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Outline
• Supervised learning and Unsupervised learning

• Clustering analysis

• Clustering Performance

• Clustering Metrics 

To understand how to use and interpret:

• K-means clustering 

• Hierarchical clustering 

• Convex clustering
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Unsupervised learning 
• In unsupervised learning, we have features 𝑥!, … 𝑥" for n

observations but there is no associated response y.

• The goal is to find interesting things in the data matrix X itself 

What information can be discovered in X? 

X

n x p
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Unsupervised learning
• More challenging than supervised learning: 

- no response means no obvious goal for analysis 
- no way to check answers 

• More subjective:
- Part of exploratory data analysis
- Techniques need to work in high dimensions 

Two popular types of unsupervised learning that are a standard 
starting point are 

- Principal components analysis (PCA) and variants 
- Clustering, aka cluster analysis 

See also ISLR (An Introduction to Statistical Learning: With 
Application in R): Section 10.1 
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Examples of Clustering Applications

• Marketing: Help marketers discover distinct groups in their 
customer bases, and then use this knowledge to develop targeted 
marketing programs

• Land use: Identification of areas of similar land use in an earth 
observation database

• Insurance: Identifying groups of motor insurance policy holders 
with a high average claim cost

• City-planning: Identifying groups of houses according to their 
house type, value, and geographical location

• Earth-quake studies: Observed earthquake epicenters should be 
clustered along continent faults
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Clustering example 
A vast amount of research being done on genetic component of disease. 

Suppose we have n patients with melanoma and measurements of the 
expression levels of p genes. One might like to know:

- Are there clusters within the patients (observations)? This might 
indicate variants of melanoma and suggest different prognoses or 
treatments 

- Are there clusters within the genes (features)? Do certain genes 
work together? Is this the same in individuals without melanoma? 

• Clustering:
- We will focus on clustering the observations, i.e. we think of X as 

representing n points in p-dimensional space. It will be convenient to let xi
denote the ith row of X

- If we want to cluster features, we just have to take the transpose of X first 
See also ISLR 10.3

- Simultaneously clustering observations and features is also possible. This is 
known as biclustering
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Clustering 
• Clustering or cluster analysis refers to techniques to find 

subgroups or clusters in the data. 

• The aim is to partition the observations into clusters so that 
observations in a cluster are similar (or related or connected)
but observations in different clusters are not. 

• To do this, need to specify what it means for observations to 
be similar or different.
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Measure the Quality of Clustering
• Dissimilarity/Similarity metric

- Similarity is expressed in terms of a distance function, 
typically metric: d(i, j)

- The definitions of distance functions are usually rather 
different for various types of variables, e.g. real-value,
boolean, categorical, ordinal ratio, and vector variables

- Weights should be associated with different variables based 
on applications and data semantics

• Quality of clustering:
- There is usually a separate “quality” function that measures 

the “goodness” of a cluster.
- It is hard to define “similar enough” or “good enough” 

‣ The answer is typically highly subjective

8
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Issues in Clustering
• Many applications operate in a very high-dimensional space 

- Almost all pairs of points are at about the same distance! 

• For the small number of dimensions and small amount of 
data, its “easy” but 
- Number of clusters is typically not known 
- Exclusive vs non-exclusive clustering 
- Clusters may be of arbitrary shapes and sizes 
- Quality of clustering result

‣ Depends on the similarity measure used and the method and its
implementation 

‣ Measured by its ability to discover some or all of the hidden 
patterns 
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Clustering

5

6

Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters
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Clustering Datasets

• Hand-crafted datasets exhibiting a range of geometries and 
densities 

2.2. CLUSTERING 24

using a distance function, such as Euclidean distance. While these
models are the most popular, they are inherently limited by their use of
prototypes to define clusters: typically they can only be used to produce
hyper-spherical clusters due to optimising by minimising a distance
function to all instances in the cluster Clusters need not be
hyper-spherically shaped [136, 55]; a variety of valid cluster shapes are
shown in Figure 2.1.

