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Week 4:2

Outline

• Feature Construction
– What is feature construction?
– Why do feature construction?
– Challenges in feature construction
– Feature construction process
– Principle component analysis (PCA)
– Genetic Programming for Feature Construction

• Issues and Challenges in FS and FC

• Summary
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COMP422  FS:

What is a Good feature?
• The measure of goodness is subjective with respect to the 

type of classifier. The features in this figure, x1 and x2, are 
good for a linear classifier.
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Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-

proach is considered adopting a non-wrapper or filter approach.

• A measure of goodness in the form of a surrogate classifier is

required. The measure, however, should be designed differently

depending on type of classifiers will be using the constructed

features.
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What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.
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What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.
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Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.

COMP422 Feature Manipulation: 41

GP for Feature Construction: A System Diagram
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A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.

What is a Good Feature?

• The measure of goodness is subjective: depends on the 
problem. The features below are good for a linear classifier

x1 + x2 = 2
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What is a Good feature?
• The same set of features are not good for a DT classifier 

that is not able to transform its input space

COMP422  FS:

What is a Good feature?
• The same set of features are not good for a decision tree 

classifier that is not able to transform its input space.
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Fig. 9. (a) Decision tree induced by the J48 (C4.5) algorithm using the 1000
observations in the previous figure. (b) Class boundary generalized by the
decision tree. The decision tree inducer has failed to generalize the concept
of a line.

Fig. 10. (a) Simple GPMFC-constructed feature for the 1000 observations.
(b) J48 induced decision tree using the constructed feature, y.

E. Further Discussions

Theoretically, GP and symbolic learners both generate in-
telligible models: GP generates expression trees and symbolic
learners generate chains of rules or trees of decision stumps.
In practice, however, both of them can produce solutions
(constructed features or classifiers) that are not easily com-
prehensible; very often constructed features are unnecessarily
complicated and therefore unintelligible. Although in some of
our empirical results, the complexity of the constructed feature
and the complexity of the induced decision tree on those fea-
tures altogether were less than the complexity of the induced
decision tree on the original features (see the examples in the

Fig. 11. Visualization of the features in balance scale problem. The top four
plots depict the original features of the problem and the bottom plot is for
a constructed feature (x1x2 − x3x4). In each plot, the horizontal axis is the
instance number and the vertical axis is the value of the feature for the given
instance. The instances are grouped based on their class labels. The vertical
shaded areas from left to right correspond to the class labels: “left,” “balance,”
and “right.” The two dashed lines in the bottom plot depict the way a J48
decision tree inducer would partition the input (constructed) feature space in
order to learn the three concepts (classes).

previous subsection), in many cases the overall complexity
did not change or even increased after feature construction.
Two common causes of unnecessarily high complexity in GP
programs are verbosity and introns, both of which can be
addressed by algebraic or numeric simplification.

Even though in some cases the proposed feature construc-
tion system may not reduce the overall complexity of classifi-
cation systems (complexity of the constructed features plus the
complexity of the learnt classifier), throughout this paper, the
main focus was only on the complexity of induced decision
trees. This is because a decision tree with too many nodes
(on numeric features) can create serrated decision boundaries
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Non-Wrapper (Filter) Approach

• A feature construction system that does not adopt a wrapper ap-
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What is a Good feature?

The measure of goodness is subjective with respect to the type of

classifier. The features in this figure, x1 and x2, are good for a linear

classifier.
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What is a Good feature?

The same set of features are not good for a decision tree classifier

that is not able to transform its input space.
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Why Use GP for Feature Construction?

• GP is flexible in making mathematical and logical functions

• There isn’t mush structural (topological) information in the

search space of possible functions, so using a meta-heuristic ap-

proach (such as evolutionary computation) seems reasonable.
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GP for Feature Construction: A System Diagram
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A Sample Measure of Goodness: The Entropy of
Class Intervals

Defining a measure of goodness for a single feature:

• The interval of a class along a feature is determined by the dis-

persion of the instances of that class along the feature axis. The

dispersion of instances itself is related to the distribution of data

points in that class.

• An interval I is represented with a pair (lower, upper) which

shows the lower and upper boundaries of the interval. Ic is used

to indicate an interval for class c.

