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Dimensionality Reduction
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Week 5:3

How do we do the (NL)DR?
• We’ve discussed a lot of supervised methods

– Filter: information gain, mutual information, correlation, …
– Wrapper: Training a classifier given a feature subset
– Embedded: Decision Trees, Genetic Programming

• But what about if you have no labels?
• Or what if you want a (filter) method that considers the entire 

set of feature relationships?
– Pairwise redundancies feel “naïve”
– What about the topology of the data?

• Let us make an “assumption”: our data is actually 
(intrinsically) lower-dimensional than the D features we have
– We say it lies on a lower-dimensional manifold (embedding)
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Swiss Rolls
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This Photo by Unknown Author is licensed under CC BY-NC-ND

http://www.glutenfreealchemist.com/2015/09/vanilla-swiss-roll-gluten-free-dairy.html
https://creativecommons.org/licenses/by-nc-nd/3.0/
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…mathematically speaking
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Did we lose any structure?

Nonlinear 
Transformation



Week 5:6

Well…
• The red and blue points were close in Euclidean (straight-

line) space in 3D – but aren’t in 2D
• …but this is desirable, as there is a “gap” in the topology

• We have preserved the geodesic distance
– Geodesic Distance = shortest path in a graph 
– E.g. distance from Auckland to London flying vs through the Earth
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Geodesic Distance
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Week 5:8

Manifolds
• In mathematics, a manifold is a topological space that locally 

resembles Euclidean space near each point.
– Small portions of a circle look like a line
– “Small” portions of the Earth look flat
– Topology ignores bending
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Week 5:9

I thought this was an AI class…

• It is!

• The key takeaway: a manifold is a d-dimensional object 
“living” in a D-dimensional world.

• If we can find or approximate this manifold, we can 
represent our data in d dimensions instead of D!

• We call this d-dimensional space an embedding – it is 
embedded within the D-dimensional space.

9



Week 5:10

Manifold Learning

• We want to find a smaller embedding of our data

• Manifold learning (MaL): using machine learning to learn an 
embedding

• Nonlinear dimensionality reduction (NLDR): a broader term: 
any approach to reducing dimensionality through nonlinear 
transformations

• In practice, the two terms are used pretty interchangeably
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Week 5:11

Manifold Learning

• How do we know our data lies on a manifold?

• Ways to estimate the intrinsic dimensionality of data

• In practice, an approximation of the original topology is 
perfectly useable. 

• As with PCA – if we retain the majority of the 
variance/structure, we likely retain the important patterns

• Feature construction? Yes…and no. We’ll come back to that
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“CLASSIC” MANIFOLD 
LEARNING ALGORITHMS



Week 5:13

Multidimensional Scaling (MDS)
• Dates from as early as 1938 (!)

• Minimises the difference between the pairwise distance 
(between instances) in the high-dimensional vs embedding 
space:

𝐸! = &
"#$

[𝑑 𝑘, 𝑙 − 𝑑%(𝑘, 𝑙)]&

 where k and l are two instances, 𝑑 𝑘, 𝑙 is the distance in 
embedded space and 𝑑%(𝑘, 𝑙) the distance in high-dim 
space
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Week 5:14

Multidimensional Scaling (MDS)
• Metric MDS:

– Preserve magnitudes and orders
– Assume triangle inequality
– Sensitive to outliers
– Sammon’s Mapping normalises each distance

• Nonmetric MDS uses ranks instead of raw distance (why?)
– Preserve orders
– Less sensitive to triangle inequality and outliers
– Lost information

• How does it find the embedding?
– Optimisation problem…
– Numerical optimisation techniques
– Or Eigen-decomposition…
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Week 5:15

Isomap (Isometric Mapping)
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Tenenbaum, J. B., Silva, V. D., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality 
reduction. Science, 290(5500), 2319-2323. https://www.science.org/doi/10.1126/science.290.5500.2319 

1. Construct neighbourhood graph (connect 𝑎, 𝑏	𝑖𝑓	𝑑 𝑎, 𝑏 < 𝜖)
2. Compute shortest paths (geodesic distance matrix)
3. Construct d-dimensional embedding (eigenvectors of matrix)

https://www.science.org/doi/10.1126/science.290.5500.2319


Week 5:16

Locally Linear Embedding (LLE)
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1. Select (K) neighbours 
for each datapoint 𝑋!

2. Compute weights 
𝑊!"	to reconstruct 𝑋! 
from its neighbours
(least-squares)

3. Do some fancy 
linear algebra to find 
the embedding that
best minimises the
reconstruction error. 

    NB 𝑊!" is unchanged



Week 5:17

Types of Manifold Learning

• Mapping vs non-mapping methods
– Embedding = f(high-dim space)? “See” the functional mapping; vs
– Embedding is optimised “with respect to” high-dim space

• Local vs global methods
– Preserve local neighbourhoods more; vs
– Ensure global structure is maintained
– (Both?)
– Isomap vs LLE?

• Deterministic/analytical vs (stochastic) search
– Eigen-decomposition/numeric optimisation; vs
– Gradient descent/EC/…
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PCA vs NLDR?
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PCA

Manifold 
Sculpting



Week 5:19
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https://johnhw.github.io/umap_primes/index.md.html 

One million integers embedded into 2D space with UMAP

We’ll  meet UMAP 
tomorrow!

https://johnhw.github.io/umap_primes/index.md.html

