VICTORIA UNIVERSITY OF

=3 WELLINGTON

TE HERENGA WAKA

AIML427 Big Data

Week 9-10: Hadoop MapReduce

Dr Qi Chen

School of Engineering and Computer Science
Victoria University of Wellington

Qi.Chen@ecs.vuw.ac.nz

mailto:Bing.Xue@ecs.vuw.ac.nz?subject=

AIML427 Week9:2

Outline

e Machine learning tools and big data challenges
e MapReduce framework and Hadoop

e Hadoop core components

e Hadoop running modes

e Hadoop architecture

e Hadoop distributed file system (HDFS)

e MapReduce

AIML427 Week9:3

Common Application Architecture

Presentation tier Application tier Data tier

—

\
\

' %‘_-\ "“II (ﬁ%--—_‘

T i

£ L i

r='=l -~

- ~l~ i

SISIE SISIS

- -

- -

- H B
§.= : '§,=

e How these systems look like in the big data era?

AIML427 Week9:4

Big Data Challenges for ML

e Storage - Since data is very big, storing such huge amount of
data is very difficult.

e Analytics — In Big Data, most of the time we are unaware of
the kind of data we are dealing with. So processing and
analysing that data is even more difficult.

e Data Quality - In the case of Big Data, data is very messy,
inconsistent and incomplete.

e Discovery - Using a powerful algorithm to find patterns and
insights are very difficult.

e Security — Since the data is huge in size, keeping it secure is
another challenge.

AIML427

Machine Learning (ML) Tools

Week9:5

Library Open Scalable? Language | Algorithm
Source? support support
MATLAB No No Mostly C High
R Yes No R High
Weka Yes No Java High
Sci-Kit Learn Yes No Python
Apache Yes Yes Java Medium
Mahout
Spark ML Yes Yes Scala, Java, R,
Python

AIML427 Week9:6

Divide-And-Conquer

e Scalability to large data volumes:
- Scan 100 TB on 1 node @ 50 MB/sec = 23 days
- Scan on 1000-node cluster = 33 minutes

e Divide-And-Conquer by partitioning data

A single machine can not manage large volumes of data
efficiently

AIML427 Week9:7

MapReduce Paradigm and Hadoop

e MapReduce paradigm (Dean and Ghemawat, 2004)
- Data-parallel programming model

- An associated parallel and distributed implementation for
commodity clusters

e Pioneered by Google: Processes 20 PB of data per day

- July 2008 - Hadoop wins Terabyte Sort Benchmark (sorted 1
terabyte of data in 209 seconds, which beat the previous record
of 297 seconds)

e Popularized by Hadoop:

- An open-source implementation of MapReduce paradigm.

- It supports the distributed storage and processing of large
data sets across clusters of computers using simple
programming models.

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified data processing on large
clusters. Commun. ACM, 51(1):107-113

AIML427

Hadoop’s Advantages

Week9:8

. Simplicity: We can store huge files as they are (raw)

without specifying any schema. MapReduce model hides
complexity of distribution and fault tolerance.

. High scalability: We can add any number of nodes, hence

enhancing performance dramatically.

. Reliability: It stores and process data reliably on the cluster

despite machine failure.

. High availability: Data is highly available despite hardware

failure. If a machine or hardware crashes, then we can
access data from another path.

. Economic: Hadoop runs on a cluster of commodity

hardware (nodes and network). Automatic fault-tolerance
(fewer administrators). Easy to use (fewer programmers).