Figure 2.1: Hand-crafted datasets exhibiting a range of geometries and
densities [34].

k-means [54] is the canonical example of a prototype-based clustering
algorithm. The original k-means algorithm generates initial cluster
centroids (prototypes) randomly in the feature space. Each instance in
the dataset is then assigned to the nearest cluster centre using a distance
measure such as Euclidean distance. The centres of each cluster are then
recomputed by finding the mean of all instances in the cluster. Each
instance is then again assigned to its nearest cluster and cluster centres
are recomputed. This process continues until a number of iterations is
reached or until the clusters stabilise. The performance of k-means is
highly dependant on the quality of the initial cluster centroids. While
k-means is efficient and can have surprisingly good performance, it has a
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Clustering Approaches 
• There are many clustering approaches. These include 

- K-means clustering 
- Hierarchical clustering
- Convex clustering
- Gaussian mixture models
- DBSCAN (Density-based spatial clustering of applications with 

noise) and variants
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Clustering Approaches 
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K-means algorithm 
Main steps of K-means:

• Initialise C1 , . . . , CK by randomly assigning each observation a 
number from 1 to K

• Repeat until the the cluster assignments don’t change: 
- (a) Compute the centroid for each cluster 
- (b) Assign each observation to the cluster whose centroid is 

closest in Euclidean distance 

• Algorithm 10.1 of ISLR 

• The algorithm finds a local minimum of the objective function 
∑#$!% 𝑊(𝐶#).



AIML427 Week6:15

Comments on K-means 
• Have to predefine K: no guidance on how to choose K 

• K-means is based on spherical clusters, which might not always be 
appropriate.

• Sensitive to initial seeds, local minima 

• Sensitive to outliers

• Generalising the distance function is possible, e.g. 
K-medians clustering defines centroids via 
component-wise median and assignment to a 
cluster is in terms of the Manhattan distance (aka 
taxicab geometry, 𝑙!-norm) 

• Care needs to be taken in high dimensions; 
irrelevant features can conceal information about 
clusters. Idea of distance also breaks down –
curse of dimensionality again. 
- Dimension reduction prior to clustering is a good 

idea 
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Measuring Clustering Performance 
• Compactness: how tightly-packed a cluster is. 

- Clusters should be as compact as possible, so as to ensure that only 
the most related/similar instances have been grouped together.

• Separability: how well neighbouring clusters are separated in the 
feature space. 

• Connectedness: instances that are close together should generally be 
allocated to the same cluster as they have similar characteristics. 
- Connectedness is generally measured per-instance rather than per-

cluster. The most common approach used is to find the mean 
distance from each instance to its n-nearest neighbours. 

• K-means’ the clustering performance?
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Clustering

5

6

Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters
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Clustering
• How to measure/represent Intra-cluster and inter-cluster

distances?
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Clustering Metrics 
• Sum intra-cluster distance:

- 𝑧!represent the mean of the ith cluster

• Root Mean Squared Error: 

• Sum inter-cluster distance (𝑖 ≠ 𝑗): 

29 2.2. CLUSTERING

Internal Metrics

The internal metrics listed below are ones which evaluate cluster quality
based purely on the properties of the partition produced by a clustering
algorithm. Each metric is labelled with either a " or a # to indicate it should
be maximised or minimised respectively.

1. Sum intra-cluster distance:

IntraSum #=
KX

i=1

X

a2Ci

d(a, Zi) (2.2)

Minimising the sum of the intra-cluster distances will give compact
clusters. If partitions are evaluated using only this metric, then the
best partition will occur when every cluster contains a single
instance (i.e. n = K), as each cluster will have no intra-cluster
variation. Hence, this metric is most suitable when K is pre-defined
or as a component in a more complicated metric.

2. Root Mean Squared Error:

RMSE #=

vuut 1

K

KX

i=1

CSE2
i (2.3)

where

CSE =

s
1

|Ci|
X

a2Ci

d(a, Zi)2 (2.4)

RMSE is very similar to the sum intra-cluster distance metric, but
better punishes poor-quality clusters with instances far away from
the cluster mean.