• The interval of class c could be formulated as follows if the

class distributions were normal.

Ic = [µc − 3σc, µc + 3σc]

However, the normality assumption is not always satisfied.
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What is a Good feature?

New feature: xn = x1 + x2 : constructed feature

COMP422  FS:

What is a Good feature?
• The measure of goodness is subjective with respect to the 

type of classifier. The features in this figure, x1 and x2, are 
good for a linear classifier.

5
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x1+ x2 = 2
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- -
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Else     : class +
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Why Do We Do Feature Selection?
• “Curse of dimensionality”
– Large number of features: 100s, 1000s, even millions

• Not all features are useful (relevant) 
• Redundant or irrelevant features may reduce the 

performance (e.g. classification accuracy).
Confuse many learning algorithms. How? 
– Example 1: decision tree learning 
– Example 2: Bayesian learning 

• Costly: time, memory, and money



Week 4:7

Why Do Feature Construction?

• The quality of input features can drastically affect the 
learning performance

• Even if the original features are high-quality, transformations 
may be needed to use them with certain types of classifiers

• A large number of classification algorithms are unable to 
transform their input space

• Feature construction does not add to the cost of acquiring 
original features – it only carries computational cost

• Often, feature construction can lead to dimensionality 
reduction or implicit feature selection
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Feature Construction
Definitions:
1. A constructed feature is a scalar function φ that 

transforms the input space to a one-dimensional space 

2. Given a feature vector (X1, X2, . . . , Xm), a constructed 
feature is a function of the form φ(X1, X2, . . . , Xm)

3. The term Feature Construction refers to the process of 
producing high-level constructed features

4. Feature construction = 
Feature selection + Combining selected features 
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Challenges in Feature Construction?

• Challenges in Feature Selection?

• Additional challenges: 
– when to perform feature construction?
– even bigger search space (how big…?)
– Easier to overfit?
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Feature Construction Process

Initialisation Construct features Feature evaluation

Stop?

High-level
features

Goodness of 
high-level
features

Results evaluation

Yes

No
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Components of a Feature Construction System

• In feature construction the search space is the space of 
possible functions of input features
– E.g. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒!"# = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒# + 𝐹𝑒𝑎𝑡𝑢𝑟𝑒$×𝐹𝑒𝑎𝑡𝑢𝑟𝑒% − 𝐹𝑒𝑎𝑡𝑢𝑟𝑒&

A typical FC system has the following two components:
• A search strategy to search the space of possible functions 

(of original features)
• An evaluation mechanism to measure the goodness of a 

candidate function
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Feature Construction Approaches
• Based on how the feature subset is evaluated
– Three categories: Filter, Wrapper, Embedded
– Hybrid (Combined)

Filter
Original 
Features, 
Operators

Constructed  
Feature(s)

Wrapper
Constructed  
Feature(s)

Original 
Features, 
Operators Constructed  Feature(s)

Learnt Model
EmbeddedMethod

Evaluation
(Simple 
Measure)

Evaluation: 
Learning a
"Classifier"

Original 
Features, 
Operators

Constructed  
Feature(s)

Constructed  
Feature(s)



Week 4:13

Feature Construction Approaches
• Same as feature selection!

• Generally:

Classification
Accuracy

Computational 
Cost

Generality
(to different "classifiers")

Filter Low Low High

Embedded Medium Medium Medium

Wrapper High High Low
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PRINCIPAL COMPONENT 
ANALYSIS (PCA)
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Variance and Covariance
• Variance measures how spread out a feature is:

𝑣𝑎𝑟 𝑋 =
∑!"#$ (𝑋! − )𝑋)%

𝑛 − 1
• Higher variance à more information

• Covariance measures the relationship between two features:

𝑐𝑜𝑣 𝑋, 𝑌 =
∑!"#$ (𝑋! − )𝑋)(𝑌! − )𝑌)

𝑛 − 1
• In data analysis, we want features to be independent

• We want high variance and low covariance
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Principal Component Analysis
• Original data

(x,y,z)
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Principal Component Analysis
• Transformed data using PCA
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Principal Component Analysis
• Invented by Karl Pearson (1901): the most widely-used and 

well-known of the “standard” multivariate methods

• PCA is a mathematical procedure that transforms (possibly) 
correlated variables into a (smaller) number of uncorrelated
variables called principal components.

