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Outline

e Penalised Methods for Classification
- Penalised Logistic Regression

e Issues that arise in high dimensions, i.e. p > n
e Going Beyond Linearity

e Regression Splines:
- natural splines and smoothing splines

e Generalised Additive Models
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Penalised Methods For Classification

e The methods we discussed before have analogues for
classification:

- Combine the features X linearly

- Introduce a penalty term with a tuning parameter A that
controls the bias-variance trade-off

» A is typically chosen by cross-validation

e But we have to decide what error to minimise based on
whether we make probabilistic predictions or definitive
predictions for the class labels:

- Deviance, cross-entropy
- Mean squared error or mean absolute error

- Misclassification error — are some misclassifications worse than
others?

- Area-under-the-curve (AUC)
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Logistic Regression Model

e Y = Binary response. X = Quantitative predictor.
« 7 = probability of 1’s at any X

e Equivalent forms of the logistic regression model:

Probability form Logit form
eb +b X | ( j ﬂ ﬂ
_ 0g o T P
P = N 1-7
1+ o B

:

N.B.: This is natural log (aka “In")
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Penalised Logistic Regression

e Logistic regression is a method for binary classification.

e If we use 0 and 1 to code the class labels, the output of
logistic regression for test case j is
T; = P(y; = 1)

e Turn this into a definitive classification via a threshold t:

~ |1 Ty =2t
0, T, <t

e Deviance is — 2 {y; logm; + (1 — y;) log(1 — 7;)}

e Misclassification error is Y,;I{y; # ¥}

e Default is usually t = 0.5
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Penalised Logistic Regression

e The Credit dataset: We will consider whether it is possible to
predict which people have a credit card balance greater than
20% of their monthly income.

>y = as.numeric(balance/(income*1000/12)>0.2)
>sum(y) [1] 136

e as.numeric converts boolean TRUE/FALSE into 1/0

e Note that the number of Os (400 — 136 = 264) is roughly
twice the number of 1s (136).

e Care has to be taken with unbalanced datasets like this. Our
classifier will need a misclassification error rate much better
than the 0.33.

- Performance measures for unbalanced classification: Precision and
Recall, Average Class Accuracy, AUC
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Penalised Logistic Regression

e glmnet allows us to do logistic regression with a ridge
regression-type penalty or a lasso penalty.

e Given the matrix X of features and the training and test split,
perform the lasso version of logistic regression as follows:

> grid = 107seq(1,-4,100)

> set.seed(987654313)

> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12,
family="binomial",type.measure="class")

e family="binomial" specifies to do logistic regression

e type.measure="class" indicates we are using misclassification
error
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Penalised Logistic Regression

> plot(cv.out)
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Penalised Logistic Regression

e With the CV-selected value for A, we can make our
predictions for the test data:

> bestlam = cv.outSlambda.min
>|lasso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class")
>table(lasso.pred,y[test])

lasso.pred O 1
0 129 6
1 1 64

e 1 false positive and 6 false negatives
e The misclassification error rate is 3.5%

e We can improve the misclassification error rate to 1% by
choosing threshold t = 0.4

e In fact, an AIC-selected logistic regression yields a perfect
classifier
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Penalised Logistic Regression

e It turns out limit and rating are highly informative for the
class labels.

e The causal mechanism actually runs the other way: y predicts
limit and rating. Removing them as features destroys the
classifier:

> X = X[,-¢(2,3)]
> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12,
family="binomial",type.measure="class")
>bestlam = cv.outSlambda.min
> |asso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class")
> table(lasso.pred,y[test])
lasso.pred O 1
0 117 47
1 13 23

e The misclassification error rate is 30%
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Penalised Logistic Regression

> plot(cv.out)
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Collinearity and Penalised Methods

If two or more predictor variables are highly correlated with each
other, they are said to be collinear.

Collinearity is always a problem for regression, and unfortunately
penalised methods do not fix this.

e Limit and rating were obviously correlated in Credit.

