
AIML427 Big Data

Week 8-9: Regression 2: Moving Beyond
Linearity

Dr Qi Chen

School of Engineering and Computer Science

Victoria University of Wellington

Qi.Chen@ecs.vuw.ac.nz

mailto:Bing.Xue@ecs.vuw.ac.nz?subject=

AIML427 Week8-9:2

Outline

• Penalised Methods for Classification

- Penalised Logistic Regression

• Issues that arise in high dimensions, i.e. p > n

• Going Beyond Linearity

• Regression Splines:

- natural splines and smoothing splines

• Generalised Additive Models

AIML427 Week8-9:3

Penalised Methods For Classification

• The methods we discussed before have analogues for

classification:

- Combine the features X linearly

- Introduce a penalty term with a tuning parameter λ that

controls the bias-variance trade-off

‣ λ is typically chosen by cross-validation

• But we have to decide what error to minimise based on

whether we make probabilistic predictions or definitive

predictions for the class labels:

- Deviance, cross-entropy

- Mean squared error or mean absolute error

- Misclassification error – are some misclassifications worse than

others?

- Area-under-the-curve (AUC)

AIML427 Week8-9:4

Logistic Regression Model

• Y = Binary response. X = Quantitative predictor.

• π = probability of 1’s at any X

• Equivalent forms of the logistic regression model:

p =

e
b

0
+b

1
X

1+ e
b

0
+b

1
X

Probability form

X10
1

log 



+=









−

Logit form

N.B.: This is natural log (aka “ln”)

AIML427 Week8-9:5

Penalised Logistic Regression

• Logistic regression is a method for binary classification.

• If we use 0 and 1 to code the class labels, the output of

logistic regression for test case i is

ෝ𝜋𝑖 = Ρ 𝑦𝑖 = 1

• Turn this into a definitive classification via a threshold t:

ෝ𝑦𝑖 = ቊ
1, ෝ𝜋𝑖 ≥ 𝑡
0, ෝ𝜋𝑖 < 𝑡

• Deviance is −σ𝑖{𝑦𝑖 𝑙𝑜𝑔 ෝ𝜋𝑖 + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − ෝ𝜋𝑖)}

• Misclassification error is σ𝑖 𝐼{𝑦𝑖 ≠ ෝ𝑦𝑖}

• Default is usually t = 0.5

AIML427 Week8-9:6

Penalised Logistic Regression

• The Credit dataset: We will consider whether it is possible to

predict which people have a credit card balance greater than

20% of their monthly income.

• as.numeric converts boolean TRUE/FALSE into 1/0

• Note that the number of 0s (400 − 136 = 264) is roughly

twice the number of 1s (136).

• Care has to be taken with unbalanced datasets like this. Our

classifier will need a misclassification error rate much better

than the 0.33.

- Performance measures for unbalanced classification: Precision and

Recall, Average Class Accuracy, AUC

> y = as.numeric(balance/(income*1000/12)>0.2)
> sum(y) [1] 136

AIML427 Week8-9:7

Penalised Logistic Regression

• glmnet allows us to do logistic regression with a ridge

regression-type penalty or a lasso penalty.

• Given the matrix X of features and the training and test split,

perform the lasso version of logistic regression as follows:

• family="binomial" specifies to do logistic regression

• type.measure="class" indicates we are using misclassification

error

> grid = 10^seq(1,-4,100)
> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12,
family="binomial",type.measure="class")

AIML427 Week8-9:8

Penalised Logistic Regression

> plot(cv.out)

AIML427 Week8-9:9

Penalised Logistic Regression

• With the CV-selected value for λ, we can make our

predictions for the test data:

• 1 false positive and 6 false negatives

• The misclassification error rate is 3.5%

• We can improve the misclassification error rate to 1% by

choosing threshold t = 0.4

• In fact, an AIC-selected logistic regression yields a perfect

classifier

> bestlam = cv.out$lambda.min
>lasso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class")
>table(lasso.pred,y[test])

lasso.pred 0 1
0 129 6
1 1 64

AIML427 Week8-9:10

Penalised Logistic Regression

• It turns out limit and rating are highly informative for the

class labels.

