
AIML427 Big Data

Week 9-10: Hadoop MapReduce

Dr Qi Chen

School of Engineering and Computer Science

Victoria University of Wellington

Qi.Chen@ecs.vuw.ac.nz

mailto:Bing.Xue@ecs.vuw.ac.nz?subject=

AIML427 Week9:2

Outline

• Machine learning tools and big data challenges

• MapReduce framework and Hadoop

• Hadoop core components

• Hadoop running modes

• Hadoop architecture

• Hadoop distributed file system (HDFS)

• MapReduce

AIML427 Week9:3

Common Application Architecture

• How these systems look like in the big data era?

AIML427 Week9:4

Big Data Challenges for ML

• Storage – Since data is very big, storing such huge amount of

data is very difficult.

• Analytics – In Big Data, most of the time we are unaware of

the kind of data we are dealing with. So processing and

analysing that data is even more difficult.

• Data Quality – In the case of Big Data, data is very messy,

inconsistent and incomplete.

• Discovery – Using a powerful algorithm to find patterns and

insights are very difficult.

• Security – Since the data is huge in size, keeping it secure is

another challenge.

AIML427 Week9:5

Machine Learning (ML) Tools

Library Open
Source?

Scalable? Language
support

Algorithm
support

MATLAB No No Mostly C High

R Yes No R High

Weka Yes No Java High

Sci-Kit Learn Yes No Python

Apache
Mahout

Yes Yes Java Medium

Spark ML Yes Yes Scala, Java, R,
Python

AIML427 Week9:6

Divide-And-Conquer

• Scalability to large data volumes:

- Scan 100 TB on 1 node @ 50 MB/sec = 23 days

- Scan on 1000-node cluster = 33 minutes

• Divide-And-Conquer by partitioning data

A single machine can not manage large volumes of data

efficiently

AIML427 Week9:7

MapReduce Paradigm and Hadoop

• MapReduce paradigm (Dean and Ghemawat, 2004)

- Data-parallel programming model

- An associated parallel and distributed implementation for

commodity clusters

• Pioneered by Google: Processes 20 PB of data per day

- July 2008 - Hadoop wins Terabyte Sort Benchmark (sorted 1

terabyte of data in 209 seconds, which beat the previous record

of 297 seconds)

• Popularized by Hadoop:

- An open-source implementation of MapReduce paradigm.

- It supports the distributed storage and processing of large

data sets across clusters of computers using simple

programming models.

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified data processing on large

clusters. Commun. ACM, 51(1):107-113

AIML427 Week9:8

Hadoop’s Advantages

1.Simplicity: We can store huge files as they are (raw)

without specifying any schema. MapReduce model hides

complexity of distribution and fault tolerance.

2.High scalability: We can add any number of nodes, hence

enhancing performance dramatically.

3.Reliability: It stores and process data reliably on the cluster

despite machine failure.

4.High availability: Data is highly available despite hardware

failure. If a machine or hardware crashes, then we can

access data from another path.

5.Economic: Hadoop runs on a cluster of commodity

hardware (nodes and network). Automatic fault-tolerance

(fewer administrators). Easy to use (fewer programmers).

AIML427 Week9:9

https://www.edureka.co/blog/hadoop-ecosystem

https://www.edureka.co/blog/hadoop-ecosystem

AIML427 Week9:10

AIML427 Week9:11

Hadoop Core Components

• Hadoop Distributed File System (HDFS): A distributed file

system that

- provides high-throughput access to application data.

- distributes and stores very large files on a cluster of

commodity hardware.

• Yet Another Resource Negotiator (YARN): A framework for job

scheduling and cluster resource management.

• MapReduce: A software framework for parallel processing of

large structured and unstructured data stored in HDFS.

- It works by breaking the processing into phases, map and

reduce.

AIML427 Week9:12

Hadoop’s Architecture

https://www.slideshare.net/subhaskghosh/03-deconstructing-map-reduce-job-step-by-step

AIML427 Week9:13

High Level Architecture of Hadoop

https://intellipaat.com/blog/tutorial/hadoop-tutorial/introduction-hadoop/?US

https://intellipaat.com/blog/tutorial/hadoop-tutorial/introduction-hadoop/?US

AIML427 Week9:14

HDFS NameNode and DataNode

• An HDFS file is chopped into data blocks., each can reside on

a different DataNode.