Small changes in the data lead to large changes in the
corresponding regression coefficients. This affects interpretability

One solution is to drop one of the predictors; alternatively we
could combine them into a single predictor

Detecting collinearity becomes harder when the number of
predictors grows

Multicollinearity can occur between 3 or more variables, even if
the pairwise correlations are small; this is even harder to detect

See also ISLR Section 3.3.3 and 6.4.4
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Collinearity
ISLR: FIGURE 3.14. ¢ R O
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e Collinearity reduces the accuracy of the estimates of the
regression coefficients, it causes the standard error for 3 to grow.

Coefficient Std. error t-statistic p-value

Intercept —173.411 43.828 —3.957 < 0.0001

Model 1 age —2.292 0.672 —3.407 0.0007
limit 0.173 0.005 34.496 < 0.0001

Intercept —377.537 45.254 —8.343 < 0.0001

Model 2 rating 2.202 0.952 2.312 0.0213
limit 0.025 0.064 0.384 0.7012
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Collinearity
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Left: A contour plot of RSS for the regression of balance onto age and
limit. The minimum value is well defined.

Right: A contour plot of RSS for the regression of balance onto rating

and limit. Because of the collinearity, many pairs (BpimivPrating) With a

similar value for RSS, leads to a great deal of uncertainty:

* A broad range of values for the coefficient estimates smallest RSS

A small change in the data could cause the pair of coefficient values to
move anywhere along this valley
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Issues In High Dimensions

e A dataset is said to be high-dimensional if the number of
features is greater than the number of observations, i.e p >
n.

e In the last 20 years or so such datasets have become routine,

Examples:

- Images: a single image can correspond to millions of pixel
values

- Genomics: sequence data for an individual, SNPs, gene
expression

- Marketing: search terms, buying behaviour, location information

e The situation when p > n is sometimes called the “large p,
small n” problem

e See also ISLR Section 6.4
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Issues In High Dimensions

o Unfortunately, most classical statistical methods - such as
least squares - do not work in high dimensions.

e The reason is that the models should be able to fit the
observations exactly, this is almost always going to be a case
of overfitting. Furthermore, the model fit will not be unique -
there will be lots of ways to overfit the data exactly!

e Fortunately, less flexible methods - such as penalised/
regularisation/shrinkage methods - allow us to perform
regression and classification in high-dimensional settings,
- as long as we take due care.
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The “Curse Of Dimensionality”

e The fundamental issue is “noise”.

» By adding in many more features — even if some of them are
informative - actually adding in more “noise”.

» work very hard to avoid fitting this “noise”. This is often referred
to as the curse of dimensionality.

e An example: n = 20 observations, and regression with
between 1 and 20 features, each of which was completely
unrelated to the response. Including additional predictors
leads to a vast increase in the variance of the coefficient
estimates |

Training MSE
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ISLR Figure 6.23
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The Lasso in High Dimensions

e The lasso when there are n = 100 observations and p features,
of which only 20 are truly informative.

- The degrees of freedom is the number of non-zero coefficients selected
by the lasso as A changes

- Lasso continues to work when p > n, but fails in ultra high dimensions.

- As a rule of thumb, for n = 100, we require p < 1000; for n = 500, we
require p < 10, 000.

- Other methods exist for ultra high dimensions, e.g. elastic net, the
smoothly clipped absolute deviation (SCAD), MC+

p =20 p =50 p = 2000

ISLR Figure 6.24:  ° "1 = : °
Test error (MSE) ' . BE

1 16 21 1 28 51 1 70 111

Degrees of Freedom Degrees of Freedom Degrees of Freedom
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Interpreting Results in High Dimensions

One must take care when reporting results in high-dimensional
settings.

e Informative features can easily be overlooked: the additional
variance may outweigh the reduction in bias

e Any variable can be written as a linear combination of all the
others; which ones are truly informative?