• The causal mechanism actually runs the other way: y predicts

limit and rating. Removing them as features destroys the

classifier:

• The misclassification error rate is 30%

> X = X[,-c(2,3)]
> set.seed(987654313)
> cv.out = cv.glmnet(X[train,],y[train],alpha=1,lambda=grid,nfolds=10,thresh=1e-12,
family="binomial",type.measure="class")
>bestlam = cv.out$lambda.min
> lasso.pred = predict(cv.out,s=bestlam,newx=X[test,],type="class")
> table(lasso.pred,y[test])
lasso.pred 0 1

0 117 47
1 13 23

AIML427 Week8-9:11

Penalised Logistic Regression

> plot(cv.out)

AIML427 Week8-9:12

Collinearity and Penalised Methods

If two or more predictor variables are highly correlated with each

other, they are said to be collinear.

Collinearity is always a problem for regression, and unfortunately

penalised methods do not fix this.

• Limit and rating were obviously correlated in Credit.

- Small changes in the data lead to large changes in the

corresponding regression coefficients. This affects interpretability

- One solution is to drop one of the predictors; alternatively we

could combine them into a single predictor

- Detecting collinearity becomes harder when the number of

predictors grows

- Multicollinearity can occur between 3 or more variables, even if

the pairwise correlations are small; this is even harder to detect

- See also ISLR Section 3.3.3 and 6.4.4

AIML427 Week8-9:13

Collinearity

ISLR: FIGURE 3.14.
Table 3.11

• Collinearity reduces the accuracy of the estimates of the

regression coefficients, it causes the standard error for β to grow.

AIML427 Week8-9:14

Collinearity

•

ISLR: FIGURE 3.15.

Left: A contour plot of RSS for the regression of balance onto age and
limit. The minimum value is well defined.

Right: A contour plot of RSS for the regression of balance onto rating
and limit. Because of the collinearity, many pairs (βLimit,βRating) with a
similar value for RSS, leads to a great deal of uncertainty:
• A broad range of values for the coefficient estimates smallest RSS
• A small change in the data could cause the pair of coefficient values to

move anywhere along this valley

AIML427 Week8-9:15

Issues In High Dimensions

• A dataset is said to be high-dimensional if the number of

features is greater than the number of observations, i.e p >

n.

• In the last 20 years or so such datasets have become routine,

Examples:

- Images: a single image can correspond to millions of pixel

values

- Genomics: sequence data for an individual, SNPs, gene

expression

- Marketing: search terms, buying behaviour, location information

• The situation when p ≫ n is sometimes called the “large p,

small n” problem

• See also ISLR Section 6.4

AIML427 Week8-9:16

Issues In High Dimensions

• Unfortunately, most classical statistical methods – such as

least squares – do not work in high dimensions.

• The reason is that the models should be able to fit the

observations exactly, this is almost always going to be a case

of overfitting. Furthermore, the model fit will not be unique –

there will be lots of ways to overfit the data exactly!

• Fortunately, less flexible methods – such as penalised/

regularisation/shrinkage methods – allow us to perform

regression and classification in high-dimensional settings,

- as long as we take due care.

AIML427 Week8-9:17

The “Curse Of Dimensionality”

• The fundamental issue is “noise”.

‣ By adding in many more features – even if some of them are

informative – actually adding in more “noise”.

‣ work very hard to avoid fitting this “noise”. This is often referred

to as the curse of dimensionality.

• An example: n = 20 observations, and regression with

between 1 and 20 features, each of which was completely

unrelated to the response. Including additional predictors

leads to a vast increase in the variance of the coefficient

estimates

[2] The“ curse of dimensionality”

The fundamental issue is noise. By adding in many more features – even if some of them

are informative – we are adding in a lot more noise. We are going to have to work very

hard to avoid fitt ing this noise. This is often referred to as the curse of dimensionality.

Here is a simple example: let y ≥ N(0, 1l20) be a vector of n = 20 observations and

x1, . . . , x20
ind
≥ N(0, 1l20) be p = 20 feature vectors completely independent of y . By

including more features in least squares est imation, we can make the training error go to

zero:

ISLR Figure 6.23

16 / 42

AIML427 Week8-9:18

The Lasso in High Dimensions

• The lasso when there are n = 100 observations and p features,

of which only 20 are truly informative.

- The degrees of freedom is the number of non-zero coefficients selected

by the lasso as λ changes

- Lasso continues to work when p > n, but fails in ultra high dimensions.

