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Resources 
• The textbook for the next 2 weeks is “An Introduction to 

Statistical Learning – with Applications in R” by James et al. 

• This is available for free at https://www.statlearning.com/

• The site also provides links that you might find useful 

• If I refer to a section in the book, I’ll write, e.g.,“ISLR Section 
2.3” 

• In R, make sure you install the ISLR package that was 
developed to go with the textbook 

https://www.statlearning.com/
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If you are new to R... 
• ... don’t worry! You will find learning by doing is the answer. 

• First of all:
- R is a simple language for statistical computing
- Obtain it free from www.r-project.org or, if you prefer an IDE, 

www.rstudio.com
- Work through the introductory lab in ISLR Section 2.3 

‣ Note as new versions of R available, there might be differences
between the book and the output from R

• Some notes:
- R relies heavily on functions (often user-contributed)
- ?... brings up the help on ...
- = and <- both work as assignment operators in R
- Square brackets, e.g. X[1,2], are used to reference array elements 

(indexed from 1) 
- $, e.g. X$name, is used to reference named elements of an object
- Make sure any files you need are in your working directory 
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Regression 
Regression vs Classification:
• Response variable: quantitative or categorical/qualitative
• Logistic regression?

The problems we consider will:

• be supervised – we know the outcome/response y

• be offline – the dataset is fixed

• involve a structured dataset, in particular the matrix of 
predictors/features X
- It’s easier! We know how to do it already
- Unstructured datasets are often processed to give structured 

datasets, e.g., spam filter 
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The Credit dataset 
• The Credit dataset is introduced in ISLR Section 3.3, available 

on the course website 

• Credit card balance is the response variable

[1] The Credit dataset

The Credit dataset is introduced in ISLR Section 3.3. I have made it available on the
course website.

> Credit = read.csv("Credit.csv",header=TRUE)
> head(Credit)

income limit rating cards age education gender student married ethnicity balance
1 14.891 3606 283 2 34 11 Male No Yes Caucasian 333
2 106.025 6645 483 3 82 15 Female Yes Yes Asian 903
3 104.593 7075 514 4 71 11 Male No No Asian 580
4 148.924 9504 681 3 36 11 Female No No Asian 964
5 55.882 4897 357 2 68 16 Male No Yes Caucasian 331
6 80.180 8047 569 4 77 10 Male No No Caucasian 1151

> dim(Credit)

[1] 400 11

Credit card balance is the response of interest

10 / 50
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The Credit dataset 
• Gender, student, married, ethnicity are categorical or

qualitative variables/predictors

[1] The Credit dataset

> summary(Credit}

income limit rating cards age
Min. : 10.35 Min. : 855 Min. : 93.0 Min. :1.000 Min. :23.00
1st Qu.: 21.01 1st Qu.: 3088 1st Qu.:247.2 1st Qu.:2.000 1st Qu.:41.75
Median : 33.12 Median : 4622 Median :344.0 Median :3.000 Median :56.00
Mean : 45.22 Mean : 4736 Mean :354.9 Mean :2.958 Mean :55.67
3rd Qu.: 57.47 3rd Qu.: 5873 3rd Qu.:437.2 3rd Qu.:4.000 3rd Qu.:70.00
Max. :186.63 Max. :13913 Max. :982.0 Max. :9.000 Max. :98.00
education gender student married ethnicity balance

Min. : 5.00 Male :193 No :360 No :155 African American: 99 Min. : 0.00
1st Qu.:11.00 Female:207 Yes: 40 Yes:245 Asian :102 1st Qu.: 68.75
Median :14.00 Caucasian :199 Median : 459.50
Mean :13.45 Mean : 520.01
3rd Qu.:16.00 3rd Qu.: 863.00
Max. :20.00 Max. :1999.00

NB gender, student, married, ethnicity are categorical or qualitative variables

11 / 50
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The Credit dataset 
• plot(Credit[,-(7:10)],pch=46,col="blue") 

• Note that limit and rating are highly correlated

[1] The Credit dataset

> plot(Credit[,-(7:10)],pch=46,col="blue")
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Linear Regression [ISLR Section 3.1 and 3.2]