• NameNode: a master server that:

- stores meta-data i.e., number of blocks, their location,

replicas and other details.

- manages file system namespace by executing naming,

closing, opening files and directories.

- maintains and manages the data nodes or slave nodes

- assigns tasks to data nodes.

• DataNode usually one per node in the cluster.

- Store actual data.

- Performs read and write operation as per request for the

clients.

- Create, delete and replicate data blocks according to the

instruction of NameNode.

AIML427 Week9:15

HDFS NameNode and DataNode (cont.)

• NameNode periodically receives a Heartbeat and a Blockreport from

each of the DataNodes.

AIML427 Week9:16

Standby NameNode

• Standby namenode is an extra nameNode that:

- provides high availability for hadoop architecture
- to avoid the single point of Failure (SPOF).

• If active NameNode fails, then standby Namenode takes all

the responsibility of active node and cluster continues to

work.

AIML427 Week9:17

Data Replication

• HDFS replicates data to provide fault-tolerance when

storing data in commodity hardware despite the higher

chance of failures.

• The blocks of a file are replicated in different nodes.

• The block size and replication factor are configurable.

o the default replication factor is 3

AIML427 Week9:18

Hadoop Running Modes

• Local (Standalone) Mode:

- runs in a single-node as a single Java process.
- does not support the use of HDFS => uses the local file

system for input and output operation.
- used for debugging purpose

- is the default mode. No custom configuration required for

configuration files.

• Pseudo-Distributed Mode:

- all daemons are running on one node.
- but each daemon runs in a separate Java process
- both Master and Slave node are the same.

• Fully-Distributed Mode:

- all daemons execute in separate nodes of a multi-node
cluster.

- allows separate nodes for Master and Slave.

AIML427 Week9:19

Hadoop Running Modes (cont.)

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/SingleCluster.html

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

Component Property Standalone Pseudo-

distributed

Fully distributed

Core fs.default.name file:/// (default) hdfs://localhost/ hdfs://namenode/

HDFS dfs.replication N/A 1 3 (default)

MapReduce yarn.resourcem

anager.hostna

me

local (default) http://localhost:

8088/

ResourceManag

er host.

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

AIML427 Week9:20

Hadoop MapReduce (MR)

• MapReduce overcome the challenges of big data processing:

- Cost-efficient: MR distributes the data over multiple commodity
machines, because keeping the big data in one server or as
database cluster is very expensive and hard to manage.

- Time-efficient: MR moves computation rather than data,
because analysing the big data in a single machine takes a lot
of time.

• MapReduce’s data-parallel programming model hides

complexity of distribution and fault tolerance

• In a MapReduce program, Map() and Reduce() are processed

in two phases:

- Map() performs complex logic code such as filtering, grouping.

- Reduce() specify light-weight processing like aggregates and
summarizes the result produced by map function.

• MapReduce requires that the operations performed at the

reduce task to be both associative and commutative.

AIML427 Week9:21

A simple MapReduce program

Input Splits Records

Mapper

Outputs

Final

Output

After

Sort &

Suffle Reducer

Outputs

Map
Reduce

Partition

AIML427 Week9:22

• Number of tasks can radically change the performance of

Hadoop. Task setup takes a while, so it is best if the maps

take at least a minute to execute.

• The right level of parallelism for maps seems to be around

10-100 maps per-node.

• The number of Map tasks is driven by the number of data

blocks of the input files.

• If we have a block size of 128 MB

- and 10TB of input data => we will have ~ 82K maps.
- and 25GB of input data => ? maps.

The Number of Tasks

AIML427 Week9:23

The number of Reduce Tasks

• It is valid to set the number of reduce-tasks to zero: so
called "Map-only job".
- In this case the output of the map-tasks directly go to the

output files in the distributed file-system as the final output.
- Also, the framework doesn't sort the map-outputs before

writing it out to HDFS.