- As a rule of thumb, for n = 100, we require p < 1000; for n = 500, we

require p < 10, 000.

- Other methods exist for ultra high dimensions, e.g. elastic net, the

smoothly clipped absolute deviation (SCAD), MC+

ISLR Figure 6.24:
Test error (MSE)

AIML427 Week8-9:19

Interpreting Results in High Dimensions

One must take care when reporting results in high-dimensional

settings.

• Informative features can easily be overlooked: the additional

variance may outweigh the reduction in bias

• Any variable can be written as a linear combination of all the

others; which ones are truly informative?

• There may be many (small) subsets of features that have

predictive power; a useful model might exist, but it is

probably not going to be the only possible one

AIML427 Week8-9:20

Going Beyond Linearity

• For the Credit dataset, a linear relationship between the

response and the features might not be an appropriate

assumption:

AIML427 Week8-9:21

Simple Extensions of Linear Models

Consider the simplest case when there is only one

predictor/variable/feature – call it x.

• Ordinary linear regression is

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

• Polynomial regression:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝛽3𝑥𝑖

3 + … .+𝛽𝑑𝑥𝑖
𝑑 + 𝜖𝑖

• Step Functions: create cutpoints c1, c2, . . . , cK in the range of x,

and then construct K + 1 new variables:

- The intervals are non-overlapping and taken together cover the

whole range of x.

AIML427 Week8-9:22

Generalised Additive Models

Extensions of Linear Models

• The generalised additive model (GAM) for regression is

𝑦𝑖 = 𝛽0 + ෍

𝑗=1

𝑝

𝑓𝑗(𝑥𝑖𝑗) + 𝜖𝑖

where the 𝒇𝒋 are p possibly nonlinear functions of a single

variable

• See also ISLR Section 7.7

AIML427 Week8-9:23

Generalised Additive Models

• The advantages of GAMs are

- automatically fit a nonlinear fj for each feature xj without

manually trying out different transformations

- Nonlinear fits can potentially lead to more accurate predictions

- The model is interpretable

‣ Still additive mode so we can look at the effect of xj on y while

holding the other variables fixed,

- The smoothness of the functions fj can be quantified by degrees

of freedom

• The main disadvantage of GAMs is that additivity may still be too

restrictive. For example, With many variables, important

interactions can be missed.

- Pairwise interactions of the form fjk (xij, xik) can be included with

a little bit of effort

- GAMs are useful compromise between linear models and more

flexible approaches like random forests and boosting

AIML427 Week8-9:24

Regression Splines: Spline Basis Representation

ISLR Section 7.4

• A regression spline models the response y as separate low-

degree polynomials defined on different intervals of x.

• A cubic spline with K knots:

- Basis functions: b1,b2,...,bK+3

- More flexible than polynomials and step functions, and in fact are an

extension of the two

- Importantly, the polynomials are required to meet smoothly at the

interval endpoints (the coefficients change), known as knots

• The modelling questions are:

- How many knots are there?

- Where do we put the knots?

- What is the degree of the polynomials?

• Once we have answered these questions, we simply fit the

model using least squares.

AIML427 Week8-9:25

Natural Splines

• Natural splines have additional constraints: they are required to be

linear at the boundary, i.e. the second derivative is zero there. This

makes estimates at the boundary much more stable

• We use the splines package in R to find the natural spline for balance in

terms of limit. First, we find the appropriate basis functions on the

range of limit using ns

• The degrees of freedom df sets the number of basis functions

• The number of (interior) knots is one less than the degrees of freedom

• By default the knots are put at evenly spaced quantiles of x

> attach(Credit)
> library(splines)
> ns.basis = ns(limit,df=4)
> attr(ns.basis,"knots")

25% 50% 75%
3088.00 4622.50 5872.75

> attr(ns.basis,"Boundary.knots")
[1] 855 13913

AIML427 Week8-9:26

Natural Splines

> plot(limit,ns.basis[,1],ylim=c(-0.5,1),ylab="basis functions",cex.lab=1.5)
> points(limit,ns.basis[,2],col="blue")
> points(limit,ns.basis[,3],col="orange")
> points(limit,ns.basis[,4],col="magenta")

AIML427 Week8-9:27

Natural Splines

> ns.fit = lm(balance~ns(limit,df=4))
> lim.grid = seq(min(limit),max(limit),10)
> ns.pred = predict(ns.fit,newdata=list(limit=lim.grid))
> plot(limit,balance,cex.lab=1.5,col="darkgrey")
> lines(lim.grid,ns.pred,col="blue",lwd=2)

AIML427 Week8-9:28

Natural Splines

• The number of knots can be chosen by cross-validation

• As we will see, when fitting GAMs we will have multiple

splines.