AIML427

Week9:9

1
_—

(Work flow)

Scoop
(Data Collection)

'cu‘iuc
(Data Collection)

Hadoop Ecosystem

97 "R # x MR Thrift

Drill C
Pig Hive (Machine (Interactive Avro Lgfngrﬁgs e

(Scripting) (Sql Query) Learning) Analysis) USON) Service

Management

HCatalog
Table & schema
o
>
(&))
m

HBASE
(Columnar
Store)

Mapreduce
(Data Processing)

Ef'\
g2
£
VO
o=
Cc
go
EE
-0

Zookeeper
(Coordination)

T
0
=
<
)
=
v
Q
Q
<

Yarn
(Cluster Resource Management)

https://www.edureka.co/blog/hadoop-ecosystem

https://www.edureka.co/blog/hadoop-ecosystem

AIML427 Week9:10

MAPREDUCE HIVE & DRILL MAHOUT & PIG HBASE ZOOKEEPER
(Processing using (Analytical SPARK MLIib . & AMBARI

different languages) 5QL-on-Hadoop) (Machine learning) e bbb sy (Management

& Coordination)
<
Gpmee | | & aonc S
DRILL

5 & IC
SPARK (In-Memory, KAFKA & STORM 8 ket 00ZIE

Data Flow Engine) (Streaming) -é:bl':nac;-;:::sl (Scheduling)

Apache lf_f&

APACHE Solr ~
Soaor =

Resource
Management

Storage

Flume

| £ [3 [in]
--E

Unstructured/
Semi-structured Data

Structured Data

AIML427 Week9:11

Hadoop Core Components

e Hadoop Distributed File System (HDFS): A distributed file
system that
- provides high-throughput access to application data.
- distributes and stores very large files on a cluster of
commodity hardware.

e Yet Another Resource Negotiator (YARN): A framework for job
scheduling and cluster resource management.

e MapReduce: A software framework for parallel processing of
large structured and unstructured data stored in HDFS.

- It works by breaking the processing into phases, map and
reduce.

AIML427 Week9:12

Hadoop’s Architecture

Flow
Submit Job > | L, _' :
__FaCKer~
M1
@ Provide tasks to TaskTrackers
K Co-ordinate map & reduce phase
map() I Task Provide Job progress info
Tracker
Inputformat I* R1 o
DFS .
. oy Task e
|T“‘L , p-muono : 57 Tracker fite 1
R
M2 2
Task ey Task
Tracker Tracker sy sort -
M3 read || reduce()
¥ file 2
TaSR OutputFormat
Tracker
\]\ J
1 Y
Map Phase Reduce Phase
=Nuvento

https://www.slideshare.net/subhaskghosh/03-deconstructing-map-reduce-job-step-by-step

AIML427

High Level Architecture of Hadoop

Week9:13

Master Node Slave Node

Task Tracker Task Tracker
MapReduce Layer Job Tracker

HDFS Layer

Multi-Node Cluster

https://intellipaat.com/blog/tutorial/hadoop-tutorial/introduction-hadoop/?US

https://intellipaat.com/blog/tutorial/hadoop-tutorial/introduction-hadoop/?US

AIML427 Week9:14

HDFS NameNode and DataNode

e An HDFS file is chopped into data blocks., each can reside on
a different DataNode.
e NameNode: a master server that:
- stores meta-data i.e., nhumber of blocks, their location,
replicas and other details.
- manages file system namespace by executing naming,
closing, opening files and directories.
- maintains and manages the data nodes or slave nodes
- assigns tasks to data nodes.

o DataNode usually one per node in the cluster.
- Store actual data.
- Performs read and write operation as per request for the
clients.
- Create, delete and replicate data blocks according to the
instruction of NameNode.

AIML427 Week9:15

HDFS NameNode and DataNode (cont.)

e NameNode periodically receives a Heartbeat and a Blockreport from
each of the DataNodes.

Metadata Operations
CI_ to Get Block Info Name Node
ient
Job Assignment to Cluster Master Node
.
= JobTracker 7
& : lo ¥
AR s i . Se N0
o - - - P Ls)
_'bt\ x> ,° . /‘o(\ 079
Q’b‘\oﬁb " g e

Data Write
Data Read

0. %
- _.'