• Summarisation of data with many (p) variables by a smaller
set of (k) derived (synthetic, composite) variables.

n

p

X n

k

Y
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Principal Component Analysis
From P original variables: x1,x2,...,xp:
Produce k new variables: y1,y2,...,yk:

y1 = a11x1 + a12x2 + ... + a1pxp

y2 = a21x1 + a22x2 + ... + a2pxp

...
yk = ak1x1 + ak2x2 + ... + akpxp

such that:

yks are uncorrelated (orthogonal)
y1 explains as much as possible of original variance in dataset
y2 explains as much as possible of remaining variance, etc.

yk's are Principal
Components
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Principlal Component Analysis
• PCA finds a linear projection of high dimensional data into a 

lower dimensional subspace such that:
– The variance retained is maximised.
– The least square reconstruction error is minimised.

• Balancing act between
– clarity of representation, 

ease of understanding
– oversimplification: loss of 

important or relevant information.
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PCA Steps
PCA steps (to reduce dimensionality from p to k): 

1. Centre the data (subtract the mean)
2. Calculate the p*p covariance matrix
3. Calculate the p eigenvectors of the covariance matrix 

(orthogonal)
4. Select the k eigenvectors that correspond to the highest k

eigenvalues to be the new space dimensions. 
– The variance in each new dimension is given by the eigenvalues
– How to select k? Look for prominent gap in the sorted eigenvalues
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PCA: Centre the Data

• Instances are represented as a cloud of n points in a 
multidimensional space with an axis for each of the p variables

• the centroid of the points is defined by the mean of each 
variable, 1𝑋!

• the variance of each variable 𝑉! is the average squared 
deviation of its n values around the mean of that variable

𝑉! =
1

𝑛 − 1 &
"#$

%

𝑋!" − (𝑋! &
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2D Example of PCA
• variables X1 and X2 have positive covariance and each 

has a similar variance
COMP422  FS:
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• variables X1 and X2 have positive covariance & each 

has a similar variance.
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Configuration is Centred
• Each variable is adjusted to a mean of zero (by 

subtracting the mean from each value).
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PCA: Covariance matrix 
• Covariance between two variables tells us how strongly they 

are linearly correlated.

• p*p covariance matrix

• Diagonals (Cii) are the variances

• Off-diagonals are the covariance 

• Symmetrical along the diagonal

Sum over all 
n objects

Value of 
variable j
in object m

Mean of
variable j

Value of 
variable i
in object m

Mean of
variable i

Covariance of
variables i and j

𝐶!' =
1

𝑛 − 1
&
"#$

%

𝑋!" − (𝑋! (𝑋'" − (𝑋')

p = 3

𝐶 =
𝑐𝑜𝑣 𝑥!, 𝑥! 𝑐𝑜𝑣 𝑥!, 𝑥" 𝑐𝑜𝑣 𝑥!, 𝑥#
𝑐𝑜𝑣 𝑥", 𝑥! 𝑐𝑜𝑣 𝑥", 𝑥" 𝑐𝑜𝑣 𝑥", 𝑥#
𝑐𝑜𝑣 𝑥#, 𝑥! 𝑐𝑜𝑣 𝑥#, 𝑥" 𝑐𝑜𝑣 𝑥#, 𝑥#
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PCA: Eigenvectors & Eigenvalues
• Given a square matrix A (p x p), x is its eigenvector with 

respect to the eigenvalue 𝜆 if: A*x = 𝜆*x
– p eigenvectors and p corresponding eigenvalues
– all eigenvectors are perpendicular

• Calculate the p eigenvectors of the covariance matrix 
(orthogonal), and p eigenvalues
– Each eigenvector represents a principal component
– The corresponding eigenvalue is the variance of the component

• Select the k eigenvectors that correspond to the highest k 
eigenvalues to be the new space dimensions



Week 4:27

Principal Components are Computed
• PC 1 has the highest possible variance (9.88)
• PC 2 has a variance of 3.03
• PC 1 and PC 2 have zero covariance
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Generalisation to p-dimensions

• In practice nobody uses PCA with only 2 input variables

• The algebra for finding principal axes readily generalises to 
p variables:
– PC 1 is the direction of maximum variance in the p-dimensional cloud 

of points
– PC 2 is in the direction of the next highest variance, subject to the 

constraint that it has zero covariance with PC 1.
– PC 3 is in the direction of the next highest variance, subject to the 

constraint that it has zero covariance with both PC 1 and PC 2
– and so on... up to PC p

28
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Assumptions of PCA
• Assumes relationship between variables are linear
• How many principal components (high-level features)?

