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t-distributed Stochastic Neighbor Embedding
(t-SNE)
» Last lecture, we focused on preserving distances/rankings

« t-SNE instead uses probability distributions
— How likely would you select a point as a neighbour?

"The similarity of datapoint x; to datapoint x; is the conditional
probability, p;;, that x; would pick x; as its neighbour if
neighbours were picked in proportion to their probability
density under a Gaussian centred at x;“ [1]

 The “t-” stands for the use of the Student’s t-distribution

[1] L. Van der Maaten and G. Hinton. "Visualizing data using
t-SNE." Journal of machine learning research 9(11) (2008)




Lots of maths, but essentially...
Calculate neighbour probabilities for each pair of instances

PjlitPij

Symmetrise: p;; = (for N points)

(NB: p;; = pj; and p;; = 0)

Set of all p;; forms P, the probability distribution in high-
dimensional space

Use a similar approach to calculate Q (low-dim space)

Optimise by minimising the (Kullback-Leibler) difference
between these two distributions:

Pi
KL(PIQ) = ) pyjlog_~
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Use gradient descent to optimise low-dim space
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(b) Visualization by Sammon mapping.

(a) Visualization by t-SNE.

(b) Visualization by LLE.

(a) Visualization by Isomap.



t-SNE: issues

« A stochastic algorithm: different results each run
» Perplexity parameter balances local vs global structure
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t-SNE: issues

First and foremost, designed for visualisation
— Not clear how well it works in d > 3 dimensions

Hyperparameters can be quite sensitive

Computationally
expensive

Still no mapping from
high-dim to embedding

— Parametric t-SNE
exists, but...
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— ...and then?
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Uniform Manifold Approximation and

Projection for Dimension Reduction (UMAP)

How does it work? Similar, in ways, to t-SNE
— Assumes the data is “uniformly distributed on Riemannian manifold’

Long version: https://umap-learn.readthedocs.io/en/latest/how umap_ works.html
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https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

UMAP

» Each instance is connected to at least its nearest-neighbour
* “Fuzzy” connection to neighbours beyond that
* Focuses on differences in distances, not raw: local topology!
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Long version: https://umap-learn.readthedocs.io/en/latest/how umap_ works.html
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UMAP

* Process to build a weighted graph
— Opacity of line represents strength of a relationship

* Nodes “push” and “pull” each other based on size of weights
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Long version: https://umap-learn.readthedocs.io/en/latest/how umap_ works.html
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UMAP

« Uses an approximation of these push/pull forces to give a
differentiable objective function: optimise using gradient
descent (fast/easy)

UMAP projection of the Digits dataset
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Long version: https://umap-learn.readthedocs.io/en/latest/how umap_ works.html
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Extensions to UMAP

« Parametric UMAP: trains a NN to create the embedding

Learn a set of neural network weights that
preserves the structure of the graph

* (Semi-)Supervised UMAP: combine the two “spaces”

Fashion MNIST Embedded via UMAP

Fashion MNIST Embedded via UMAP using Labels
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Limitations of UMAP (and t-SNE)?

« Both t-SNE and UMAP simplified/approximated in order to
make a differentiable objective function
— What if better non-differentiable objective functions exist?

« Parametric t-SNE is a mapping — i.e. we have a concrete
functional model from D to d

— ...but is a 3-layer 100-neuron fully-connected NN at all interpretable?
— | argue NO!

« Using EC/Genetic Programming to find simpler functional
models/mappings for Manifold Learning.



Genetic Programming for Manifold Learning

GP-Mal




Cost

Manifold Learning: Embedding Quality vs Dimensionality
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Diminishing returns —
most data has low
intrinsic dimensionality.

A. Lensen, M. Zhang, and B. Xue.
“‘Multi-Objective Genetic
Programming for Manifold Learning:
Balancing Quality and
Dimensionality” in Genet Program
Evolvable Mach 21, 399-431 (2020).
https://doi.org/10.1007/s10710-020-
09375-4
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Manifold Learning: Embedding Quality vs Dimensionality

* 649-dimensional MFEAT dataset;
e 12 evolved trees;
* 95% test accuracy (post-hoc).
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A. Lensen, M. Zhang, and B. Xue. “Multi-Objective
Genetic Programming for Manifold Learning:
Balancing Quality and Dimensionality” in Genet
Program Evolvable Mach 21, 399-431 (2020).
https://doi.org/10.1007/s10710-020-09375-4 15
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There is an inherent trade-off between
preserving global and local topology

Manifold Learning: Preserving Local Topology

A. Lensen, M. Zhang, and B. Xue. “Genetic
Programming for Manifold Learning:

Preserving Local Topology” in IEEE Trans.

Evolutionary Computation (Early Access)
DOI: 10.1109/TEVC.2021.3106672

* In many tasks, local topology preservations is more

important

— E.g. image segmentation, semi-supervised learning, ...

 Prioritising local topology preservation can retain more
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Explainable Unsupervised Learning

What do these visualisations actually mean?

2D Manifold Learning < Visualisation?

Complexity
VS
Interpretability...
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Cool uses of UMAP

Modelling 3D animals (wireframes) in 2D

Compare t-SNE vs UMAP vs PCA on big datasets

PixPlot: Embeds >27,000 historical photographs (2,048px)
in 2D

Orion Search: Embedding of academic paper abstracts

(From https://umap-learn.readthedocs.io/en/latest/interactive viz.html)

/ / Bioinformatics /
Genetics / .
Pattern recognition’/ =i
Machine learning / De
Com Computer sci



https://duhaime.s3.amazonaws.com/apps/umap-zoo/index.html
https://projector.tensorflow.org/
https://dhlab.yale.edu/projects/pixplot/
https://www.orion-search.org/
https://umap-learn.readthedocs.io/en/latest/interactive_viz.html

Demo Time

https://colab.research.google.com/drive/1rF gFIU7

s5DGT3rHsAhP61EIDYYJMAys?usp=sharing
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