Slave Node Slave Node Slave Node Slave Node
TaskTracker TaskTracker TaskTracker TaskTracker

Data Node E Data Node . Data Node E Data Node

Map Reduce Map Reduce Map Reduce Map Reduce

. .
- o

Data Replication on Multiple Nodes

AIML427 Week9:16

Standby NameNode

e Standby namenode is an extra nameNode that:

- provides high availability for hadoop architecture
- to avoid the single point of Failure (SPOF).

o If active NameNode fails, then standby Namenode takes all
the responsibility of active node and cluster continues to
work.

All name space edits
logged to shared storage

Query for EditLogs NameNode
in regular intervals

Secondary
MameMNode

Update Fslmage
with EditLogs

|

Fsimage

Copy the updated Fsimage
back to NameNode

Block reports are sent
to both Name Nodes

AIML427 Week9:17

Data Replication

e HDFS replicates data to provide fault-tolerance when
storing data in commodity hardware despite the higher

chance of failures.

e The blocks of a file are replicated in different nodes.

e The block size and replication factor are configurable.
o the default replication factor is 3

NameNode

name space
metadata

DataNode DataNode DataNode DataNode

[02] [o3] =l =] B3 [=2]
== == ==

Rack 1 Rack 2

AIML427 Week9:18

Hadoop Running Modes

e Local (Standalone) Mode:

- runs in a single-node as a single Java process.

- does not support the use of HDFS => uses the local file
system for input and output operation.

- used for debugging purpose

- is the default mode. No custom configuration required for
configuration files.

e Pseudo-Distributed Mode:

- all daemons are running on one node.
- but each daemon runs in a separate Java process
- both Master and Slave node are the same.

e Fully-Distributed Mode:

- all daemons execute in separate nodes of a multi-node
cluster.

- allows separate nodes for Master and Slave.

AIML427 Week9:19

Hadoop Running Modes (cont.)

Component |Property Standalone |Pseudo- Fully distributed
distributed

Core fs.default.name |file:/// (default) | hdfs://localhost/ | hdfs://namenode/

HDFS dfs.replication | N/A 1 3 (default)

MapReduce |yarn.resourcem |local (default) |http://localhost. | ResourceManag
anager.hostna 8088/ er host.
me

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/SingleCluster.html

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/r2.8.2/hadoop-project-dist/hadoop-common/ClusterSetup.html

AIML427 Week9:20

Hadoop MapReduce (MR)

e MapReduce overcome the challenges of big data processing:

- Cost-efficient: MR distributes the data over multiple commodity
machines, because keeping the big data in one server or as
database cluster is very expensive and hard to manage.

- Time-efficient: MR moves computation rather than data,
because analysing the big data in a single machine takes a lot
of time.

e MapReduce’s data-parallel programming model hides
complexity of distribution and fault tolerance

e In a MapReduce program, Map() and Reduce() are processed
in two phases:

- Map() performs complex logic code such as filtering, grouping.

- Reduce() specify light-weight processing like aggregates and
summarizes the result produced by map function.

e MapReduce requires that the operations performed at the
reduce task to be both associative and commutative.

AIML427 Week9:21

A simple MapReduce program

Partition After Reduce

Map Sort &
Suffle | Reducer
Mapper Outputs
. Records Outputs Apple,1
Input Splits / TSI AP
Apple 1 Apple 1
Apple Orange Mango | =4| Orange 1 Apple,l
Mango,1 | Final
Apple Orange Mango Outp ut
Orange Grapes Plum Orange,1 Grapes,] | — Grapes,1
Orange Grapes Plum |—— Orapes,1
Plum,1 Appied
Grapes,1
Mango, 1 Mango, 2
Apple 1 Mango,l [MenEO2 Orange,2
ApplePlum Mango —* Plum,1 Plum,3
Apple Plum Mango VAN, 5 i
Apple Apple Plum fangs [—p{ Orange,2
Orange,1
Apple 1
Apple &pple Plum —» Applel
Plum,1 Plum,1
Plum, 1 5| Plum,3

Plum,1

AIML427 Week9:22

The Number of Tasks

e Number of tasks can radically change the performance of
Hadoop. Task setup takes a while, so it is best if the maps
take at least a minute to execute.

e The right level of parallelism for maps seems to be around
10-100 maps per-node.

e The number of Map tasks is driven by the number of data
blocks of the input files.

e If we have a block size of 128 MB

- and 10TB of input data => we will have ~ 82K maps.
- and 25GB of input data => ? maps.