• Too much to take in? A good step-by-step tutorial here: 
http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
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Going beyond linearity
• Linear transformations are inherently limited
• To retain more information (variance) in fewer dimensions, 

we need to use non-linear transformations.

• How?

• PCA is optimal for linear transformations! 
So what is optimal for nonlinear ones?
– Open (ill-defined?) question.
– Today: briefly, GP for (supervised) feature construction
– Next week: Manifold learning (Nonlinear dimensionality reduction) –

including some of my own research J

30
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Why Use GP for Feature Construction?
• Genetic programming (GP) is flexible in making 

mathematical and logical functions

• Not clear (or possible?) how to mathematically derive the 
function structure/model from the data – so a meta-heuristic 
approach (such as EC/GP) seems reasonable

/

-

F2*

F2 F7

+

F10 F6

(𝐹#' + 𝐹()/(𝐹$ ∗ 𝐹) − 𝐹$)
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Single vs. Multiple Feature Construction
• One constructed feature – easy, evolve a single tree.

– Often “augment” the original dataset.

• Possible ways to make multiple features are: 
– random restart and picking multiple individuals. Often leads to very 

high correlation between constructed features. L
– Change our representation to suit!
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Multiple feature construction: single-tree
• Construct multiple features from a single tree

Selected Features

Constructed 
Features

Soha Ahmed, Mengjie Zhang, Lifeng Peng and Bing Xue."Multiple Feature Construction for Effective Biomarker 
Identification and Classification using Genetic Programming". Proceedings of 2014 Genetic and Evolutionary 
Computation Conference (GECCO 2014). ACM Press. Vancouver, BC, Canada. 12-16 July 2014.pp.249--256
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Multiple feature construction: multi-tree (1)
• Each individual is a set of trees (m trees)
•Class-independent: m = r x c
– e.g. 2 classes (c=2), r = 2 -> 4 trees in each individualB. Tran, B. Xue and M. Zhang / Pattern Recognition 93 (2019) 404–417 407 

Fig. 1. MCIFC representation for a binary-class problem given r = 2 . 
Algorithm 2: MCIFC Crossover and Mutation. 
1 prob ← randomly generated probability; 
2 DoMutation ← (prob < mutation _ rate ) ; 
3 if ( DoMutation ) then 
4 p ← Randomly select an individual using tournament selection; 
5 f ← Randomly select a feature/tree from m trees of individual p ; 
6 s ← Randomly select a subtree in tree f ; 
7 Replace s with a newly generated subtree; 
8 Return one new individuals; 
9 else 

10 p1 , p2 ← Randomly select 2 individuals using tournament 
selection; 

11 f 1 , f 2 ← Randomly select a feature/tree from m trees of p1 and 
p2 , respectively ; 

12 s 1 , s 2 ← Randomly select a subtree in f 1 and f 2 , respectively ; 
13 Swap s 1 and s 2 ; 
14 Return two new individuals; 
15 end 

combine them. Since the datasets used in this study have thou- 
sands of features, slightly changing parents to increase exploitation 
is a better choice. 
3.1.3. MCIFC fitness function 

MCIFC uses a weight ( α) to combine the DT classification ac- 
curacy and a distance measure in the fitness function as shown in 
Eq. (2) . 
F itness = α · Bal _ Accuracy + (1 − α) · Distance (2) 
Bal _ Accuracy is the average of the balanced accuracies obtained 
from the K-fold (K = 3) cross-validation (CV) on the transformed 
training set. In addition, the K-fold CV is repeated L times (L = 3) 
with different data splitting. Therefore, K × L , i.e. 9, models are 
built to evaluate each individual. This evaluation scheme is used 
to avoid overfitting even though it is a little bit more expensive 
but affordable because the number of constructed features is small. 
The balanced accuracy [31] is calculated based on Eq. (3) given c 
as the number of classes, TP i and S i as the number of correctly 
identified instances and the number of total instances of class i , 
respectively. 
Bal _ Accuracy = 1 

c 
c ∑ 

i =1 
T P i 
| S i | (3) 

