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Outline

• Penalised Methods for Classification 

- Penalised Logistic Regression 

• Issues that arise in high dimensions, i.e. p > n 

• Going Beyond Linearity 

• Regression Splines:

- natural splines and smoothing splines

• Generalised Additive Models
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Penalised Methods For Classification 

• The methods we discussed before have analogues for 

classification: 

- Combine the features X linearly

- Introduce a penalty term with a tuning parameter λ that 

controls the bias-variance trade-off

‣ λ is typically chosen by cross-validation 

• But we have to decide what error to minimise based on 

whether we make probabilistic predictions or definitive 

predictions for the class labels: 

- Deviance, cross-entropy

- Mean squared error or mean absolute error

- Misclassification error – are some misclassifications worse than 

others?

- Area-under-the-curve (AUC)
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Logistic Regression Model

• Y = Binary response. X = Quantitative predictor.

• π = probability of 1’s at any X

• Equivalent forms of the logistic regression model:
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N.B.: This is natural log (aka “ln”)
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Penalised Logistic Regression 

• Logistic regression is a method for binary classification. 

• If we use 0 and 1 to code the class labels, the output of 

logistic regression for test case i is 

ෝ𝜋𝑖 = Ρ 𝑦𝑖 = 1

• Turn this into a definitive classification via a threshold t: 

ෝ𝑦𝑖 = ቊ
1, ෝ𝜋𝑖 ≥ 𝑡
0, ෝ𝜋𝑖 < 𝑡

• Deviance is −σ𝑖{𝑦𝑖 𝑙𝑜𝑔 ෝ𝜋𝑖 + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ෝ𝜋𝑖)}

• Misclassification error is σ𝑖 𝐼{𝑦𝑖 ≠ ෝ𝑦𝑖}

• Default is usually t = 0.5
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Penalised Logistic Regression 

• The Credit dataset: We will consider whether it is possible to 

predict which people have a credit card balance greater than 

20% of their monthly income. 

• as.numeric converts boolean TRUE/FALSE into 1/0 

• Note that the number of 0s (400 − 136 = 264) is roughly 

twice the number of 1s (136). 

• Care has to be taken with unbalanced datasets like this. Our 

classifier will need a misclassification error rate much better 

than the 0.33. 

- Performance measures for unbalanced classification: Precision and 

Recall, Average Class Accuracy, AUC

> y = as.numeric(balance/(income*1000/12)>0.2) 
> sum(y) [1] 136 
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Penalised Logistic Regression 

• glmnet allows us to do logistic regression with a ridge 

regression-type penalty or a lasso penalty. 

• Given the matrix X of features and the training and test split, 

perform the lasso version of logistic regression as follows: 

• family="binomial" specifies to do logistic regression

• type.measure="class" indicates we are using misclassification 

error 

> grid = 10^seq(1,-4,100)
> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12, 
family="binomial",type.measure="class") 
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Penalised Logistic Regression 

> plot(cv.out) 
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Penalised Logistic Regression 

• With the CV-selected value for λ, we can make our 

predictions for the test data: 

• 1 false positive and 6 false negatives

• The misclassification error rate is 3.5%

• We can improve the misclassification error rate to 1% by 

choosing threshold t = 0.4 

• In fact, an AIC-selected logistic regression yields a perfect

classifier 

> bestlam = cv.out$lambda.min
>lasso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class") 
>table(lasso.pred,y[test])

lasso.pred 0 1 
0 129 6 
1 1 64 
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Penalised Logistic Regression 

• It turns out limit and rating are highly informative for the 

class labels. 

• The causal mechanism actually runs the other way: y predicts 

limit and rating. Removing them as features destroys the 

classifier: 

• The misclassification error rate is 30% 

> X = X[,-c(2,3)]
> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12, 
family="binomial",type.measure="class") 
>bestlam = cv.out$lambda.min
> lasso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class") 
> table(lasso.pred,y[test]) 
lasso.pred 0 1 

0 117 47
1 13 23
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Penalised Logistic Regression 

> plot(cv.out) 
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Collinearity and Penalised Methods 

If two or more predictor variables are highly correlated with each 

other, they are said to be collinear. 