• Linear regression is a very simple approach
- Many fancy statistical learning approaches can be seen as 

generalisations or extensions of LR

• For the Advertising data:
- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and 

sales? 
- Which (subset of) media (TV, radio, and newspaper) contribute

to sales?
- How accurately can we estimate the effect of each medium on 

sales? 
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy (interaction effect) among the advertising 

media?
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Linear Regression Model
Assume the true relationship between X and Y:

𝒚𝒊 = 𝜷𝟎 + %
𝒋$𝟏

𝒑

𝒙𝒊𝒋𝜷𝒋 + 𝜖' for 𝑖 = 1,… , 𝑛

• LR： !𝒚𝒊 = 𝜷𝟎 + ∑𝒋$𝟏
𝒑 𝒙𝒊𝒋𝜷𝒋

• 𝛽!, 𝛽", …, 𝛽#: the model coefficients or parameters, unknown constants

- 𝛽' intercept --- the expected value of 𝑦( given all 𝑥() = 0

- 𝛽*, …, 𝛽+ are the slope terms --- the average increase in 𝑦( associated 
with one-unit increase in 𝑥()

• 𝜖' is the error term, 𝜖$ ~𝑁 0, 𝜎%

n x1

Y X

n x p p x 1

𝛽
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Linear Regression: Parameter Estimation
• Estimating parameters 𝛽(, 𝛽), …, 𝛽* by minimising the Residual 

Sum of Squares (RSS) on a given set of data/observations:

𝑅𝑆𝑆 =%
'$)

+
(𝑦' − 6𝑦'), = %

'$)

+
(𝑦' − 𝛽( − %

-$)

*
𝑥'-𝛽-),

- RSS is an error measure.
‣ There are other error measures, MSE, RMSE, R Squared

• Residual: the difference between the observed response value and 
the predicted response value

• The estimation procedure is often called lest squares (coefficient)
estimation

• The line generated is the least squares line



AIML427 Week7-8:12

True Relationship vs Least Squares Line

• Black: the observed/given data
instances

• Red: the true relationship f(X), known 
as the population regression line

• Dark Blue: the least squares line, the 
least squares estimation for f(X) based 
on the observed data

64 3. Linear Regression
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FIGURE 3.3. A simulated data set. Left: The red line represents the true rela-
tionship, f(X) = 2 + 3X, which is known as the population regression line. The
blue line is the least squares line; it is the least squares estimate for f(X) based
on the observed data, shown in black. Right: The population regression line is
again shown in red, and the least squares line in dark blue. In light blue, ten least
squares lines are shown, each computed on the basis of a separate random set of
observations. Each least squares line is different, but on average, the least squares
lines are quite close to the population regression line.

two lines in a simple simulated example. We created 100 random Xs, and
generated 100 corresponding Y s from the model

Y = 2 + 3X + ε, (3.6)

where ε was generated from a normal distribution with mean zero. The
red line in the left-hand panel of Figure 3.3 displays the true relationship,
f(X) = 2 + 3X , while the blue line is the least squares estimate based
on the observed data. The true relationship is generally not known for
real data, but the least squares line can always be computed using the
coefficient estimates given in (3.4). In other words, in real applications,
we have access to a set of observations from which we can compute the
least squares line; however, the population regression line is unobserved.
In the right-hand panel of Figure 3.3 we have generated ten different data
sets from the model given by (3.6) and plotted the corresponding ten least
squares lines. Notice that different data sets generated from the same true
model result in slightly different least squares lines, but the unobserved
population regression line does not change.
At first glance, the difference between the population regression line and

the least squares line may seem subtle and confusing. We only have one
data set, and so what does it mean that two different lines describe the
relationship between the predictor and the response? Fundamentally, the

• Red: the true relationship f(X), known as 
the population regression line

• Dark Blue: the least squares line, the 
least squares estimation for f(X) based 
on the observed data

• Light Blue: the ten least squares lines,
each computed on the basis of a separate 
random set of observations/instances



AIML427 Week7-8:13

Different Sets of Observations
• The true relationship is generally not known for real data, but 

the least squares line can always be computed using the 
coefficient estimates 

• In real applications, we have access to a set of observations 
(training data) from which to compute the least squares line
- the population regression line is unobserved

• Notice that different data sets generated from the same true 
model result in slightly different least squares lines

• If estimated on the basis of a particular data set, the least
squares line won’t be exactly the same as the true population 
regression line, but if estimates obtained over a huge number 
of data sets, then the average of these estimates would be 
spot on!
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Linear Regression with R
• Here is how to fit the linear model in R

• Note how the categorical variables have been recoded as 
indicator or dummy variables, taking 0 or 1

• For the Credit dataset, n = 400, p = 11 

[1] Linear regression recap

Here’s how to fit the linear model in R.