The Distance measure [32] calculated based on Eq. (4) is used 
to maximise the distance of instances between class ( D b ) and min- 
imise the distance of instances within the same class ( D w ). Let S be 
the training set, D b and D w are approximated based on Eqs. (5) and 
(6) . 
Distance = 1 

1 + e −5(D b −D w ) (4) 
D b = 1 

| S| 
| S| ∑ 
i =1 min 

{ j | j $ = i,class (V i ) $ = class (V j ) } Dis (V i , V j ) (5) 
D w = 1 

| S| 
| S| ∑ 
i =1 max 

{ j | j $ = i,class (V i )= class (V j ) } Dis (V i , V j ) (6) 

Fig. 2. Representation of a class-dependent GP individual with construction ratio 1. 

Czekanowski (V i , V j ) = 1 − 2 ∑ n 
d=1 min (V id , V jd ) 

∑ n 
d=1 (V id + V jd ) , (7) 

where Dis ( V i , V j ) is the distance between two vectors V i and V j , 
which is approximated by the Czekanowski measure [33] as shown 
in Eq. (7) . 
3.2. CDFC: a multiple class-dependent feature construction method 
3.2.1. CDFC representation 

CDFC [18] representation is similar to MCIFC with the number 
of constructed features calculated based on Eq. (1) . However, 
different from MCIFC, each feature constructed by CDFC is class- 
dependent. It aims at discriminating instances of one class to other 
classes. In other words, each feature is associated with one class. 
Fig. 2 shows an example of an individual of CDFC for a three-class 
problem given the construction ratio r = 1 . In this case, while 
CF 1 is evolved towards a high-level feature that can distinguish 
instances of Class 1 to other classes, CF 2 and CF 3 focus on Class 2 
and Class 3 , respectively. 

In CDFC, a new feature cf is constructed from a subset of the 
original features that is relevant to the class that cf associates with. 
t-Test is used to measure how relevant a feature f is to class c . Val- 
ues of f are first divided into two groups, one belongs to class c 
and one does not. Then, Eq. (8) is used to measure its relevance 
to class c, Rel f,c , which considers not only the difference between 
the means of two groups ( t -value) but also the confidence of this 
difference ( p -value). It is set to 0 if the two groups are not sig- 
nificantly different (i.e. p -value ≥ 0.05), and to the absolute of t - 
value divided by p -value, otherwise. Therefore, the larger the value 
of Rel f,c , the more relevant the feature f to class c . For each class c , 
features are ranked by its Rel f,c values. Then half of the top-ranked 
features will be used to form the terminal set of class c . This strat- 
egy not only eliminates irrelevant features but also narrows the 
search space so that the searching process will be more efficient. 
Rel f,c = 

{ 
0 , if p-value ≥ 0 . 05 
| t − v alue ( f class = c , f class $ = c ) | 

p − v alue , otherwise (8) 
3.2.2. CDFC crossover and mutation 

CDFC uses the same genetic operators as MCIFC except for one 
variant: the crossover operator can only swap subtrees of features 

B. Tran, B. Xue and M. Zhang / Pattern Recognition 93 (2019) 404–417 407 
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combine them. Since the datasets used in this study have thou- 
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is a better choice. 
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MCIFC uses a weight ( α) to combine the DT classification ac- 
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to maximise the distance of instances between class ( D b ) and min- 
imise the distance of instances within the same class ( D w ). Let S be 
the training set, D b and D w are approximated based on Eqs. (5) and 
(6) . 
Distance = 1 

1 + e −5(D b −D w ) (4) 
D b = 1 

| S| 
| S| ∑ 
i =1 min 

{ j | j $ = i,class (V i ) $ = class (V j ) } Dis (V i , V j ) (5) 
D w = 1 

| S| 
| S| ∑ 
i =1 max 

{ j | j $ = i,class (V i )= class (V j ) } Dis (V i , V j ) (6) 

Fig. 2. Representation of a class-dependent GP individual with construction ratio 1. 