Collinearity is always a problem for regression, and unfortunately 

penalised methods do not fix this. 

• Limit and rating were obviously correlated in Credit. 

- Small changes in the data lead to large changes in the 

corresponding regression coefficients. This affects interpretability 

- One solution is to drop one of the predictors; alternatively we 

could combine them into a single predictor 

- Detecting collinearity becomes harder when the number of 

predictors grows 

- Multicollinearity can occur between 3 or more variables, even if 

the pairwise correlations are small; this is even harder to detect 

- See also ISLR Section 3.3.3 and 6.4.4 
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Collinearity

ISLR: FIGURE 3.14.
Table 3.11

• Collinearity reduces the accuracy of the estimates of the 

regression coefficients, it causes the standard error for β to grow.
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Collinearity

•

ISLR: FIGURE 3.15. 

Left: A contour plot of RSS for the regression of balance onto age and 
limit. The minimum value is well defined. 

Right: A contour plot of RSS for the regression of balance onto rating 
and limit. Because of the collinearity, many pairs (βLimit,βRating) with a 
similar value for RSS, leads to a great deal of uncertainty:
• A broad range of values for the coefficient estimates smallest RSS
• A small change in the data could cause the pair of coefficient values to 

move anywhere along this valley
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Issues In High Dimensions 

• A dataset is said to be high-dimensional if the number of 

features is greater than the number of observations, i.e p > 

n. 

• In the last 20 years or so such datasets have become routine,

Examples:

- Images: a single image can correspond to millions of pixel 

values 

- Genomics: sequence data for an individual, SNPs, gene 

expression 

- Marketing: search terms, buying behaviour, location information 

• The situation when p ≫ n is sometimes called the “large p, 

small n” problem 

• See also ISLR Section 6.4 
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Issues In High Dimensions 

• Unfortunately, most classical statistical methods – such as 

least squares – do not work in high dimensions. 

• The reason is that the models should be able to fit the 

observations exactly, this is almost always going to be a case 

of overfitting. Furthermore, the model fit will not be unique –

there will be lots of ways to overfit the data exactly! 

• Fortunately, less flexible methods – such as penalised/

regularisation/shrinkage methods – allow us to perform 

regression and classification in high-dimensional settings,

- as long as we take due care. 
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The “Curse Of Dimensionality” 

• The fundamental issue is “noise”. 

‣ By adding in many more features – even if some of them are 

informative – actually adding in more “noise”. 

‣ work very hard to avoid fitting this “noise”. This is often referred 

to as the curse of dimensionality. 

• An example: n = 20 observations, and regression with 

between 1 and 20 features, each of which was completely 

unrelated to the response. Including additional predictors 

leads to a vast increase in the variance of the coefficient 

estimates

[2] The“ curse of dimensionality”

The fundamental issue is noise. By adding in many more features – even if some of them

are informative – we are adding in a lot more noise. We are going to have to work very

hard to avoid fit t ing this noise. This is often referred to as the curse of dimensionality.

Here is a simple example: let y ≥ N(0, 1l20) be a vector of n = 20 observations and

x1, . . . , x20
ind
≥ N(0, 1l20) be p = 20 feature vectors completely independent of y . By

including more features in least squares est imation, we can make the training error go to

zero:

ISLR Figure 6.23

16 / 42
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The Lasso in High Dimensions 

• The lasso when there are n = 100 observations and p features, 

of which only 20 are truly informative. 

- The degrees of freedom is the number of non-zero coefficients selected 

by the lasso as λ changes 

- Lasso continues to work when p > n, but fails in ultra high dimensions.

- As a rule of thumb, for n = 100, we require p < 1000; for n = 500, we 

require p < 10, 000. 

- Other methods exist for ultra high dimensions, e.g. elastic net, the

smoothly clipped absolute deviation (SCAD), MC+ 

ISLR Figure 6.24:
Test error (MSE)
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Interpreting Results in High Dimensions 

One must take care when reporting results in high-dimensional 

settings. 