> X = model.matrix(balance~.,Credit)[,-1]
> y = Credit$balance
> head(X)

income limit rating cards age education genderFemale studentYes marriedYes
1 14.891 3606 283 2 34 11 0 0 1
2 106.025 6645 483 3 82 15 1 1 1
3 104.593 7075 514 4 71 11 0 0 0
4 148.924 9504 681 3 36 11 1 0 0
5 55.882 4897 357 2 68 16 0 0 1
6 80.180 8047 569 4 77 10 0 0 0
ethnicityAsian ethnicityCaucasian

1 0 1
2 1 0
3 1 0
4 1 0
5 0 1
6 0 1

Note how the categorical variables have been recoded as indicator or dummy
variables, taking 0 or 1

For the Credit dataset, n = 400, p = 11

15 / 50
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Linear Regression with R

[1] Linear regression recap

> linear.mod = lm(y~X)
> summary(linear.mod)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -479.20787 35.77394 -13.395 < 2e-16 ***
Xincome -7.80310 0.23423 -33.314 < 2e-16 ***
Xlimit 0.19091 0.03278 5.824 1.21e-08 ***
Xrating 1.13653 0.49089 2.315 0.0211 *
Xcards 17.72448 4.34103 4.083 5.40e-05 ***
Xage -0.61391 0.29399 -2.088 0.0374 *
Xeducation -1.09886 1.59795 -0.688 0.4921
XgenderFemale -10.65325 9.91400 -1.075 0.2832
XstudentYes 425.74736 16.72258 25.459 < 2e-16 ***
XmarriedYes -8.53390 10.36287 -0.824 0.4107
XethnicityAsian 16.80418 14.11906 1.190 0.2347
XethnicityCaucasian 10.10703 12.20992 0.828 0.4083

16 / 50
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Model Selection
In classical statistics, we often adopt the following rather 
restricted approach to model selection: 

- consider nested models, 𝑀" ⊂ 𝑀%

- assume the null hypothesis 𝐻&: 𝑀" is sufficient to explain the 
data against 𝑀%

- reject 𝐻& if the P-value of an appropriate statistical test (e.g.
ANOVA) is less than some threshold 

There is, however, a deeper and more useful way:

training error vs test error 

• a model that underfits the training data will have a large error 
on test data

• a model that overfits the training data will also have a large
error on test data 
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Model Selection: training error vs test error 

- An example for the test error in R for the Credit dataset
‣ This is the test error for the model with all features included; we 

could compare it to test errors from models with fewer features

[1] Training error vs test error

The test error should be contrasted with the training error, which is the MSE between
Xtrain

‚— and ytrain

The training error can be made arbitrarily small by making the model more complex;
this is seldom what we want

Here is a worked example for the test error in R for the Credit dataset

> set.seed(987654312)
> train = sample(1:nrow(X),nrow(X)/2)
> test = -train
> linear.mod = lm(y[train]~X[train,])
> linear.pred = coef(linear.mod)[1]+X[test,] %*% coef(linear.mod)[-1]
> mean((linear.pred-y[test])^2)

[1] 10446.33

This is the test error for the model with all features included; we could compare it to
test errors from models with fewer features

It would also be good to plot ‚y against ytest

19 / 50

[1] Training error vs test error

Computing the test error and the training error for a number models, typically leads to
the following:

NB If we don’t have test data, we can approximate test error with AIC, BIC, etc

20 / 50

• The test error should be 
contrasted with the training error
- The training error can be made 

arbitrarily small by making the 
model more complex, but this is 
seldom what we want
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Model Selection: training error vs test error 

Need to estimate the test error, two common approaches: 
- Indirectly estimate test error by making an adjustment to the 

training error to account for the bias due to overfitting,
‣ e.g. Akaike information criterion (AIC), Bayesian information 

criterion(BIC), etc
- Directly estimate the test error, using either a validation set 

approach or a cross-validation approach
‣ Test set should remain unseen.