• The number of reduce tasks is internally calculated from the

size of data if it is not explicitly specified.

• Increasing the number of tasks:

‣ Increases load balancing (+)
‣ Lowers the cost of failures (+)
‣ Increases the framework overhead (-)

AIML427 Week9:24

Combiner

• Problem: A Map task may output many key-value pairs with

the same key.

- causing Hadoop to shuffle (move) all those values over the

network, incurring a significant overhead.

• Combiner is mini-reducer that perform local reduce task.

• Each combine processes on output of a single mapper or split.

• Optimisation to reduce bandwidth. Note that:

- No guarantees on being called => Not to use the combiner to

perform any essential tasks.

- Maybe only applied to a subset of map outputs

• Often is the same class as Reducer.

AIML427 Week9:25

Key-Value Pair

• The key-value pair is the record entity that MapReduce job

receives for execution.

• Generally:

- map: <key1, value1> -> list <key2, value2>
- [combine:<key2, list<value2>> -> list <key2, value2>]
- reduce: <key2, list<value2>> -> list <key3, value3>

• The key and value classes have to be serializable by the

framework and hence need to implement the Writable

interface.

• The key classes have to implement the WritableComparable

interface to facilitate sorting by the framework.

• Key-value pair enables MapReduce to work with

unstructured and semi-structured data.

AIML427 Week9:26

InputSplit

• Splits are a set of logically arranged records

- A set of lines in a file
- A set of rows in a database table

• Each instance of mapper will process a single split

- Map instance processes one record at a time
‣ map(key, value) is called for each record.

• Splits are implemented by extending InputSplit class

• However, we don’t usually need to deal with splits directly

- It is InputFormat’s responsiblity

AIML427 Week9:27

InputFormat

• The InputFormat performs the splitting of the input data into

the key-value pair inputs for the mappers.

• It defines how the input files are split up and read in

Hadoop.

AIML427 Week9:28

Hadoop InputFormat

• Configure on a Job object:

- job.setInputFormatClass (XXXInputFormat.class);

AIML427 Week9:29

• FileInputFormat:

- Is the base class for all file-based InputFormats.

- Specifies input directory where data files are located.

- Read all files and divides these files into one or more

InputSplits.

• TextInputFormat:

- Default format.

- Useful for unformatted data or line-based records like log files.

Hadoop InputFormat (cont.)

Split Single HDFS block (can be configured)

Record Single line of text; linefeed or carriage-return used to locate end of

line

Key LongWritable - Position in the file

Value Text - line of text (excluding line terminators)

AIML427 Week9:30

Hadoop InputFormat (cont.)

• KeyValueTextInputFormat: similar to TextInputFormat

- If a line does not contain the delimiter, the whole line will be

treated as the key and the value will be empty.

- The default delimiter is tab. It can be set to another by:

Configuration conf = new Configuration();

conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separa

tor", ",");

Split Single HDFS block (can be configured)

Record Single line of text

Key Text - First value before delimiter

Value Text - the rest of the line (excluding line terminators)

AIML427 Week9:31

Hadoop InputFormat (cont.)

• NLineInputFormat: used for plain text files.

Split N lines. Set by: NLineInputFormat.setNumLinesPerSplit(job,N);

Record Single line of text

Key LongWritable - Position in the file

Value Text - line of text (excluding line terminators)

AIML427 Week9:32

OutputFormat

• Specification for writing data

• Implementation of OutputFormat<Key,Value>

• TextOutputFormat is the default implementation

- Output records as lines of text

- Key and values are tab separated.

- Key and values may be of any type.

• OutputFormat:

- validates output specification for that job.

‣ E.g.: check if the output directory existed => returns an error.

- creates implementation of RecordWriter

- creates implementation of OutputCommitter

‣ Set-up and clean-up Job’s and Task’s artifacts

‣ Commit or discard tasks output.

AIML427 Week9:33

MapReduce Job

• Job is the primary interface for a user to describe a map-

reduce job.

• Job configuration is done through a Configuration object

Configuration conf = new Configuration();

Job job = new Job(conf);

• Job is used to specify the Mapper, Reducer, InputFormat,

OutputFormat, Combiner, Partitioner, etc.