AIML427 Week9:23

The number of Reduce Tasks

e [t is valid to set the number of reduce-tasks to zero: so
called "Map-only job".
- In this case the output of the map-tasks directly go to the
output files in the distributed file-system as the final output.
- Also, the framework doesn't sort the map-outputs before
writing it out to HDFS.

e The number of reduce tasks is internally calculated from the
size of data if it is not explicitly specified.

e Increasing the number of tasks:

» Increases load balancing (+)
» Lowers the cost of failures (+)
» Increases the framework overhead (-)

AIML427 Week9:24

Combiner

e Problem: A Map task may output many key-value pairs with
the same key.

- causing Hadoop to shuffle (move) all those values over the
network, incurring a significant overhead.

e Combiner is mini-reducer that perform local reduce task.
e Each combine processes on output of a single mapper or split.
e Optimisation to reduce bandwidth. Note that:

- No guarantees on being called => Not to use the combiner to
perform any essential tasks.

- Maybe only applied to a subset of map outputs

e Often is the same class as Reducer.

AIML427 Week9:25

Key-Value Pair

e The key-value pair is the record entity that MapReduce job
receives for execution.

e Generally:
- map: <keyl, valuel> -> iIst <key2, value2>
- [combine:<key?2, list<value2>> -> list <key2, value2>]
- reduce: <key?2, list<value2>> -> Ist <key3, value3>

e The key and value classes have to be serializable by the
framework and hence need to implement the Writable
interface.

e The key classes have to implement the WritableComparable
interface to facilitate sorting by the framework.

e Key-value pair enables MapReduce to work with
unstructured and semi-structured data.

AIML427 Week9:26

InputSplit

e Splits are a set of logically arranged records

- A set of lines in a file
- A set of rows in a database table

e Each instance of mapper will process a single split

- Map instance processes one record at a time
» map(key, value) is called for each record.

e Splits are implemented by extending InputSplit class

e However, we don't usually need to deal with splits directly
- It is InputFormat’s responsiblity

AIML427 Week9:27

InputFormat

e The InputFormat performs the splitting of the input data into
the key-value pair inputs for the mappers.
e It defines how the input files are split up and read in

Hadoop.
@Generate splits
@Each split gets its own RecordReader
@RecordReader reads key-value pairs
li
@gelsp ts @For each pair map(key,value) 1is called

\

}@createﬂecordReader Yy

map()
@ Read key-value RecordReader Mapper

)

Vv

RecordReader map() Mapper

)

}@ createRecordReader

@ Read key-value

Data to Process

Vv

RecordReader map() Mapper

}@ createRecordReader

@ Read key-value

)

AIML427 Week9:28

Hadoop InputFormat

e Configure on a Job object:
- job.setlnputFormatClass (XXXInputFormat.class);

FileInputFormat SequenceFileAsTextinputFormat

TextinputFormat [DA NLinelnputFormat

KeyValueTextinputEormat SequenceFileAsBinarylnputFormat

SequenceFilelnputFormat DBInputFormat

AIML427 Week9:29

Hadoop InputFormat (cont.)

e FileInputFormat:

- Is the base class for all file-based InputFormats.
- Specifies input directory where data files are located.
- Read all files and divides these files into one or more
InputSplits.
o TextInputFormat:
- Default format.
- Useful for unformatted data or line-based records like log files.

