3),

(1, 4), … }

AIML427 Week10-11:35

Pseudo Set Operations

AIML427 Week10-11:36

Actions

rdd: {1, 2, 3, 3}

Function name Purpose Example (Scala) Result

collect() Return all elements from the RDD. rdd.collect() {1, 2, 3, 3}

count() Number of elements in the RDD. rdd.count() 4

countByValue() Number of times each element
occurs in the RDD.

rdd.countByVal
ue()

{(1, 1), (2,
1), (3, 2)}

take(num) Return num elements from the
RDD. rdd.take(2) {1, 2}

top(num) Return the top num elements the
RDD. rdd.top(2) {3, 3}

reduce(func) Combine the elements of the RDD
together in parallel (e.g., sum).

rdd.reduce
((x, y) => x +
y)

9

AIML427 Week10-11:37

Actions (Cont.)

rdd: {1, 2, 3, 3}
Function name Purpose Example (Scala) Result

aggregate(zero
Value)(seqOp,
combOp)

Similar to reduce()
but used to return a
different type.

rdd.aggregate((0, 0)) (
(x, y) => (x._1 + y,

x._2 + 1),
(x, y) =>

(x._1 + y._1,
x._2 + y._2))

(9, 4)

takeOrdered(nu
m)(ordering)

Return num
elements based on
provided ordering.

rdd.takeOrdered(2)(Or
dering
[Int].reverse)

{3, 3}

takeSample(wit
hReplacement,
num, [seed])

Return num
elements at random.

rdd.takeSample(false,
1, 1234) {3, 1}

foreach(func)
Apply the provided
function to each
element of the RDD.

rdd.foreach(print)

Print whole rdd
on screen)
(may be in
different order)

AIML427 Week10-11:38

Printing an RDD

• The collect() method brings the RDD to the driver node.
- System.out.println(StringUtils.join(result.collect(), ","));

- for(String line : lines.collect()){

System.out.println("* "+line);

}

• However, be careful, collect() can cause the driver to run
out of memory, because collect() fetches the entire RDD to
a single machine;

• If you only need to print a few elements of the RDD, a safer
approach is to use the take():
- for(String line : lines.take(100)){

System.out.println("* "+line);

}

AIML427 Week10-11:39

Data Caching (Persistence)

• Data caching is used to avoid recompute the RDD and all of
its dependencies each time we call an action on the RDD.

• There are two options for caching in Spark:
- Raw storage
- Serialized: only for Java and Scala.

Raw caching Serialized Caching

Pretty fast to process Slower processing than raw caching

Can take up 2x-4x more space.
E,g.: 100MB data cached could
consume 350MB memory

Overhead is minimal

can put pressure in JVM and JVM
garbage collection

less pressure

usage: rdd.persist(
StorageLevel.MEMORY_ONLY)
or rdd.cache()

usage: rdd.persist(
StorageLevel.MEMORY_ONLY_SER)

AIML427 Week10-11:40

• Raw caching is good for:
- small data sets (few hundred MB) although consume more

memory but not much pressure on Java garbage collection.
- iterative work loads because the processing is very fast.

• Serialized is good for:
- medium / large data sets (10s of Gigs or 100s of Gigs)

because of its small memory requirement and garbage
collecting GBs of memory can be costly.

Data Caching (Cont.)

AIML427 Week10-11:41

Storage Levels For RDD Persistence

(*): only for Java and Scala.

• Spark automatically monitors cache usage on each node and drops
out old data partitions in a least-recently-used (LRU) fashion.

• Manually remove an RDD: rdd.unpersist()

Level
Space
used CPU time

In
memory On disk

MEMORY_ONLY (default) High Low Y N

MEMORY_ONLY_SER (*) Low High Y N

MEMORY_AND_DISK High Medium Some Some

MEMORY_AND_DISK_SER (*) Low High Some Some

DISK_ONLY Low High N
Y

AIML427 Week10-11:42

Closure

• The closure is those variables and methods which must be
visible for the executor to perform its computations on the
RDD. This closure is serialized and sent to each executor.