e There may be many (small) subsets of features that have
predictive power; a useful model might exist, but it is
probably not going to be the only possible one
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Going Beyond Linearity

Week8-9:20

e For the Credit dataset, a linear relationship between the
response and the features might not be an appropriate

assumption:
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Simple Extensions of Linear Models

Consider the simplest case when there is only one
predictor/variable/feature - call it x.

e Ordinary linear regression is
Vi = Bo + Bixi + €
e Polynomial regression:
Vi = Bo + Bixi + Boxi + Baxi + . +Pax{ + €

e Step Functions: create cutpoints ¢4, ¢,, . . ., ¢ in the range of X,
and then construct K + 1 new variables:
Co(X) = I(X <a),
Cl(X) = I(Cl §X<CQ),
CQ(X) = I(Cg §X<C3),
Cr-1(X) = I(cx-1 <X <ck),
CK(X) = I(CKSX),

y; = Bo + B1C1(x;) + B2Co(x;) + ... + BrCx (i) + €.

- The intervals are non-overlapping and taken together cover the
whole range of x.
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Generalised Additive Models

Extensions of Linear Models
e The generalised additive model (GAM) for regression is

p
Vi = Po+ ij(xij) + €
=1

where the f; are p possibly nonlinear functions of a single
variable

e See also ISLR Section 7.7
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Generalised Additive Models

e The advantages of GAMs are

- automatically fit a nonlinear f; for each feature x; without
manually trying out different transformations

Nonlinear fits can potentially lead to more accurate predictions
- The model is interpretable

» Still additive mode so we can look at the effect of x; on y while
holding the other variables fixed,

- The smoothness of the functions f; can be quantified by degrees
of freedom

e The main disadvantage of GAMs is that additivity may still be too
restrictive. For example, With many variables, important
interactions can be missed.

- Pairwise interactions of the form f;, (X;;, X;) can be included with
a little bit of effort

- GAMs are useful compromise between linear models and more
flexible approaches like random forests and boosting



AIML427 Week8-9:24

Regression Splines: Spline Basis Representation

ISLR Section 7.4

e A regression spline models the response y as separate low-
degree polynomials defined on different intervals of x.

e A cubic spline with K knots:
y; = Bo + B1b1(x;) + Paba(x;) + -+ - + Brasbrrs(z;) + €

- Basis functions: by,b,,...,by 3

- More flexible than polynomials and step functions, and in fact are an
extension of the two

- Importantly, the polynomials are required to meet smoothly at the

interval endpoints (the coefficients change), known as knots
e The modelling questions are:
- How many knots are there?
- Where do we put the knots?
- What is the degree of the polynomials?

e Once we have answered these questions, we simply fit the
model using least squares.
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Natural Splines

e Natural splines have additional constraints: they are required to be
linear at the boundary, i.e. the second derivative is zero there. This
makes estimates at the boundary much more stable

e We use the splines package in R to find the natural spline for balance in
terms of limit. First, we find the appropriate basis functions on the

range of limit using ns

> attach(Credit)
> library(splines)
> ns.basis = ns(limit,df=4)
> attr(ns.basis,"knots")
25% 50% 75%
3088.00 4622.505872.75
> attr(ns.basis,"Boundary.knots")
[1] 855 13913

e The degrees of freedom df sets the number of basis functions

e The number of (interior) knots is one less than the degrees of freedom

e By default the knots are put at evenly spaced quantiles of x
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Natural Splines

> plot(limit,ns.basis[,1],ylim=c(-0.5,1),ylab="basis functions",cex.lab=1.5)
> points(limit,ns.basis[,2],col="blue")

> points(limit,ns.basis[,3],col="orange")

> points(limit,ns.basis[,4],col="magenta")
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Natural Splines

> ns.fit = Im(balance™~ns(limit,df=4))

> lim.grid = seq(min(limit),max(limit),10)

> ns.pred = predict(ns.fit,newdata=list(limit=lim.grid))
> plot(limit,balance,cex.lab=1.5,col="darkgrey")

> lines(lim.grid,ns.pred,col="blue",lwd=2)
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Natural Splines

e The number of knots can be chosen by cross-validation

e As we will see, when fitting GAMs we will have multiple
splines.