3. Sum inter-cluster distance:

InterSum "=
KX

i=1

KX

j=1

d(Zi, Zj) (2.5)
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Maximising the sum of the inter-cluster distances will give
well-separated clusters. A number of variations to the above
equation are used, including summing the distance from each
cluster mean to the instance mean i.e. d(Zi, Z⇤) or from each cluster
mean to the closest neighbouring cluster mean i.e. the minimum of
d(Zi, Zj) across all j 6= i. A third variation instead considers the
distance between the two closest points of each cluster pair:

InterminDistSum "=
KX

i=1

KX

j=1

min
a2Ci,b2Cj

dist(a, b) (2.6)

The best variation of this metric will often depend on the dataset or
learning algorithm used.

4. Davis-Bouldin index:

Davies-Bouldin #= 1

K
max

1i<jK

SCi + SCj

dist(Zi, Zj)
(2.7)

where
SCi =

1

|Ci|
X

a2Ci

d(a, Zi) (2.8)

The Davies-Bouldin index measures the ratio of within-cluster
scatter (i.e. intra-cluster distance) to inter-cluster separability. The
two clusters which have the highest ratio give the output of the
Davies-Bouldin index. This metric derives a partition’s fitness from
the two worst clusters in that partition, meaning it may give an
overly pessimistic view of the clustering partition when two clusters
are much worse than the rest of the clusters. A lower value of this
index corresponds to a better distance.

5. Dunn index:

Dunn Index "= min1i<jK dist(Zi, Zj)

max1iK maxa,b2Ci dist(a, b)
(2.9)

The numerator in the above equation finds the minimum distance
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Clustering Metrics 
• Davis-Bouldin index:

- The Davies-Bouldin index measures the ratio of intra-cluster 
distance (i.e. within-cluster scatter) to inter-cluster separability.

- The two clusters which have the highest ratio give the output of 
the Davies-Bouldin index. 

• overly pessimistic or optimistic?
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Clustering Metrics 
• Dunn index:

• The numerator finds the minimum distance between any two 
clusters. 

• The denominator finds the maximum distance between any 
two instances which are in the same cluster. 

• Similar to the Davies-Bouldin index in that it considers the 
inter-cluster distance of the two closest clusters. 
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Clustering Metrics 
• Silhouette 

- a(i) is the average distance between instance i and all other 
instances in its cluster; 

- b(i) is the minimum average distance between instance i and the 
instances in each other cluster. 

- Measures how well a given instance is matched to its cluster 
‣ The average silhouette computed across all instances in a partition 

gives a measure of how good the partition is, 
‣ implicitly balances both the intra- and inter-cluster metrics. 

• 1 indicates an instance is perfectly clustered 
• −1 indicates it should be in a neighbouring cluster; 
• 0 indicates it is on the border of two clusters 
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between any two clusters. The denominator finds the maximum
distance between any two instances which are in the same cluster.
Hence, by maximising the numerator and minimising the
denominator, a higher value of the Dunn index will correspond to a
better quality partitioning. This metric is similar to the
Davies-Bouldin index in that it considers the inter-cluster distance
of the two closest clusters.

6. Silhouette:

The silhouette criterion measures how well a given instance is
matched to its cluster. It is defined as follows:

Silhouette(i) =
b(i)� a(i)

max{a(i), b(i)} (2.10)

where a(i) is the average distance between instance i and all other
instances in its cluster; b(i) is the minimum average distance
between instance i and the instances in each other cluster. A
silhouette value of 1 indicates an instance is perfectly clustered; a
value of �1 indicates it should be in a neighbouring cluster; a value
of 0 indicates it is on the border of two clusters. The average
silhouette computed across all instances in a partition gives a
measure of how good the partition is, and implicitly balances both
the intra- and inter-cluster metrics.

7. Scatter trace criterion:

Scatter "= trace(S�1
W SB) (2.11)

This criterion uses scatter matrices to give a metric which considers
both within-cluster scatter (compactness) and between-cluster
variation from the dataset mean (separability).