• foreach() and counter are closures in this example:
int counter = 0;
JavaRDD<Integer> rdd = sc.parallelize(data);
rdd.foreach(x -> counter += x);
println("Counter value: " + counter);

• Since the executors only see the copy from the serialized
closure, the behavior of the above code is undefined.

• In general, closures - constructs like loops or locally defined
methods, should not be used to mutate some global state.

• To ensure well-defined behavior in these sorts of scenarios
one should use an Accumulator.

AIML427 Week10-11:43

Accumulator

• Accumulators in Spark are used specifically to provide a
mechanism for safely updating a variable when execution is
split up across worker nodes in a cluster.

LongAccumulator accum = jsc.sc().longAccumulator();

sc.parallelize(Arrays.asList(1, 2, 3, 4)).foreach(x ->

accum.add(x));

accum.value();

• Note that Accumulators do not change the lazy evaluation
model of Spark.

• Accumulators are used only in actions to ensure each task
update to each accumulator only once.

AIML427 Week10-11:44

Pair RDDs

• Pair RDDs are RDDs containing key/value pairs.
• useful building block in many programs, as they expose

operations that allow you to act on each key in parallel or
regroup data across the network.

• In Java, key-value pairs are represented by the
JavaPairRDD class using the scala.Tuple2 class from the
Scala standard library.

• To create a tupe: new Tuple2(a, b)
• To access its fields use ._1() and ._2() methods.

AIML427 Week10-11:45

Create PairRDD Examples

• Creating a pair RDD using the first word as the key
count the number of occurences per key (key is first word)
JavaRDD<String> lines = sc.textFile("data.txt");
JavaPairRDD<String, Integer> pairs = lines.mapToPair

(s -> new Tuple2(s.split(" ")[0], 1);

JavaPairRDD<String, Integer> counts = pairs.reduceByKey((a, b) -> a + b);

• Creating a pair RDD using the whole line as the key

count the number of same lines in a file

JavaRDD<String> lines = sc.textFile("data.txt");
JavaPairRDD<String, Integer> pairs = lines.mapToPair(s -> new Tuple2(s, 1));
JavaPairRDD<String, Integer> counts = pairs.reduceByKey((a, b) -> a + b);

AIML427 Week10-11:46

Example 1: A simple filter

• Filter out pairs with long values.

Function<Tuple2<String, String>, Boolean> longWordFilter =
new Function<Tuple2<String, String>, Boolean>() {
public Boolean call(Tuple2<String, String> keyValue) {
return (keyValue._2().length() < 20);

}
};

JavaPairRDD<String, String> result = pairs.filter(longWordFilter);

AIML427 Week10-11:47

Example 2: Word Count

• Count the occurences of each word

JavaRDD<String> textFile = sc.textFile("hdfs://...");

JavaPairRDD<String, Integer> counts = textFile

.flatMap(s -> Arrays.asList(s.split(" ")).iterator())

.mapToPair(word -> new Tuple2<>(word, 1))

.reduceByKey((a, b) -> a + b);

counts.saveAsTextFile("hdfs://...");

• Count the number of words in a file.

• Find the distinct words in a file.

• Count the distinct words in a file.

AIML427 Week10-11:48

Java Interfaces For Type-Specific Functions

Function
name

Method to
implement Usage

PairFlatMapFun
ction<T, K, V>

Iterator
<Tuple2<K,V>>
call(T t)

Return zero or more key-value
pair records of type <K,V> from
each input record of type T. (Eg.
flatMapToPair)

PairFunction
<T, K, V>

Tuple2<K,V>
call(T t)

Returns key-value pairs of type
Tuple2<K, V> from each input
record. (Eg. mapToPair)

DoubleFlatMap
Function<T>

Iterator<Double>
call(T t)

Returns zero or more records of
type Double from each input
record. (Eg. flatMapToDouble)

DoubleFunctio
n<T> double call(T t)

A function that returns Doubles
from each input record. (Eg.
mapToDouble)

