VICTORIA UNIVERSITY OF WELLINGTON Te Whare Wananga o te Upoko o te Ika a Maui

AIML427 Big Data

Data pre-processing

Dr Bach Hoai Nguyen

School of Engineering and Computer Science Victoria University of Wellington Bach.Hoai.Nguyen@ecs.vuw.ac.nz

Data Type

- Different types of data:
 - Continuous/real: 1.0, 1.05, 2.0, etc
 - Discrete:
 - Categorical/nominal: red, green, blue (ordered, distance)
 - Ordinal: Very happy > happy > OK (ordered, distance)
 - Integer: 4 > 2 > 1
 (ordered, distance)
 - Other/special types of data (multi-media data):Text data, hyperlink data, image data

AIML427

Data Pre-processing

- Normalisation/scaling:
 - adjust features with different scales to have the same scale
 - very important for distance-based algorithms such as KNN or SVM
 - Min-max normalisation: convert $[X_{min}, X_{max}]$ to the range [0,1]

$$X_{changed} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

- Standardisation: convert data to have a mean of 0 and standard variation of 1

$$X_{changed} = \frac{X - \mu}{\sigma}$$

Data Pre-processing

- Discretisation: convert a numeric attribute to a nominal attribute
 - e.g. Temperature attribute from {20.0, 50.0, 80.0} to {low, medium, high}

- Unsupervised: does not consider the target output (class label in classification)
 - Equal-Width: each interval has the same width.
 - Equal-Depth: each interval has the same number of values.
- Supervised: considers the target output
 - Entropy based method: repeatedly find splitting values to maximise information gain
 - one-rule decision tree algorithm (1RD)

Data Pre-processing

- Missing data
- Noisy data
- Outliers, unbalanced data
- Redundant data