- Then it can be easiest to fix the degrees of freedom for all

terms, e.g. to 4

• See also ISLR Section 7.4

AIML427 Week8-9:29

Smoothing Splines

• A smoothing spline is the function that minimises

σ𝑖=1
𝑛 𝑦𝑖 − 𝑔(𝑥𝑖)

2 + 𝜆 𝑔′′(𝑡)2𝑑𝑡׬

- Loss+Penalty

- 𝜆>0 is a tuning parameter that controls the bias-variance trade-

off.

- The penalty term 𝜆 𝑔′′(𝑡)2𝑑𝑡׬ prevents the smoothing spline

from being too “wiggly”

• Remarkably, the smoothing spline is a shrunken version of a

natural spline with knots at the unique values of 𝑥1, … . 𝑥𝑛

- λ controls the amount of shrinkage:

‣ as λ goes from 0 to ∞, the effective degrees of freedom goes

down from n to 2

‣ Not surprisingly, λ is typically selected by cross-validation

• See also ISLR Section 7.5

AIML427 Week8-9:30

Smoothing Splines

• Fitting smoothing splines in R is very straightforward. The

effective degrees of freedom can be set manually:

• Or we can go straight to cross-validation, which is done by

default:

> ss.fit = smooth.spline(limit,balance,df=12)

> ss.fit = smooth.spline(limit,balance)
> ss.fit Call: smooth.spline(x = limit, y = balance)

Smoothing Parameter spar= 0.9513861 lambda= 0.001114027 (12 iterations)
Equivalent Degrees of Freedom (Df): 8.732188

AIML427 Week8-9:31

Smoothing Splines

> plot(limit,balance,cex.lab=1.5,col="darkgrey")
> lines(ss.fit,col="orange",lwd=2)

AIML427 Week8-9:32

Back To Generalised Additive Models

• It is very convenient in GAMs to use natural spline or

smoothing spline functions of the features – though of course

we are not restricted to these choices.

- Fitting a GAM then amounts to simultaneously fitting all the

splines.

• We return to the Credit dataset, restricting our attention to

the features income, limit and student as predictors for

balance.

- We will use the gam package in R, which includes the gam

procedure to fit GAMs

• See also ISLR 7.8.3

AIML427 Week8-9:33

Back To Generalised Additive Models

• We fit a linear model and then a number of GAMs with natural

spline functions. We will first use classical statistical

approaches to do model selection

• gam.mod3 appears to be the best model

• This means there is evidence that income and limit contribute

nonlinearly to balance

> library(gam)
> gam.mod1 = gam(balance~income+limit+student)
> gam.mod2 = gam(balance~income+ns(limit,df=4)+student)
> gam.mod3 = gam(balance~ns(income,df=4)+ns(limit,df=4)+student)
> anova(gam.mod1,gam.mod2,gam.mod3,test=“F”)
Model 1: balance ~ income + limit + student
Model 2: balance ~ income + ns(limit, df = 4) + student
Model 3: balance ~ ns(income, df = 4) + ns(limit, df = 4) + student

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 396 4316997
2 393 2059824 3 2257173 148.5396 < 2.2e-16 ***
3 390 1975449 3 84375 5.5525 0.0009692 ***

AIML427 Week8-9:34

GAM Test Error

• Now we refit the models to a reduced (training) set and select

the model with the best test error.