• Note that the framework tries to faithfully execute the job

as-is described, however:

- Some configuration parameters might have been marked as

final by administrators and hence cannot be altered.

- Some parameters interact subtly with the rest of the

framework and/or job-configuration and is relatively more

complex for the user to control finely (e.g.

setNumMapTasks(int)).

AIML427 Week9:34

//Set Mapper, Combiner and Reducer

job.setMapperClass(MyJob.MyMapper.class);

job.setCombinerClass(MyJob.MyReducer.class);

job.setReducerClass(MyJob.MyReducer.class);

//Set Input and Output Format

job.setInputFormat(SequenceFileInputFormat.class);

job.setOutputFormat(SequenceFileOutputFormat.class);

//Set Input and Output Path

FileInputFormat.setInputPaths(job, new Path("in"));

FileOutputFormat.setOutputPath(job, new Path("out"));

MapReduce Job Configuration (cont.)

AIML427 Week9:35

Hadoop Data Types

• Hadoop uses the Writable interface based classes as the data

types for the MapReduce computations.

• Choosing the appropriate Writable data types for your input,

intermediate, and output data is important for the

performance and the programmability of MapReduce

programs.

• The reducer's input key-value pair data types should match

the mapper's output key-value pairs.

AIML427 Week9:36

Hadoop Data Types

• Hadoop built-in data types for both key and value:

- IntWritable

- LongWritable

- BooleanWritable

- FloatWritable

- ByteWritable: a sequence of bytes

- Text: a UTF8 text

- VIntWritable and VLongWritable: variable length integer and
long values

- NullWritable: a zero-length Writable type that can be used when
you don't want to use a key or value type

AIML427 Week9:37

Hadoop Data Types (cont.)

• Hadoop build-in data types can only be used as value types.

- ArrayWritable: This stores an array of values belonging to a
Writable type. To use this type as the value type of a reducer's
input, you need to create a subclass of ArrayWritable to specify
the type of the Writable values stored in it.

- TwoDArrayWritable: This stores a matrix of values belonging to
the same Writable type. Similarly, you need to specify the type
of the stored values by creating a subclass of this type.

- MapWritable: This stores a map of key-value pairs. Keys and
values should be of the Writable data types.

- SortedMapWritable: This stores a sorted map of key-value
pairs. Keys should implement the WritableComparable interface.

AIML427 Week9:38

Data Types Example

• Specify the data types for key-value pairs using the generic-

type variables.

public class SampleMapper extends Mapper

<LongWritable, Text, Text, IntWritable> {

input types output types

public void map(LongWritable key, Text value, Context context) {

…… }

}

public class SampleReducer extends Reducer

<Text, IntWritable, Text, IntWritable> {

input types output types

public void reduce(Text key, Iterable<IntWritable> values,

Context context) {

…… }

}

AIML427 Week9:39

Data Type Configuration

• Specify the output data types for both the reducer and the

mapper

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

• If mapper has different data types for the output key-value

pairs:

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

AIML427 Week9:40

Set Input & Output Paths

• Set the input paths to the job.

FileInputFormat.setInputPaths(job, new Path(inputPath));

• Set multiple HDFS input paths:

- Set the array of Paths as the list of inputs for the job:

FileInputFormat.setInputPaths(job, Path... inputPaths)

- Or by providing a comma-separated list of paths:

FileInputFormat.setInputPaths(job, commaSepartedString)

- Or use the addInputPath() to add input paths:

FileInputFormat.addInputPath(job, Path path)

• Set the output path to the job.