• Using a validation set
- Use ytrain and Xtrain to find estimates .𝛽
- Predict the outcomes in the validation set /𝑦 = 𝑋'()$*(+$&, .𝛽
- Compute the validation error – typically the mean squared error 

(MSE), i.e. the mean squared difference between /𝑦 and 𝑦'()$*$+$&,
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Model Selection using a Validation Set
• Subset Selection: using different subsets of features to build

models.
- select the model with the smallest validation error:

• If plot training error against validation error:
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Bias-Variance Trade-off 
• All models suffer from bias and variance.

• Typically, the test error is a combination of the bias (squared) 
and the variance
- The Short Story: generalization error = bias2 + variance + noise.

• Bias refers to the error that is introduced by approximating a 
real-life problem, which may be extremely complicated, by a 
much simpler model. 
- It is unlikely that any real-life problem truly has a simple linear

relationship, so undoubtedly result in some bias 

• Variance: refers by what amount 9𝑦 will change if estimating it
using a different training set
- if using a different training data set to estimate it

[See also ISLR Section 2.2.2]
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Bias-Variance Trade-off 
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Bias-Variance Trade-off
• Models that underfit tend to have high bias and low variance

• Models that overfit tend to have low bias and high variance

• Model selection is finding the model that best balances 
between bias and variance

from the book of “Elements of Statistical Learning”
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Regularisation/ Shrinkage Methods
• If the :𝛽- s are unconstrained... 

- They can explode 
- And hence are susceptible to very high variance

• Using a technique that constrains or regularises the 
coefficient estimates, or equivalently, that shrinks the 
coefficient estimates towards zero.
- Regularisation, shrinkage penalty, constraints
- Shrinking the coefficient estimates can significantly reduce their 

variance 
- attempt to automate the bias-variance trade-off. 

• Two best-known techniques for shrinking the regression 
coefficients towards zero are ridge regression and the lasso 

• See also ISLR Section 6.2 
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Ridge Regression
• Ridge regression is very similar to least squares, except that the coefficients
β0,β1,...,βp are estimated by minimising: 

-
($*

,
(𝑦( − 𝛽' − -

)$*

+
𝑥()𝛽))- + 𝜆-

)$*

+
𝛽)- = 𝑅𝑆𝑆 + 𝜆-

)$*

+
𝛽)-

where 𝜆 ≥ 0 is called the tuning parameter

• 𝜆∑)$*
+ 𝛽)- is shrinkage penalty term

- If 𝜆 = 0, we revert to ordinary linear regression;
- If 𝜆 → ∞, we get an intercept-only model 
- λ controls the size of the coefficients, shrinking the estimates of βj

towards zero 
- Model complexity goes down as 𝜆 goes up

• Solution is indexed by the tuning parameter λ:
- So for each λ, we have a solution, λ is trace out a path of solutions 

• Important, by tradition: Matrix 𝑋 should be standardized (mean 0, 
standard deviation 1); y is assumed to be centered 
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Ridge regression 
• A convenient package for doing penalized regression in R is 

glmnet

• grid is a decreasing sequence of values for the tuning
parameter λ

• glmnet does penalised regression for each value of the tuning 
parameter λ

• alpha=0 means to do ridge regression

• glmnet automatically standardises X 
• See also ISLR Section 6.6 

[2] Ridge regression

A convenient package for doing penalized regression in R is glmnet

> library(glmnet)
> grid = 10^seq(5,-2,length=100)
> ridge.mod = glmnet(X,y,alpha=0,lambda=grid)

grid is a decreasing sequence of values for the tuning parameter ⁄

alpha=0 means to do ridge regression

glmnet does penalized regression for each value of the tuning parameter

glmnet automatically standardizes X

See also ISLR Section 6.6

24 / 50
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Ridge Regression 
• When λ is small, ridge regression gives similar answers to 

ordinary regression: 

[2] Ridge regression

When ⁄ is small, ridge regression gives similar answers to ordinary regression:

> ridge.mod$lambda[100]

[1] 0.01

> coef(ridge.mod)[,100]

(Intercept) income limit rating
-484.5225957 -7.8000469 0.1763554 1.3529988

cards age education genderFemale
16.6769557 -0.6161700 -1.0438640 -10.6555578
studentYes marriedYes ethnicityAsian ethnicityCaucasian
425.0254323 -9.0360841 17.1807594 10.1483725