• gam.mod3 appears to be the best model

• gam.mod3 also has the smallest test error

> set.seed(987654312)
> train = sample(1:nrow(Credit),nrow(Credit)/2)
> test = -train
> gam.mod1 = gam(balance~income+limit+student,data=Credit[train,])
> gam.mod2 = gam(balance~income+ns(limit,df=4)+student,data=Credit[train,])
> gam.mod3 = gam(balance~ns(income,df=4)+ns(limit,df=4)+student,data=Credit[train,])
> pred.mod1 = predict(gam.mod1,newdata=Credit[test,])
> pred.mod2 = predict(gam.mod2,newdata=Credit[test,])
> pred.mod3 = predict(gam.mod3,newdata=Credit[test,])
> mse1 = mean((pred.mod1-balance[test])^2)
> mse2 = mean((pred.mod2-balance[test])^2)
> mse3 = mean((pred.mod3-balance[test])^2)
> c(mse1,mse2,mse3)

[1] 11448.209 7181.638 7013.714

AIML427 Week8-9:35

GAM Test Error

• When keep adding more knots to the spline functions:

> gam.mod4 = gam(balance~ns(income,df=4)+ns(limit,df=9)+student,data=Credit[train,])
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,])
> mean((pred.mod4-balance[test])^2)

[1] 7644.799

AIML427 Week8-9:36

GAM With Smoothing Splines

• To use smoothing splines instead of natural splines in a GAM,

we use the s command – which is part of the gam package –

instead of ns. Note that s doesn’t actually do any smoothing;

it just sets up the variable to be used in gam

• Often there is not a lot of difference between using natural

splines or smoothing splines, but this is not the case in the

Credit dataset

> gam.mod4 = gam(balance~s(income,df=4)+s(limit,df=4)+student)
> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student)
> gam.mod6 = gam(balance~s(income,df=4)+s(limit,df=16)+studen)
> anova(gam.mod4,gam.mod5,gam.mod6,test="F")

Model 1: balance ~ s(income, df = 4) + s(limit, df = 4) + student
Model 2: balance ~ s(income, df = 4) + s(limit, df = 9) + student
Model 3: balance ~ s(income, df = 4) + s(limit, df = 16) + student

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 390 2124686
2 385 1894589 4.9995 230097 9.5441 1.376e-08 ***
3 378 1822819 7.0006 71770 2.1260 0.04015 *

AIML427 Week8-9:37

GAM Test Error

• gam.mod5 has the smallest test error; note that it is also a

substantial improvement over the previous smallest error

> gam.mod4 = gam(balance~s(income,df=4)+s(limit,df=4)+student,data=Credit[train,])
> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student,data=Credit[train,])
> gam.mod6 = gam(balance~s(income,df=4)+s(limit,df=16)+student,data=Credit[train,])
> pred.mod4 = predict(gam.mod4,newdata=Credit[test,])
> pred.mod5 = predict(gam.mod5,newdata=Credit[test,])
> pred.mod6 = predict(gam.mod6,newdata=Credit[test,])
> mse4 = mean((pred.mod4-balance[test])^2)
> mse5 = mean((pred.mod5-balance[test])^2)
> mse6 = mean((pred.mod6-balance[test])^2)
> c(mse4,mse5,mse6)

[1] 5417.886 4691.760 4829.545

AIML427 Week8-9:38

GAM With Smoothing Splines

• Finally, we again refit the best GAM model to the full training

dataset

> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student)
> par(mfrow=c(1,3))
> plot(gam.mod5,col="orange",lwd=2)

AIML427 Week8-9:39

GAM Classification

• GAMs can also be straightforwardly applied to classification

• Consider again our Credit classification problem. Within the

gam package, logistic regression is achieved by specifying the

option family="binomial".

• Here is a worked example that includes

• Then the predicted probability for class label 1 is

> gam.mod5 = gam(balance~s(income,df=4)+s(limit,df=9)+student, family=“binomial”)
> par(mfrow=c(1,3))
> plot(gam.mod5,col="orange",lwd=2)

> gam.pred = predict(gam.mod,newdata=Credit[test,],type="response")
> table(gam.pred>0.5,y[test])

0 1
FALSE 118 43
TRUE 12 27

> boxplot(gam.pred~y[test])

AIML427 Week8-9:40

Summary

• The use of penalised/shrinkage methods in classification, and the use of

the lasso for binary classification via logistic regression

• The pitfalls of high-dimensional datasets, in particular why methods like

least squares fail

• Penalised methods tend to work better in high dimensions but there is

always a danger of fitting to noise; results must be interpreted carefully

• Generalised additive models (GAMs) allow nonlinear functions of the

features

• GAMs are a useful compromise between linear models and even more

flexible approaches like random forests and boosting

• We used natural splines and smoothing splines to capture nonlinearity

• Model selection can be carried out by classical statistical methods or by

considering test error