• Informative features can easily be overlooked: the additional 

variance may outweigh the reduction in bias

• Any variable can be written as a linear combination of all the 

others; which ones are truly informative? 

• There may be many (small) subsets of features that have 

predictive power; a useful model might exist, but it is 

probably not going to be the only possible one
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Going Beyond Linearity 

• For the Credit dataset, a linear relationship between the 

response and the features might not be an appropriate 

assumption: 
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Simple Extensions of Linear Models 

Consider the simplest case when there is only one 

predictor/variable/feature – call it x. 

• Ordinary linear regression is 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

• Polynomial regression:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3 + … .+𝛽𝑑𝑥𝑖
𝑑 + 𝜖𝑖

• Step Functions: create cutpoints c1, c2, . . . , cK in the range of x, 

and then construct K + 1 new variables:

- The intervals are non-overlapping and taken together cover the 

whole range of x. 
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Generalised Additive Models 

Extensions of Linear Models 

• The generalised additive model (GAM) for regression is 

𝑦𝑖 = 𝛽0 + 

𝑗=1

𝑝

𝑓𝑗(𝑥𝑖𝑗) + 𝜖𝑖

where the 𝒇𝒋 are p possibly nonlinear functions of a single 

variable 

• See also ISLR Section 7.7 
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Generalised Additive Models 

• The advantages of GAMs are 

- automatically fit a nonlinear fj for each feature xj without 

manually trying out different transformations 

- Nonlinear fits can potentially lead to more accurate predictions 

- The model is interpretable 

‣ Still additive mode so we can look at the effect of xj on y while 

holding the other variables fixed, 

- The smoothness of the functions fj can be quantified by degrees 

of freedom 

• The main disadvantage of GAMs is that additivity may still be too 

restrictive. For example, With many variables, important 

interactions can be missed.  

- Pairwise interactions of the form fjk (xij, xik) can be included with 

a little bit of effort 

- GAMs are useful compromise between linear models and more 

flexible approaches like random forests and boosting
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Regression Splines: Spline Basis Representation 

ISLR Section 7.4

• A regression spline models the response y as separate low-

degree polynomials defined on different intervals of x. 

• A cubic spline with K knots: 

- Basis functions: b1,b2,...,bK+3

- More flexible than polynomials and step functions, and in fact are an 

extension of the two

- Importantly, the polynomials are required to meet smoothly at the

interval endpoints (the coefficients change), known as knots 

• The modelling questions are:

- How many knots are there?

- Where do we put the knots?

- What is the degree of the polynomials? 

• Once we have answered these questions, we simply fit the 

model using least squares.
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Natural Splines 

• Natural splines have additional constraints: they are required to be 

linear at the boundary, i.e. the second derivative is zero there. This 

makes estimates at the boundary much more stable 

• We use the splines package in R to find the natural spline for balance in 

terms of limit. First, we find the appropriate basis functions on the 

range of limit using ns 

• The degrees of freedom df sets the number of basis functions

• The number of (interior) knots is one less than the degrees of freedom

• By default the knots are put at evenly spaced quantiles of x 

> attach(Credit) 
> library(splines)
> ns.basis = ns(limit,df=4) 
> attr(ns.basis,"knots") 

25% 50% 75% 
3088.00 4622.50 5872.75 

> attr(ns.basis,"Boundary.knots") 
[1] 855 13913
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Natural Splines

> plot(limit,ns.basis[,1],ylim=c(-0.5,1),ylab="basis functions",cex.lab=1.5) 
> points(limit,ns.basis[,2],col="blue")
> points(limit,ns.basis[,3],col="orange")
> points(limit,ns.basis[,4],col="magenta") 
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Natural Splines 

> ns.fit = lm(balance~ns(limit,df=4))
> lim.grid = seq(min(limit),max(limit),10)
> ns.pred = predict(ns.fit,newdata=list(limit=lim.grid)) 
> plot(limit,balance,cex.lab=1.5,col="darkgrey")
> lines(lim.grid,ns.pred,col="blue",lwd=2) 
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Natural Splines 

• The number of knots can be chosen by cross-validation 

• As we will see, when fitting GAMs we will have multiple 

splines. 