Czekanowski (V i , V j ) = 1 − 2 ∑ n 
d=1 min (V id , V jd ) 

∑ n 
d=1 (V id + V jd ) , (7) 

where Dis ( V i , V j ) is the distance between two vectors V i and V j , 
which is approximated by the Czekanowski measure [33] as shown 
in Eq. (7) . 
3.2. CDFC: a multiple class-dependent feature construction method 
3.2.1. CDFC representation 

CDFC [18] representation is similar to MCIFC with the number 
of constructed features calculated based on Eq. (1) . However, 
different from MCIFC, each feature constructed by CDFC is class- 
dependent. It aims at discriminating instances of one class to other 
classes. In other words, each feature is associated with one class. 
Fig. 2 shows an example of an individual of CDFC for a three-class 
problem given the construction ratio r = 1 . In this case, while 
CF 1 is evolved towards a high-level feature that can distinguish 
instances of Class 1 to other classes, CF 2 and CF 3 focus on Class 2 
and Class 3 , respectively. 

In CDFC, a new feature cf is constructed from a subset of the 
original features that is relevant to the class that cf associates with. 
t-Test is used to measure how relevant a feature f is to class c . Val- 
ues of f are first divided into two groups, one belongs to class c 
and one does not. Then, Eq. (8) is used to measure its relevance 
to class c, Rel f,c , which considers not only the difference between 
the means of two groups ( t -value) but also the confidence of this 
difference ( p -value). It is set to 0 if the two groups are not sig- 
nificantly different (i.e. p -value ≥ 0.05), and to the absolute of t - 
value divided by p -value, otherwise. Therefore, the larger the value 
of Rel f,c , the more relevant the feature f to class c . For each class c , 
features are ranked by its Rel f,c values. Then half of the top-ranked 
features will be used to form the terminal set of class c . This strat- 
egy not only eliminates irrelevant features but also narrows the 
search space so that the searching process will be more efficient. 
Rel f,c = 

{ 
0 , if p-value ≥ 0 . 05 
| t − v alue ( f class = c , f class $ = c ) | 

p − v alue , otherwise (8) 
3.2.2. CDFC crossover and mutation 

CDFC uses the same genetic operators as MCIFC except for one 
variant: the crossover operator can only swap subtrees of features 

Binh Tran and Bing Xue and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-
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Multiple feature construction: multi-tree (2)
• Class-dependent: m = r x c
– e.g. 3 classes (c=3), r = 1 -> 3 trees in each individual

• CF1: distinguish between Class1 and other classes
• CF2: distinguish between Class2 and other classes
• CF3: distinguish between Class3 and other classes

Binh Tran and Bing Xue and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-
dimensional classification", Pattern Recognition, vol. 93, pp. 404-417, 2019.
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Fig. 1. MCIFC representation for a binary-class problem given r = 2 . 
Algorithm 2: MCIFC Crossover and Mutation. 
1 prob ← randomly generated probability; 
2 DoMutation ← (prob < mutation _ rate ) ; 
3 if ( DoMutation ) then 
4 p ← Randomly select an individual using tournament selection; 
5 f ← Randomly select a feature/tree from m trees of individual p ; 
6 s ← Randomly select a subtree in tree f ; 
7 Replace s with a newly generated subtree; 
8 Return one new individuals; 
9 else 

10 p1 , p2 ← Randomly select 2 individuals using tournament 
selection; 

11 f 1 , f 2 ← Randomly select a feature/tree from m trees of p1 and 
p2 , respectively ; 

12 s 1 , s 2 ← Randomly select a subtree in f 1 and f 2 , respectively ; 
13 Swap s 1 and s 2 ; 
14 Return two new individuals; 
15 end 

combine them. Since the datasets used in this study have thou- 
sands of features, slightly changing parents to increase exploitation 
is a better choice. 
3.1.3. MCIFC fitness function 