- Then it can be easiest to fix the degrees of freedom for all
terms, e.g. to 4

e See also ISLR Section 7.4
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Smoothing Splines

e A smoothing spline is the function that minimises

i1 i —g(x))* + A [ g" () adt
- Loss+Penalty
- 2>0 is a tuning parameter that controls the bias-variance trade-
off.

- The penalty term 1 [ g"(t)*dt prevents the smoothing spline
from being too “wiggly”

e Remarkably, the smoothing spline is a shrunken version of a
natural spline with knots at the unique values of x;, ....x,

- A controls the amount of shrinkage:

» as A goes from O to oo, the effective degrees of freedom goes
down from n to 2

» Not surprisingly, A is typically selected by cross-validation
e See also ISLR Section 7.5
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Smoothing Splines

e Fitting smoothing splines in R is very straightforward. The
effective degrees of freedom can be set manually:

> ss.fit = smooth.spline(limit,balance,df=12)

e Or we can go straight to cross-validation, which is done by
default:

> ss.fit = smooth.spline(limit,balance)
> ss.fit Call: smooth.spline(x = limit, y = balance)

Smoothing Parameter spar= 0.9513861 lambda= 0.001114027 (12 iterations)
Equivalent Degrees of Freedom (Df): 8.732188
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Smoothing Splines

> plot(limit,balance,cex.lab=1.5,col="darkgrey")
> lines(ss.fit,col="orange",lwd=2)
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Back To Generalised Additive Models

e It is very convenient in GAMs to use natural spline or
smoothing spline functions of the features — though of course
we are not restricted to these choices.

- Fitting a GAM then amounts to simultaneously fitting all the
splines.

e We return to the Credit dataset, restricting our attention to
the features income, limit and student as predictors for
balance.

- We will use the gam package in R, which includes the gam
procedure to fit GAMs

e See also ISLR 7.8.3
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Back To Generalised Additive Models

> library(gam)

> gam.mod1 = gam(balance~income+limit+student)

> gam.mod2 = gam(balance~income+ns(limit,df=4)+student)

> gam.mod3 = gam(balance~ns(income,df=4)+ns(limit,df=4)+student)

> anova(gam.modl,gam.mod2,gam.mod3,test="F")

Model 1: balance ~ income + limit + student

Model 2: balance ~ income + ns(limit, df = 4) + student

Model 3: balance ~ ns(income, df = 4) + ns(limit, df = 4) + student
Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 39 4316997
2 393 2059824 3 2257173 148.5396 < 2.2e-16 ***
3 390 1975449 3 84375  5.55250.0009692 ***

e gam.mod3 appears to be the best model

e This means there is evidence that income and /imit contribute
nonlinearly to balance
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GAM Test Error

e Now we refit the models to a reduced (training) set and select
the model with the best test error.

> set.seed(987654312)

> train = sample(1:nrow(Credit),nrow(Credit)/2)

> test = -train

> gam.mod1 = gam(balance~income+limit+student,data=Credit[train,])

> gam.mod2 = gam(balance~income+ns(limit,df=4)+student,data=Credit[train,])
> gam.mod3 = gam(balance™~ns(income,df=4)+ns(limit,df=4)+student,data=Credit[train,])
> pred.mod1 = predict(gam.mod1,newdata=Credit[test,])

> pred.mod?2 = predict(gam.mod2,newdata=Credit[test,])

> pred.mod3 = predict(gam.mod3,newdata=Credit[test,])

> msel = mean((pred.mod1-balance[test])"2)

> mse2 = mean((pred.mod2-balance[test])"2)

> mse3 = mean((pred.mod3-balance[test])"2)

> c(msel,mse2,mse3)

