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Week 5:2

Dimensionality Reduction
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Week 5:3

How do we do the (NL)DR?

We’ve discussed a lot of supervised methods

— Filter: information gain, mutual information, correlation, ...
— Wrapper: Training a classifier given a feature subset

— Embedded: Decision Trees, Genetic Programming

But what about if you have no labels?
Or what if you want a (filter) method that considers the entire
set of feature relationships?

— Pairwise redundancies feel “naive”
— What about the topology of the data?

Let us make an “assumption”: our data is actually
(intrinsically) lower-dimensional than the D features we have
— We say it lies on a lower-dimensional manifold (embedding)



Week 5:4

Swiss Rolls



http://www.glutenfreealchemist.com/2015/09/vanilla-swiss-roll-gluten-free-dairy.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Week 5:5

.mathematically speaking

Did we lose any structure?
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Week 5:6

Well...

* The red and blue points were close in Euclidean (straight-
line) space in 3D — but aren’t in 2D

* ...but this is desirable, as there is a “gap” in the topology

/ Q\
* We have preserved the geodesic distance .' /

— Geodesic Distance = shortest path in a graph J
— E.g. distance from Auckland to London flying vs throuQQ\he Eartky
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Geodesic Distance




Week 5:8

Manifolds

* In mathematics, a manifold is a topological space that locally
resembles Euclidean space near each point.
— Small portions of a circle look like a line
— “Small” portions of the Earth look flat
— Topology ignores bending




Week 5:9

| thought this was an Al class...

It is!

The key takeaway: a manifold is a d-dimensional object
“living” in a D-dimensional world.

If we can find or approximate this manifold, we can
represent our data in d dimensions instead of D!

We call this d-dimensional space an embedding — it is
embedded within the D-dimensional space.



Week 5:10

Manifold Learning

We want to find a smaller embedding of our data

Manifold learning (MaL): using machine learning to learn an
embedding

Nonlinear dimensionality reduction (NLDR): a broader term:

any approach to reducing dimensionality through nonlinear
transformations

In practice, the two terms are used pretty interchangeably
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Manifold Learning

How do we know our data lies on a manifold?
Ways to estimate the intrinsic dimensionality of data

In practice, an approximation of the original topology is
perfectly useable.

As with PCA — if we retain the majority of the
variance/structure, we likely retain the important patterns

Feature construction? Yes...and no. We’'ll come back to that
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“"CLASSIC” MANIFOLD
LEARNING ALGORITHMS



Week 5:13

Multidimensional Scaling (MDS)

« Dates from as early as 1938 (!)

* Minimises the difference between the pairwise distance
(between instances) in the high-dimensional vs embedding
space:

Eu= ) [d(kD) - d'(k, )]

k+l

where k and [ are two instances, d(k, 1) is the distance in
embedded space and d’(k, 1) the distance in high-dim

space



Week 5:14

Multidimensional Scaling (MDS)
« Metric MDS:

— Preserve magnitudes and orders

— Assume triangle inequality

— Sensitive to outliers

— Sammon’s Mapping normalises each distance

« Nonmetric MDS uses ranks instead of raw distance (why?)
— Preserve orders
— Less sensitive to triangle inequality and outliers
— Lost information

* How does it find the embedding?
— Optimisation problem...
— Numerical optimisation techniques
— Or Eigen-decomposition...

)
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Week 5:15

Isomap (Isometric Mapping)

1. Construct neighbourhood graph (connect a, b if d(a,b) < €)
2. Compute shortest paths (geodesic distance matrix)

Fig. 3. The “Swiss roll” data set, illustrating how Isomap exploits geodesic
paths for nonlinear dimensionality reduction. (A) For two arbitrary points
(circled) on a nonlinear manifold, their Euclidean distance in the high-
dimensional input space (length of dashed line) may not accurately
reflect their intrinsic similarity, as measured by geodesic distance along
the low-dimensional manifold (length of solid curve). (B) The neighbor-
hood graph G constructed in step one of Isomap (with K = 7 and N =

1000 data points) allows an approximation (red segments) to the true
geodesic path to be computed efficiently in step two, as the shortest
path in G. (C) The two-dimensional embedding recovered by Isomap in
step three, which best preserves the shortest path distances in the
neighborhood graph (overlaid). Straight lines in the embedding (blue)
now represent simpler and cleaner approximations to the true geodesic
paths than do the corresponding graph paths (red).

Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality
reduction. Science, 290(5500), 2319-2323. https://www.science.org/doi/10.1126/science.290.5500.2319 15



https://www.science.org/doi/10.1126/science.290.5500.2319
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Week 5:16

Locally Linear Embedding (LLE)

Select (K) neighbours

for each datapoint X; |

Compute weights
Wij to reconstruct Xi
from its neighbours

(least-squares) ~

Do some fancy
linear algebra to find
the embedding that
best minimises the
reconstruction error. |

NB W;; is unchanged
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Week 5:17

Types of Manifold Learning

Mapping vs non-mapping methods
— Embedding = f(high-dim space)? “See” the functional mapping; vs
— Embedding is optimised “with respect to” high-dim space

Local vs global methods

— Preserve local neighbourhoods more; vs
— Ensure global structure is maintained

— (Both?)

— Isomap vs LLE?

Deterministic/analytical vs (stochastic) search
— Eigen-decomposition/numeric optimisation; vs
— Gradient descent/EC/...
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PCA vs NLDR?
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One million mtegers embedded mto 2D space with UMAP

We'll meet UMAP
tomorrow!

https://johnhw.github.io/umap primes/index.md.h?hdl )
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https://johnhw.github.io/umap_primes/index.md.html