FileOutputFormat.setOutputPath(job, new Path(String));

AIML427 Week9:41

WordCount Example

import java.io.IOException;

import java.util.*;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.conf.*;

import org.apache.hadoop.io.*;

import org.apache.hadoop.mapreduce.*;

// Note: org.apache.hadoop.mapred is an older API

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount { //Driver class

// Map class

// Reduce class

// Main function

}

AIML427 Week9:42

WordCount Example - Map class

public static class Map extends Mapper

<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());

context.write(word, one);

}

}

}

AIML427 Week9:43

WordCount Example - Reduce class

public static class Reduce extends Reducer

<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException

{

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

context.write(key, new IntWritable(sum));

}

}

AIML427 Week9:44

WordCount Example - Main function

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

conf.set(MRJobConfig.NUM_MAPS, "3");

Job job = Job.getInstance(conf, "Word Count New");

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);

job.setCombinerClass(Reduce.class);

job.setReducerClass(Reduce.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}

https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

AIML427 Week9:45

Where can I access to a Hadoop platform?

• Cloud platform with Hadoop installation

• Install your own cluster.

AIML427 Week9:46

ECS Hadoop Cluster

• To help you get started with your assignment, school has

install a Hadoop cluster in the lab CO246 which allows you

to try out some basic operations with a Hadoop cluster.

• The installed version is 3.3.6.

• Use your ECS account to access this Hadoop cluster which is

a 8-node Hadoop cluster including:

- co246a-1.ecs.vuw.ac.nz
- co246a-2.ecs.vuw.ac.nz
- ...
- co246a-7.ecs.vuw.ac.nz
- co246a-8.ecs.vuw.ac.nz

and:

- NameNode: co246a-a.ecs.vuw.ac.nz
- YARN resource manager host: co246a-9.ecs.vuw.ac.nz

• Lab tutorial

https://ecs.wgtn.ac.nz/foswiki/pub/Courses/AIML427_2024T1/Assignments/AIML427_Hadoop_2024.pdf

AIML427 Week9:47

• HDFS supports a traditional hierarchical file organization.

• A user or an application can create directories and store

files inside these directories.

• hadoop fs <args> or hdfs dfs <args>

• ls

- Usage: hadoop fs -ls [-R] [-t] [-S] [-r] [-u] <args>
‣ -R: Recursively list subdirectories encountered.

‣ -t: Sort output by modification time (most recent first).

‣ -S: Sort output by file size.

‣ -r: Reverse the sort order.

‣ -u: Use access time rather than modification time for display

and sorting.

• mkdir: create directory

- Usage: hadoop fs -mkdir [-p] <paths>
‣ -p: creating parent directories along the path.

Exploring HDFS

AIML427 Week9:48

Exploring HDFS (cont.)

• put: Copy local files to HDFS. Also reads input from stdin

and writes to destination if the source is set to “-”

- Usage: hadoop fs -put [-f] [- | <localsrc1> ..]. <dst>

- hadoop fs -put -f localfile1 localfile2 /user/hadoop/hadoopdir

• get: Copy files to the local file system.

- Usage: hadoop fs -get [-f] <src> <localdst>

• cp: Copy files from source to destination.

- Usage: hadoop fs -cp [-f] URI [URI ...] <dest>
- hadoop fs -cp /user/hadoop/file1 /user/hadoop/file2
- hadoop fs -cp /user/hadoop/file1 /user/hadoop/file2

/user/hadoop/dir

• mv: Moves files from source to destination

- Usage: hadoop fs -mv URI [URI ...] <dest>

• rm: Delete files specified as args

- Usage: hadoop fs -rm [-r] [-skipTrash] [-safely] URI [URI ...]

AIML427 Week9:49

Exploring HDFS (cont.)

• appendToFile Append single src, or multiple srcs from local

file system to the destination file system.

- Usage: hadoop fs -appendToFile <localsrc> ... <dst>
- hadoop fs -appendToFile localfile /user/hadoop/hadoopfile
- hadoop fs -appendToFile localfile1 localfile2

/user/hadoop/hadoopfile

- hadoop fs -appendToFile -

hdfs://nn.example.com/hadoop/hadoopfile Reads the

input from stdin.

• cat: Copies source paths to stdout.

- Usage: hadoop fs -cat URI [URI ...]
- hadoop fs -cat /user/hadoop/file1 /user/hadoop/file1

• copyFromLocal: -f overwrite if exist.