MCIFC uses a weight ( α) to combine the DT classification ac- 
curacy and a distance measure in the fitness function as shown in 
Eq. (2) . 
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from the K-fold (K = 3) cross-validation (CV) on the transformed 
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with different data splitting. Therefore, K × L , i.e. 9, models are 
built to evaluate each individual. This evaluation scheme is used 
to avoid overfitting even though it is a little bit more expensive 
but affordable because the number of constructed features is small. 
The balanced accuracy [31] is calculated based on Eq. (3) given c 
as the number of classes, TP i and S i as the number of correctly 
identified instances and the number of total instances of class i , 
respectively. 
Bal _ Accuracy = 1 
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T P i 
| S i | (3) 

The Distance measure [32] calculated based on Eq. (4) is used 
to maximise the distance of instances between class ( D b ) and min- 
imise the distance of instances within the same class ( D w ). Let S be 
the training set, D b and D w are approximated based on Eqs. (5) and 
(6) . 
Distance = 1 

1 + e −5(D b −D w ) (4) 
D b = 1 

| S| 
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Fig. 2. Representation of a class-dependent GP individual with construction ratio 1. 

Czekanowski (V i , V j ) = 1 − 2 ∑ n 
d=1 min (V id , V jd ) 

∑ n 
d=1 (V id + V jd ) , (7) 

where Dis ( V i , V j ) is the distance between two vectors V i and V j , 
which is approximated by the Czekanowski measure [33] as shown 
in Eq. (7) . 
3.2. CDFC: a multiple class-dependent feature construction method 
3.2.1. CDFC representation 

CDFC [18] representation is similar to MCIFC with the number 
of constructed features calculated based on Eq. (1) . However, 
different from MCIFC, each feature constructed by CDFC is class- 
dependent. It aims at discriminating instances of one class to other 
classes. In other words, each feature is associated with one class. 
Fig. 2 shows an example of an individual of CDFC for a three-class 
problem given the construction ratio r = 1 . In this case, while 
CF 1 is evolved towards a high-level feature that can distinguish 
instances of Class 1 to other classes, CF 2 and CF 3 focus on Class 2 
and Class 3 , respectively. 

In CDFC, a new feature cf is constructed from a subset of the 
original features that is relevant to the class that cf associates with. 
t-Test is used to measure how relevant a feature f is to class c . Val- 
ues of f are first divided into two groups, one belongs to class c 
and one does not. Then, Eq. (8) is used to measure its relevance 
to class c, Rel f,c , which considers not only the difference between 
the means of two groups ( t -value) but also the confidence of this 
difference ( p -value). It is set to 0 if the two groups are not sig- 
nificantly different (i.e. p -value ≥ 0.05), and to the absolute of t - 
value divided by p -value, otherwise. Therefore, the larger the value 
of Rel f,c , the more relevant the feature f to class c . For each class c , 
features are ranked by its Rel f,c values. Then half of the top-ranked 
features will be used to form the terminal set of class c . This strat- 
egy not only eliminates irrelevant features but also narrows the 
search space so that the searching process will be more efficient. 
Rel f,c = 

{ 
0 , if p-value ≥ 0 . 05 
| t − v alue ( f class = c , f class $ = c ) | 

p − v alue , otherwise (8) 
3.2.2. CDFC crossover and mutation 

CDFC uses the same genetic operators as MCIFC except for one 
variant: the crossover operator can only swap subtrees of features 
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GP-based feature construction
•Multiple-feature construction > single-feature 
construction

• Among multiple-feature construction:
–Multi-tree representation > single-tree representation

• Among multi-tree representation:
–Class-dependent > class-independent

Binh Tran and Bing Xue and Mengjie Zhang. "Genetic programming for multiple-feature construction on high-
dimensional classification", Pattern Recognition, vol. 93, pp. 404-417, 2019.
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Issues and Challenges in FS and FC
• Scalability Problem

– thousands, tens of thousands, and even millions 
• Computational Cost
• Search Mechanisms
• Measures
• Representation
• Multi-Objective Feature Selection
• Number of Instances
• Stability 
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Feature Selection/Construction Approaches
• Generally:

Classification
Accuracy

Computational 
Cost

Generality
(to different "classifiers")

Filter Low Low High

Embedded Medium Medium Medium

Wrapper High High Low