- Then it can be easiest to fix the degrees of freedom for all 

terms, e.g. to 4 

• See also ISLR Section 7.4 
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Smoothing Splines 

• A smoothing spline is the function that minimises

σ𝑖=1
𝑛 𝑦𝑖 − 𝑔(𝑥𝑖)

2 + 𝜆 𝑔′′(𝑡)2𝑑𝑡

- Loss+Penalty

- 𝜆>0 is a tuning parameter that controls the bias-variance trade-

off.

- The penalty term 𝜆 𝑔′′(𝑡)2𝑑𝑡 prevents the smoothing spline 

from being too “wiggly” 

• Remarkably, the smoothing spline is a shrunken version of a 

natural spline with knots at the unique values of 𝑥1, … . 𝑥𝑛

- λ controls the amount of shrinkage: 

‣ as λ goes from 0 to ∞, the effective degrees of freedom goes 

down from n to 2

‣ Not surprisingly, λ is typically selected by cross-validation 

• See also ISLR Section 7.5 
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Smoothing Splines 

• Fitting smoothing splines in R is very straightforward. The 

effective degrees of freedom can be set manually: 

• Or we can go straight to cross-validation, which is done by 

default: 

> ss.fit = smooth.spline(limit,balance,df=12) 

> ss.fit = smooth.spline(limit,balance) 
> ss.fit Call: smooth.spline(x = limit, y = balance) 

Smoothing Parameter spar= 0.9513861 lambda= 0.001114027 (12 iterations) 
Equivalent Degrees of Freedom (Df): 8.732188 
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Smoothing Splines 

> plot(limit,balance,cex.lab=1.5,col="darkgrey") 
> lines(ss.fit,col="orange",lwd=2) 
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Back To Generalised Additive Models 

• It is very convenient in GAMs to use natural spline or 

smoothing spline functions of the features – though of course 

we are not restricted to these choices. 

- Fitting a GAM then amounts to simultaneously fitting all the 

splines. 

• We return to the Credit dataset, restricting our attention to 

the features income, limit and student as predictors for 

balance. 

- We will use the gam package in R, which includes the gam 

procedure to fit GAMs 

• See also ISLR 7.8.3 
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Back To Generalised Additive Models 

• We fit a linear model and then a number of GAMs with natural 

spline functions. We will first use classical statistical 

approaches to do model selection 

• gam.mod3 appears to be the best model 

• This means there is evidence that income and limit contribute 

nonlinearly to balance 

> library(gam) 
> gam.mod1 = gam(balance~income+limit+student) 
> gam.mod2 = gam(balance~income+ns(limit,df=4)+student) 
> gam.mod3 = gam(balance~ns(income,df=4)+ns(limit,df=4)+student) 
> anova(gam.mod1,gam.mod2,gam.mod3,test=“F”) 
Model 1: balance ~ income + limit + student 
Model 2: balance ~ income + ns(limit, df = 4) + student 
Model 3: balance ~ ns(income, df = 4) + ns(limit, df = 4) + student 

Resid. Df Resid. Dev Df Deviance F Pr(>F) 
1 396 4316997 
2 393 2059824 3 2257173 148.5396 < 2.2e-16 *** 
3 390 1975449 3 84375 5.5525 0.0009692 *** 
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GAM Test Error

• Now we refit the models to a reduced (training) set and select 

the model with the best test error. 

• gam.mod3 appears to be the best model 

• gam.mod3 also has the smallest test error 

> set.seed(987654312)
> train = sample(1:nrow(Credit),nrow(Credit)/2)
> test = -train
> gam.mod1 = gam(balance~income+limit+student,data=Credit[train,])
> gam.mod2 = gam(balance~income+ns(limit,df=4)+student,data=Credit[train,])
> gam.mod3 = gam(balance~ns(income,df=4)+ns(limit,df=4)+student,data=Credit[train,]) 
> pred.mod1 = predict(gam.mod1,newdata=Credit[test,])
> pred.mod2 = predict(gam.mod2,newdata=Credit[test,])
> pred.mod3 = predict(gam.mod3,newdata=Credit[test,])
> mse1 = mean((pred.mod1-balance[test])^2)
> mse2 = mean((pred.mod2-balance[test])^2)
> mse3 = mean((pred.mod3-balance[test])^2)
> c(mse1,mse2,mse3) 