[1] 11448.209 7181.638 7013.714

e gam.mod3 also has the smallest test error
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GAM Test Error

e When keep adding more knots to the spline functions:

> gam.mod4 = gam(balance~ns(income,df=4)+ns(limit,df=9)+student,data=Credit[train,])
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,])
> mean((pred.mod4-balance[test])*2)

[1] 7644.799
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GAM With Smoothing Splines

e To use smoothing splines instead of natural splines in a GAM,
we use the s command - which is part of the gam package -
instead of ns. Note that s doesn’t actually do any smoothing;
it just sets up the variable to be used in gam

e Often there is not a lot of difference between using natural

splines or smoothing splines, but this is not the case in the
Credit dataset

> gam.mod4 = gam(balance™~s(income,df=4)+s(limit,df=4)+student)
> gam.mod5 = gam(balance™~s(income,df=4)+s(limit,df=9)+student)
> gam.mod6 = gam(balance™~s(income,df=4)+s(limit,df=16)+studen)
> anova(gam.mod4,gam.mod5,gam.mod6,test="F")

Model 1: balance ~ s(income, df = 4) + s(limit, df = 4) + student
Model 2: balance ~ s(income, df = 4) + s(limit, df = 9) + student
Model 3: balance ~ s(income, df = 4) + s(limit, df = 16) + student

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 390 2124686

2 385 1894589 4.9995 230097 9.5441 1.376e-08 ***
3 378 1822819 7.0006 71770 2.1260 0.04015 *
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GAM Test Error

> gam.mod4 = gam(balance~s(income,df=4)+s(limit,df=4)+student,data=Credit[train,])
> gam.mod5 = gam(balance™~s(income,df=4)+s(limit,df=9)+student,data=Credit[train,])
> gam.mod6 = gam(balance~s(income,df=4)+s(limit,df=16)+student,data=Credit[train,])
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,])

> pred.mod5 = predict(gam.mod5,newdata=Credit[test,])

> pred.mod6 = predict(gam.mod6,newdata=Credit[test,])

> msed = mean((pred.mod4-balance[test])*2)

> mse5 = mean((pred.mod5-balance[test])*2)

> mseb6 = mean((pred.mod6-balance[test])*2)

> c(mse4,mse5,mseb6)

[1] 5417.886  4691.760 4829.545

e gam.mod5 has the smallest test error; note that it is also a
substantial improvement over the previous smallest error
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GAM With Smoothing Splines

e Finally, we again refit the best GAM model to the full training
dataset

> gam.mod5 = gam(balance™~s(income,df=4)+s(limit,df=9)+student)
> par(mfrow=c(1,3))
> plot(gam.mod5,col="orange",lwd=2)
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GAM Classification

e GAMs can also be straightforwardly applied to classification

e Consider again our Credit classification problem. Within the
gam package, logistic regression is achieved by specifying the
option family="binomial".

e Here is a worked example that includes

> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student, family="“binomial”)
> par(mfrow=c(1,3))
> plot(gam.mod5,col="orange",lwd=2)

e Then the predicted probability for class label 1 is

> gam.pred = predict(gam.mod,newdata=Credit[test,],type="response")
> table(gam.pred>0.5,y[test]) 3] — ——

0 1
FALSE 118 43
TRUE 12 27

> boxplot(gam.pred~y[test]) i
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Summary

e The use of penalised/shrinkage methods in classification, and the use of
the lasso for binary classification via logistic regression

e The pitfalls of high-dimensional datasets, in particular why methods like
least squares fail

e Penalised methods tend to work better in high dimensions but there is
always a danger of fitting to noise; results must be interpreted carefully

e Generalised additive models (GAMs) allow nonlinear functions of the
features

e GAMs are a useful compromise between linear models and even more
flexible approaches like random forests and boosting

e We used natural splines and smoothing splines to capture nonlinearity

e Model selection can be carried out by classical statistical methods or by
considering test error