- Usage: hadoop fs -copyFromLocal <localsrc> URI
- hadoop fs -copyFromLocal -f localfile /user/hadoop/

• copyToLocal:

- Usage: hadoop fs -copyToLocal URI <localdst>

AIML427 Week9:50

Compile & Running a MapReduce Program

• Compile the MapReduce program: WordCount.java

- mkdir wordcount_classes
- javac -d wordcount_classes WordCount.java
- jar cvf wordcount.jar -C wordcount_classes/ .
- ls

• Run:

- hadoop jar wordcount.jar myPackage.WordCount input output

• Check the results:

- hdfs dfs -cat output/part-r-00000

• Step by step tutorial of how to use the school cluster can be

found at the lab tutorial document.

AIML427 Week9:51

Set Environment Variables

• Run:

- export HADOOP_VERSION=3.3.6
- export HADOOP_HOME=/local/Hadoop/hadoop-

$HADOOP_VERSION
- export PATH=${PATH}:$HADOOP_HOME/bin
- export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
- Or save the bove three lines into a file and source it:

‣ source AIML427_hadoop_setup.csh

• Set PATH for Java:

- need java

• set CLASSPATH for Hadoop:

- hadoop classpath --glob > setup_hadoop_classpath.csh
- vim setup_hadoop_classpath.csh: add setenv CLASSPATH at

the beginning and delete the last component of the line.
- source setup_hadoop_classpath.csh

51

AIML427 Week9:52

Where to get big data?

• UCI machine learning repository: https://archive.ics.uci.edu/ml/index.html

• Kaggle datasets (machine learning competitions):

https://www.kaggle.com/competitions

• Transportation Statistics:

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236

• Government open data:

https://open.canada.ca/data/en/dataset?portal_type=dataset

• The CIA World Factbook (provides information on the history, population,

economy, government, infrastructure, and military of 267 countries):

https://www.cia.gov/library/publications/download/

• Financial dataset from Lending Club:

https://www.lendingclub.com/info/download-data.action

• Research data from Yahoo: http://webscope.sandbox.yahoo.com/index.php

https://archive.ics.uci.edu/ml/index.html
https://www.kaggle.com/competitions
https://www.transtats.bts.gov/DL%5C_SelectFields.asp?Table%5C_ID=236
https://open.canada.ca/data/en/dataset?portal%5C_type=dataset
https://www.cia.gov/library/publications/download/
https://www.lendingclub.com/info/download-data.action
http://webscope.sandbox.yahoo.com/index.php

AIML427 Week9:53

Where to get big data?

• Amazon AWS public dataset http://aws.amazon.com/public-data-sets/

• Labeled visual data from Image Net http://www.image-net.org

• Compiled YouTube dataset http://netsg.cs.sfu.ca/youtubedata/

• Collected rating data from the MovieLens site

http://grouplens.org/datasets/movielens/

• Movie dataset http://www.imdb.com/interfaces

• Social science data http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies

• Datasets from World Bank http://data.worldbank.org

• Rich set of data from datahub https://datahub.io/dataset

• Yelp's academic dataset https://www.yelp.com/academic_dataset

• Source of data from GitHub https://github.com/caesar0301/awesome-

public-datasets

• Dataset archives from Reddit https://www.reddit.com/r/datasets/

http://aws.amazon.com/public-data-sets/
http://www.image-net.org
http://netsg.cs.sfu.ca/youtubedata/
http://grouplens.org/datasets/movielens/
http://www.imdb.com/interfaces
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies
http://data.worldbank.org
https://datahub.io/dataset
https://www.yelp.com/academic_dataset
https://github.com/caesar0301/awesome-public-datasets
https://www.reddit.com/r/datasets/

AIML427 Week9:54

References

• https://hadoop.apache.org/docs/stable/hadoop-mapreduce-

client/hadoop-mapreduce-client-core/MapReduceTutorial.html

• Hadoop MapReduce cookbook, Perera, Srinath and

Gunarathne, Thilina (2013).

• https://medium.datadriveninvestor.com/the-why-and-how-

of-mapreduce-17c3d99fa900

• https://data-flair.training/blogs/hadoop-mapreduce-tutorial/

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://medium.datadriveninvestor.com/the-why-and-how-of-mapreduce-17c3d99fa900