25 / 50
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Ridge Regression
• When λ is large, ridge regression shrinks the parameter 

estimates when compared to the least squares estimates: 

[2] Ridge regression

When ⁄ is large, ridge regression shrinks the parameter estimates when compared to the
least squares estimates:

> ridge.mod$lambda[40]

[1] 174.7528

> coef(ridge.mod)[,40]

(Intercept) income limit rating
-231.85315960 -1.66321463 0.08128525 1.20615729

cards age education genderFemale
15.78664431 -1.07643143 -0.02942012 2.29848286
studentYes marriedYes ethnicityAsian ethnicityCaucasian

292.41955822 -11.70027752 5.86343217 5.82465221

26 / 50
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Ridge Regression[2] Ridge regression

ISLR Figure 6.4: Penalized methods are shrinkage methods

27 / 50
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Test Error in Ridge Regression 
• When λ is small, we get only small improvement in the test 

error over linear regression: 
- Setting thresh to a smaller value (default is 10−7) is often 

advisable; better numerical accuracy at the cost of compute 
time 

- NB s – not lambda! – sets the value of the tuning parameter
- s doesn’t have to be one of the values of grid; glmnet will 

happily interpolate 

- See also ISLR Section 6.6 

[2] Test error in ridge regression

When ⁄ is small, we get only small improvement in the test error over linear regression:

> ridge.mod = glmnet(X[train,],y[train],alpha=0,lambda=grid,thresh=1e-12)
> ridge.pred = predict(ridge.mod,s=0.01,newx=X[test,])
> mean((ridge.pred-y[test])^2)

[1] 10438.68

Setting thresh to a smaller value (default is 10≠7) is often advisable; better
numerical accuracy at the cost of compute time

NB s – not lambda! – sets the value of the tuning parameter

s doesn’t have to be one of the values of grid; glmnet will happily interpolate

28 / 50
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Test Error in Ridge Regression 
• If λ is a little larger, we see definite improvement: 

• But λ mustn’t get too big... 

• Ridge regression will include all p variables/predictors in the 
final model
- The penalty term shrinks all of the coefficients towards zero, 

but it will not set any of them exactly to zero (unless λ = ∞) 

[2] Test error in ridge regression

If ⁄ is a little larger, we see definite improvement:

> ridge.pred = predict(ridge.mod,s=7,newx=X[test,])
> mean((ridge.pred-y[test])^2)

[1] 10126.62

But ⁄ mustn’t get too big...

> ridge.pred = predict(ridge.mod,s=20,newx=X[test,])
> mean((ridge.pred-y[test])^2)

[1] 10823.96

29 / 50

[2] Test error in ridge regression

If ⁄ is a little larger, we see definite improvement:
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The Lasso 
• Lasso stands for “Least absolute shrinkage and selection 

operator” and is another penalised method for regression.

• The lasso estimates the parameters β0,β1,...,βp by minimising:

%
'$)

+
(𝑦' − 𝛽( − %

-$)

*
𝑥'-𝛽-), + 𝜆%

-$)

*
|𝛽-| = 𝑅𝑆𝑆 + 𝜆%

-$)

*
|𝛽-|

• The form of the penalty term is different, but everything we 
said for ridge regression holds for the lasso 

• L1 regularisation
• See also ISLR Section 6.2.1 
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The Lasso 
• Once again we use glmnet. See also ISLR Section 6.6 

• alpha =1 means do the Lasso penalty

• When λ is small, the lasso gives similar answers to the least 
squares estimates: 

[3] The lasso

Once again we use glmnet. See also ISLR Section 6.6

> lasso.mod = glmnet(X,y,alpha=1,lambda=grid,thresh=1e-12)

alpha=1 means to do the lasso

When ⁄ is small, the lasso gives similar answers to the least squares estimates:

> lasso.mod$lambda[100]

[1] 0.01

> coef(lasso.mod)[,100]

(Intercept) income limit rating
-479.2214533 -7.8017798 0.1908155 1.1375750

cards age education genderFemale
17.7133191 -0.6135728 -1.0954253 -10.6298778
studentYes marriedYes ethnicityAsian ethnicityCaucasian
425.7054652 -8.5132864 16.7475384 10.0585961
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[3] The lasso

Once again we use glmnet. See also ISLR Section 6.6
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The Lasso
• But when λ gets larger, something quite remarkable happens: 