AIML427 Week10-11:49

Transformations on one pair RDD

Function name Purpose Example Result

reduceByKey
(func) Combine values with the same key. rdd.reduceByKey

((x, y) => x + y) {(1, 2), (3, 10)}

groupByKey() Group values with the same key. rdd.groupByKey() { (1, [2]),
(3, [4, 6]) }

mapValues
(func)

Apply function to each value of
RDD without changing the key.

rdd.mapValues
(x => x+1))

{(1, 3), (3, 5),
(3, 7)}

flatMapValues
(func)

Apply function that returns an
iterator to each value of RDD, and
for each element returned, produce
a key/value entry with the old key.
Often used for tokenization.

rdd.flatMapValues
(x => (x to 5))

{(1, 2), (1, 3),
(1, 4), (1, 5),
(3, 4), (3, 5)}

keys Return an RDD of just the keys. rdd.keys {1, 3, 3}

values Return an RDD of just the values. rdd.values {2, 4, 6}

sortByKey() Return an RDD sorted by the key. rdd.sortByKey() {(1, 2), (3, 4),
(3, 6)}

• Example pair RDD: {(1, 2), (3, 4), (3, 6)}

AIML427 Week10-11:50

Transformations on Two Pair RDDs

rdd: {(1, 2), (3, 4), (3, 6)}
other: {(3, 9)}
Function name Purpose Example Result

subtractByKey Remove elements with a key
present in the other RDD.

rdd.subtractBy
Key(other) {(1, 2)}

join Perform an inner join
between two RDDs. rdd.join(other) { (3, (4, 9)),

(3, (6, 9))}

rightOuterJoin
Perform a join between two
RDDs where the key must be
present in the first RDD.

rdd.rightOuter
Join(other)

{(3,(Some(4),9)),
(3,(Some(6),9))}

leftOuterJoin
Perform a join between two
RDDs where the key must be
present in the other RDD.

rdd.leftOuterJo
in(other)

{(1,(2,None)),
(3,(4,Some(9))),

(3,(6,Some(9)))}

cogroup Group data from both RDDs
sharing the same key.

rdd.cogroup
(other)

{(1,([2],[])),
(3,([4, 6],[9]))}

AIML427 Week10-11:51

Run Spark on Hadoop

• Unzip the package into /local/scratch
- Tar -zxvf <zipfile.tgz>
- ls /local/scratch/spark-2.3.0-bin-hadoop2.7/

• Set environment variables:
- setenv HADOOP_VERSION 2.8.0
- setenv HADOOP_PREFIX /local/Hadoop/hadoop-

$HADOOP_VERSION
- setenv SPARK_HOME /local/scratch/spark-2.3.0-bin-

hadoop2.7/
- setenv PATH

${PATH}:$HADOOP_PREFIX/bin:$SPARK_HOME/bin
- setenv HADOOP_CONF_DIR $HADOOP_PREFIX/etc/hadoop
- setenv YARN_CONF_DIR $HADOOP_PREFIX/etc/hadoop
- setenv LD_LIBRARY_PATH

$HADOOP_PREFIX/lib/native:$JAVA_HOME/jre/lib/amd64/ser
ver

- need java
- source ~/setup_hadoop_classpath.csh

AIML427 Week10-11:52

Run Spark on Hadoop (Cont.)

• Create a folder to save the java program file and a lib folder
for all the jar files needed to compile the program.

• Go to the new folder
• Create a folder for the classes

- mkdir sparkwordcount_classes
• When compile your program, specify where the jar files.

- javac -cp "lib/*" -d sparkwordcount_classes
JavaWordCount.java

- jar cvf JavaWordCount.jar -C sparkwordcount_classes/ .
• Submit the job

- spark-submit --class
"mySpark.sparkWordCount.JavaWordCount" --master yarn --
deploy-mode cluster JavaWordCount.jar
/user/tranbinh/File1.txt /user/tranbinh/File1out

AIML427 Week10-11:53

References

• Learning Spark (Book 2015)
https://www.safaribooksonline.com/library/view/learning-
spark/9781449359034/