[1] 11448.209 7181.638 7013.714 
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GAM Test Error 

• When keep adding more knots to the spline functions:

> gam.mod4 = gam(balance~ns(income,df=4)+ns(limit,df=9)+student,data=Credit[train,]) 
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,])
> mean((pred.mod4-balance[test])^2) 

[1] 7644.799 
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GAM With Smoothing Splines 

• To use smoothing splines instead of natural splines in a GAM, 

we use the s command – which is part of the gam package –

instead of ns. Note that s doesn’t actually do any smoothing; 

it just sets up the variable to be used in gam 

• Often there is not a lot of difference between using natural 

splines or smoothing splines, but this is not the case in the 

Credit dataset 

> gam.mod4 = gam(balance~s(income,df=4)+s(limit,df=4)+student) 
> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student)
> gam.mod6 = gam(balance~s(income,df=4)+s(limit,df=16)+studen) 
> anova(gam.mod4,gam.mod5,gam.mod6,test="F") 

Model 1: balance ~ s(income, df = 4) + s(limit, df = 4) + student
Model 2: balance ~ s(income, df = 4) + s(limit, df = 9) + student
Model 3: balance ~ s(income, df = 4) + s(limit, df = 16) + student

Resid. Df Resid. Dev Df Deviance F Pr(>F) 
1 390 2124686 
2 385 1894589 4.9995 230097 9.5441 1.376e-08 ***
3 378 1822819 7.0006 71770 2.1260 0.04015 * 
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GAM Test Error

• gam.mod5 has the smallest test error; note that it is also a 

substantial improvement over the previous smallest error 

> gam.mod4 = gam(balance~s(income,df=4)+s(limit,df=4)+student,data=Credit[train,]) 
> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student,data=Credit[train,]) 
> gam.mod6 = gam(balance~s(income,df=4)+s(limit,df=16)+student,data=Credit[train,]) 
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,]) 
> pred.mod5 = predict(gam.mod5,newdata=Credit[test,]) 
> pred.mod6 = predict(gam.mod6,newdata=Credit[test,]) 
> mse4 = mean((pred.mod4-balance[test])^2) 
> mse5 = mean((pred.mod5-balance[test])^2) 
> mse6 = mean((pred.mod6-balance[test])^2) 
> c(mse4,mse5,mse6)

[1] 5417.886 4691.760 4829.545 
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GAM With Smoothing Splines 

• Finally, we again refit the best GAM model to the full training 

dataset 

> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student) 
> par(mfrow=c(1,3)) 
> plot(gam.mod5,col="orange",lwd=2) 
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GAM Classification 

• GAMs can also be straightforwardly applied to classification 

• Consider again our Credit classification problem. Within the 

gam package, logistic regression is achieved by specifying the 

option family="binomial". 

• Here is a worked example that includes 

• Then the predicted probability for class label 1 is 

> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student, family=“binomial”) 
> par(mfrow=c(1,3)) 
> plot(gam.mod5,col="orange",lwd=2) 

> gam.pred = predict(gam.mod,newdata=Credit[test,],type="response") 
> table(gam.pred>0.5,y[test]) 

0 1 
FALSE 118 43
TRUE 12 27 

> boxplot(gam.pred~y[test]) 
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Summary

• The use of penalised/shrinkage methods in classification, and the use of 

the lasso for binary classification via logistic regression 

• The pitfalls of high-dimensional datasets, in particular why methods like 

least squares fail 

• Penalised methods tend to work better in high dimensions but there is 

always a danger of fitting to noise; results must be interpreted carefully 

• Generalised additive models (GAMs) allow nonlinear functions of the 

features 

• GAMs are a useful compromise between linear models and even more 

flexible approaches like random forests and boosting 

• We used natural splines and smoothing splines to capture nonlinearity 

• Model selection can be carried out by classical statistical methods or by 

considering test error