• Any time =𝛽- = 0, this means 𝑥- is not in the model; the lasso 
is automatically doing feature selection 

• This is sometimes referred to as 𝑙)−magic

[3] The lasso

But when ⁄ gets larger, something quite remarkable happens:

> lasso.mod$lambda[60]

[1] 6.734151

> coef(lasso.mod)[,60]

(Intercept) income limit rating
-474.514621 -6.916440 0.158927 1.405987

cards age education genderFemale
12.124822 -0.362677 0.000000 0.000000
studentYes marriedYes ethnicityAsian ethnicityCaucasian
399.581608 0.000000 0.000000 0.000000

Any time ‚—j = 0, this means xj is not in the model; the lasso is automatically doing
feature selection

This is sometimes referred to as ¸1-magic

32 / 50
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The Lasso [3] The lasso

ISLR Figure 6.6: Feature selection with the lasso

33 / 50
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Test error in the lasso 
• When λ is small, we get only small improvement in the test 

error over linear regression: 

[3] Test error in the lasso

When ⁄ is small, we get only small improvement in the test error over linear regression:

> lasso.mod = glmnet(X[train,],y[train],alpha=1,lambda=grid,thresh=1e-12)
> lasso.pred = predict(lasso.mod,s=0.01,newx=X[test,])
> mean((lasso.pred-y[test])^2)

[1] 10445.01

If ⁄ is a little larger, we see definite improvement:

> lasso.pred = predict(lasso.mod,s=5,newx=X[test,])
> mean((lasso.pred-y[test])^2)

[1] 10199.61

But, again, we don’t want ⁄ too big...

> lasso.pred = predict(lasso.mod,s=10,newx=X[test,])
> mean((lasso.pred-y[test])^2)

[1] 10525.44
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Choosing the Tuning Parameter λ
• The obvious issue, however, with ridge regression and the 

lasso is that they rely on an additional parameter – the tuning 
parameter λ – that we don’t know! 

• There are two standard approaches to choosing λ: 
- The use of a validation set 
- Cross-validation

• See also ISLR Section 6.2.3 
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Validation Set Approach 
In addition to a training set, we require a randomly selected 
validation set 

- Fix λ and use Ytrain and Xtrain to find estimates β 
- Predict the outcomes in the validation set 

‣ y = Xvalidation β 
- Compute the validation set error between y and yvalidation
- Find λmin that minimises the validation set error 
- Finally use λmin to compute the test error 

[4] Validation set approach

In addition to a training set, we require a randomly selected validation set

1 Fix ⁄ and use ytrain and Xtrain to find estimates ‚—
2 Predict the outcomes in the validation set

‚y = Xvalidation
‚—

3 Compute the validation set error between ‚y and yvalidation

4 Find ⁄min that minimizes the validation set error

5 Finally use ⁄min to compute the test error
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Cross-Validation for Model Selection
• The training set itself is divided randomly into K subsets,

known as folds. Each fold, in turn, takes on the role of the 
validation set 
- λmin is chosen to minimize the cross-validation error CV , which 

is the average of the K validation set errors 
- K = 5 or 10 is typical

• Leave-one-out cross-validation (LOOCV) 

[4] Cross-validation

Cross-validation is an attempt to eat your cake and have it. Instead of having a separate
validation set, the training set itself is divided randomly into K subsets, known as folds.
Each fold, in turn, takes on the role of the validation set

⁄min is chosen to minimize the cross-validation error CV , which is the average of the
K validation set errors

K = 5 or 10 is typical

K = ntrain is known as leave-one-out cross-validation (LOOCV)
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Cross-Validation for Ridge Regression 
• Fortunately, the glmnet package can do cross-validation for 

us – though we need to take some care. 

• Looking at ridge regression for Credit dataset 

• The folds are chosen randomly so it pays to set the random
seed for replicability 

• cv.glmnet uses a grid-based search to find λmin

[4] Cross-validation for ridge regression

Fortunately, the glmnet package can do cross-validation for us – though we need to take
some care. We start by looking at ridge regression for Credit dataset

> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=0,nfolds=10,thresh=1e-12)
> cv.out$lambda.min

[1] 42.29286

The folds are chosen randomly so it pays to set the RNG seed for replicability

cv.glmnet uses a grid-based search to find ⁄min
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Cross-Validation for Ridge Regression 
• Plotting the cross-validation output:

- λmin is suspiciously at the boundary of the search grid. This 
suggests we should specify our own grid... 

