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Single Feature Ranking
An easy (naive?) way to do feature selection

To select m features out of n original features:

1. Use an algorithm to measure the importance (goodness) of each
feature individually

2. Sort (rank) all m features in the descending order of their importance

3.Choose m top (most important) features

4. The importance of a feature is determined depending on their
“contribution” to the task, e.g. classification

« Common measures of relevance/importance:
— Pearson’s correlation

— Statistical testing (e.g. x? test)
— Information theory (e.g. Mutual Information, Information Gain)

— Logistic Regression



Example: Single-Feature Ranking

 Decision Trees/Genetic Programming
* The frequency of features in good performing trees can be

used to measure the importance of individual features.
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Issues: Single-Feature Ranking for Selection

There are potential risks in using single-feature ranking
methods for feature selection:

 Ignore interactions between features

* These methods cannot recognise the true worth of a group
of features that seem to be individually weakly relevant

« High-ranked (top important) features might be redundant



Feature ranking

VS

Feature subset selection
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FILTER FEATURE SELECTION
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Filter Approach

« Filter FS: does not involve any learning algorithm
during the feature selection process

« Covers many feature selection algorithms:

— Those that use a search strategy and a surrogate classifier
— Those that use single-feature ranking for feature selection

— Many other algorithms (e.g. reliefF, ...)
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Pearson’s correlation

 The Pearson correlation
coefficient, r: A Perfect (linear) correlation A Intermediate correlation
— rin[-1, 1]
— r =0 indicates no association
between the two variables

— r> 0 indicates a positive
association

— r <0 indicates a negative Variable A~
aSSOCiation Ano correlation
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Pearson’s correlation
« (Can measure the relevance between a feature & class label

 Binary classification: can use Pearson correlation directly

* Multi-class classification (>2 class values):

— {Red, Green, Blue} — nominal -> no obvious distance

— kclasses, convert to k binary variables (one-hot encode)

Y Y, Yy, Y,
Red 1 0 0
Green 0 1 0
Blue 0 0 1

— Calculate correlation based on these k binary variables Y4, Y5 ,Y3

with each feature.



Week3:12

Information Theory: Entropy

Entropy measures the impurity or uncertainty in a group of

examples.

S is the (training) set, with C4, ..

H(S) measures the Entropy of S
p. is the proportion of class C.in S

Very impure

High entropy

., G\ classes

N
H(S) == ) pe *loga(po)
c=1

Less impure

Low entropy

Least impure (Pure)

Null entropy
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Conditional Entropy

* Entropy

— H(X) = —erxp(x)wgz p(x)
— p(x) = P(X = x) is the probability density function of X

« Conditional entropy:

HX|Y) = — 2 p(x,y) log, p(x|y)

XeX,yeY

— Entropy of X given Y

— How much information
needed to describe X given Y

H(X) H(Y)

— H(CIX,) < H(CIX,):
which one is better, X, or X,?

H(X,Y)
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Mutual Information

Mutual information of two random variables is a measure of
the mutual dependence between the two variables
« How much information does one variable give about another variable?

I(X;Y) = HX) —HE|Y) = H(Y) — H(Y[X)
= 2 p(x,y)log, 2(9(9)6' 2
ey p(x)p(y)

« 1(X4; C) > I(X5; C):

which one is better, X; or X,? | HOY)
’ I(X1 , X2) = 08,

I(XZ! X3) = 04,

1(X4; X3) = 0.5:

remove which feature? H(X,Y)
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Mutual Information

« Mutual information evaluates the information shared
between each pair of features/variables

* Relevance:
- Classification performance

-~ The relevance (MI) between each selected feature and
the class labels

 Redundancy:
— Number of features

- The redundancy (MIl) between the selected features



Week3:16

Ranking using Information Theory
Measures

« (Categorical (nominal) data:
— If it is a numeric feature it must first be discretised

 Mutual information estimation method can used

 Mutual information between a feature and the class labels
— Rank features
— Select top ranked features
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Filter Method

Objective Function:

e JXis the selected feature subset

o X, X;: feature in X
Rel = 2 I(x;; C)

e (Cisthe classlables

X;€X
e Rel relevance between X and c
Red = z I(x;; xj) e Red redundancy within X
Xi, Xj €X,
and i+j

I(X:Y) = H(X)— H(X[Y) = H(Y) — H(Y[X)
= z p(x,y)log, plx,7)

XeX,yeY

p(x)p(y)
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Minimum Redundancy-Maximum Relevance
(MRMR)

S is the feature subset, Q is the pool of all candidate
features, the minimum redundancy condition is:

=
min —— I(f;, i
TN

where |S| is the number of features in S.

« For classes c=(c,....c,) the maximum relevance condition
maximises the total relevance of all features in S:

maxiz I(c, f))

s 3] &2

H.C. Peng, F.H. Long, and C. Ding, Feature Selection Based on Mutual Information:
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 27, no. 8, 2005, pp. 1226-1238.
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Minimum Redundancy-Maximum Relevance

 The mRMR feature set optimises these two conditions(mRMR)

simultaneously, either in quotient form:

I?Caé{ - Zil(cifi) }

|S|Z ]ESI(fl'f])

or in difference form:

r?caé{zi:l(c'fi |S| 2 I(fi. fj)3

[,JES

H.C. Peng, F.H. Long, and C. Ding, Feature Selection Based on Mutual Information:
Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 27, no. 8, 2005, pp. 1226-1238.
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Filter Feature Selection

Information theory-based approach:
— max-relevance, and min-redundancy

Rough set theory for feature selection
Fast correlation based filter feature selection
Evolutionary computation for filter feature selection

Issues:
— Most filter approaches do not evaluate subsets of features

! Filter Approaches

-— a“ » —"

—
Information Correlation Distance Consistency Fuzzy Set Rough Set
| Measure Measure | Measure Measure Theory Theory