[4] Cross-validation for ridge regression

Plotting the cross-validation output, we see that ⁄min is suspiciously at the boundary of
the search grid. This suggests we should specify our own grid...

> plot(cv.out)
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[4] Cross-validation for ridge regression

Plotting the cross-validation output, we see that ⁄min is suspiciously at the boundary of
the search grid. This suggests we should specify our own grid...

> plot(cv.out)
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Cross-Validation for Ridge Regression 
[4] Cross-validation for ridge regression

> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=0,lambda=grid,nfolds=10,thresh=1e-12)
> cv.out$lambda.min

[1] 0.6892612
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Cross-Validation for Ridge Regression 
• We can now compute the test error: 

• Sometime, refit the ridge regression model on the full
(training) dataset using λmin

[4] Cross-validation for ridge regression

We can now compute the test error:

> bestlam = cv.out$lambda.min
> ridge.pred = predict(cv.out,s=bestlam,newx=X[test,])
> mean((ridge.pred-y[test])^2)

[1] 10204.5

Finally, we refit the ridge regression model on the full dataset using ⁄min.

> out = glmnet(X,y,alpha=0,lambda=grid,thresh=1e-12)
> predict(out,type="coefficients",s=bestlam)[1:12,]

(Intercept) income limit rating
-485.5606847 -7.7544781 0.1690786 1.4515440

cards age education genderFemale
16.2135408 -0.6240766 -1.0092613 -10.5549904
studentYes marriedYes ethnicityAsian ethnicityCaucasian
424.0091126 -9.3189665 17.2801351 10.1539283
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Cross-Validation for Lasso
• Cross-validation proceeds in exactly the same way for the 

lasso. 

[4] Cross-validation for the lasso

Cross-validation proceeds in exactly the same way for the lasso.

> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12)
> cv.out$lambda.min

[1] 2.535364
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Cross-Validation for Lasso
• We can now compute the test error: 

[4] Cross-validation for ridge regression

We can now compute the test error:

> bestlam = cv.out$lambda.min
> ridge.pred = predict(cv.out,s=bestlam,newx=X[test,])
> mean((ridge.pred-y[test])^2)

[1] 10204.5

Finally, we refit the ridge regression model on the full dataset using ⁄min.

> out = glmnet(X,y,alpha=0,lambda=grid,thresh=1e-12)
> predict(out,type="coefficients",s=bestlam)[1:12,]

(Intercept) income limit rating
-485.5606847 -7.7544781 0.1690786 1.4515440

cards age education genderFemale
16.2135408 -0.6240766 -1.0092613 -10.5549904
studentYes marriedYes ethnicityAsian ethnicityCaucasian
424.0091126 -9.3189665 17.2801351 10.1539283
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[4] Cross-validation for the lasso

Compute the test error:

> bestlam = cv.out$lambda.min
> lasso.pred = predict(cv.out,s=bestlam,newx=X[test,])
> mean((lasso.pred-y[test])^2)

[1] 10258.06

Finally, we refit on the full dataset using ⁄min.

> out = glmnet(X,y,alpha=1,lambda=grid,thresh=1e-12)
> predict(out,type="coefficients",s=bestlam)[1:12,]

(Intercept) income limit rating
-480.0377258 -7.4688359 0.1793527 1.2299026

cards age education genderFemale
15.7306654 -0.5253280 -0.2646204 -4.7349284
studentYes marriedYes ethnicityAsian ethnicityCaucasian
415.7309232 -3.0504265 3.6312773 0.0000000
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Comparison of Model Predictions 
[4] Comparison of model predictions

> plot(y[test],linear.pred,ylim=c(-400,1700),xlab="y_test",ylab="predicted")
> points(y[test],ridge.pred,col="blue")
> points(y[test],lasso.pred,col="orange")
> abline(0,1)
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Comments 
• For the Credit dataset

- The ridge regression model has the smallest test error, but only a 
2% improvement over the linear model 

- The large number of zero credit card balances probably affects the 
predictions and might need to be modelled separately 

• More generally 
- Penalised methods typically improve over ordinary linear regression 

by trading off a small increase in bias for a large decrease in variance 
- Ridge regression will tend to perform better when there are a large 

number of informative features; lasso does better when there are 
only a few

- Penalised methods can also work when p > n. Feature selection via 
the lasso is particularly useful in this case

- When the plot of the cross-validation error is very flat near its 
minimum, λmin may vary a lot between different choices of the folds. 
In this case, it might be worth averaging over multiple cross-
validation scenarios
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How Shrinkage Methods Work: Intuition
Assume n = p, β0 = 0 and X is a diagonal matrix with 1’s on the 
diagonal and 0’s in all off-diagonal elements:

Least squares is simplified as minimising: ∑-$)
* (𝑦- − 𝛽-),

• Least squares estimation gives βj = yj
• Ridge regression shrinks every estimate by the same 

proportion: A𝛽-. =
/!
)0 1

• The lasso essentially shrinks every estimate to zero by the 
same amount: 

- 4𝛽-. =

𝑦- −
/
%
, 𝑦- >

/
%

𝑦- +
/
%
, 𝑦- < − /

%

0, |𝑦-| ≤
/
%

- This is known as soft thresholding
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How Shrinkage Methods Work: Intuition
[5] How penalized methods work

ISLR Figure 6.10: Di↵erent types of shrinkage exhibited by ridge regression and the lasso
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How Shrinkage Methods Work
• Minimise the RSS subject to a 

constraint

• Ridge regression, constraint is

- ∑-$)
* 𝛽-, ≤ 𝑠

- H𝛽).is where the RSS contours 
meet the constraint surface.

• Lasso, constraint is

- ∑-$)
* |𝛽| ≤ 𝑠

- H𝛽)/ is typically a “corner” where
some of the parameters are 0,
which explain the 𝑙* −𝑚𝑎𝑔𝑖𝑐

• Note that large s is equivalent to 
small λ, and vice versa 

• constraint, regularise

222 6. Linear Model Selection and Regularization

β2 β2

β1β1

β β^^

FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint re-
gions, |β1|+ |β2| ≤ s and β2

1 + β2
2 ≤ s, while the red ellipses are the contours of

the RSS.

circle represent the lasso and ridge regression constraints in (6.8) and (6.9),
respectively. If s is sufficiently large, then the constraint regions will con-
tain β̂, and so the ridge regression and lasso estimates will be the same as
the least squares estimates. (Such a large value of s corresponds to λ = 0
in (6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie
outside of the diamond and the circle, and so the least squares estimates
are not the same as the lasso and ridge regression estimates.
The ellipses that are centered around β̂ represent regions of constant

RSS. In other words, all of the points on a given ellipse share a common
value of the RSS. As the ellipses expand away from the least squares co-
efficient estimates, the RSS increases. Equations (6.8) and (6.9) indicate
that the lasso and ridge regression coefficient estimates are given by the
first point at which an ellipse contacts the constraint region. Since ridge
regression has a circular constraint with no sharp points, this intersection
will not generally occur on an axis, and so the ridge regression coefficient
estimates will be exclusively non-zero. However, the lasso constraint has
corners at each of the axes, and so the ellipse will often intersect the con-
straint region at an axis. When this occurs, one of the coefficients will equal
zero. In higher dimensions, many of the coefficient estimates may equal zero
simultaneously. In Figure 6.7, the intersection occurs at β1 = 0, and so the
resulting model will only include β2.
In Figure 6.7, we considered the simple case of p = 2. When p = 3,

then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the

ISLR Figure 6.7: Contours of the 
error and constraint functions for 
the Lasso (left) and Ridge regression 
(right) 

The solid blue areas are the 
constraint regions
The red ellipses are the contours of 
the RSS 
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Summary 
• Linear Regression

• Model selection is guided by minimizing test error; test error 
is a combination of bias and variance

• Two shrinkage methods: ridge regression and the lasso:
- also called shrinkage methods since they tend to shrink 

parameter estimates towards zero 
- sometimes referred to as regularization procedures
- achieve a bias-variance trade-off via a tuning parameter λ

• The tuning parameter is typically chosen by cross-validation, 
i.e. λ is chosen to minimize the cross-validation error 

• Ridge regression and the lasso retain the interpretability of 
linear regression 

• The lasso can do automatic feature selection by setting some 
parameter estimates to zero 