Split Single HDFS block (can be configured)

Record Single line of text; linefeed or carriage-return used to locate end of
line

Key LongWritable - Position in the file

Value Text - line of text (excluding line terminators)

AIML427 Week9:30

Hadoop InputFormat (cont.)

e KeyValueTextInputFormat: similar to TextInputFormat

Split Single HDFS block (can be configured)
Record Single line of text
Key Text - First value before delimiter

Value Text - the rest of the line (excluding line terminators)

- If a line does not contain the delimiter, the whole line will be
treated as the key and the value will be empty.
- The default delimiter is tab. It can be set to another by:
Configuration conf = new Configuration();

conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separa

tor , 7,);

AIML427

Hadoop InputFormat (cont.)

Week9:31

e NLineInputFormat: used for plain text files.

Split N lines. Set by: NLinelnputFormat.setNumLinesPerSplit(job,N);
Record Single line of text

Key LongWritable - Position in the file

Value Text - line of text (excluding line terminators)

Input is /training/playArea/hamliet.txt
5159 lines
- 206.3k

job.setInputFormatClass (TextInputFormat.class);

Map Progress Maps Total

Job 1D . Name ¢+ State ¢
job 1338595987451 0003 StartsWithCount RUNNING
Showing 1 to 1 of 1 entries

of splits

job.setInputFormatClass (NLinelInputFormat.class);

NLineInputFormat.setNumLinesPerSplit(job, 100);

: : i
job ID) T—— : State Map Progress Maps Aota

job 1338595987451 0002 StartsWithCount RUNNING
Showing 1 to 1 of 1 entnes

AIML427 Week9:32

OutputFormat

e Specification for writing data
e Implementation of OutputFormat<Key,Value>

e TextOutputFormat is the default implementation
- Output records as lines of text
- Key and values are tab separated.
- Key and values may be of any type.

e OutputFormat:
- validates output specification for that job.
» E.g.: check if the output directory existed => returns an error.,
- creates implementation of RecordWriter
- creates implementation of OutputCommitter

» Set-up and clean-up Job’s and Task's artifacts
» Commit or discard tasks output.

AIML427 Week9:33

MapReduce Job

e Job is the primary interface for a user to describe a map-
reduce job.
e Job configuration is done through a Configuration object

Configuration conf = new Configuration();

Job job = new Job(conf);

e Job is used to specify the Mapper, Reducer, InputFormat,
OutputFormat, Combiner, Partitioner, etc.
e Note that the framework tries to faithfully execute the job

as-is described, however:

- Some configuration parameters might have been marked as
final by administrators and hence cannot be altered.

- Some parameters interact subtly with the rest of the
framework and/or job-configuration and is relatively more
complex for the user to control finely (e.q.
setNumMapTasks(int)).

AIML427 Week9:34

MapReduce Job Configuration (cont.)

//Set Mapper, Combiner and Reducer
job.setMapperClass(Mylob.MyMapper.class);

job.setCombinerClass(MyJob.MyReducer.class);

job.setReducerClass(Mylob.MyReducer.class);

//Set Input and Output Format
job.setInputFormat(SequenceFileInputFormat.class);
job.setOutputFormat(SequenceFileOutputFormat.class);
//Set Input and Output Path
FileInputFormat.setInputPaths(job, new Path("in"));
FileOutputFormat.setOutputPath(job, new Path("out"));

AIML427 Week9:35

Hadoop Data Types

e Hadoop uses the Writable interface based classes as the data
types for the MapReduce computations.

e Choosing the appropriate Writable data types for your input,
intermediate, and output data is important for the
performance and the programmability of MapReduce
programs.

e The reducer's input key-value pair data types should match
the mapper's output key-value pairs.

AIML427 Week9:36

Hadoop Data Types

e Hadoop built-in data types for both key and value:

- IntWritable

- LongWritable

- BooleanWritable

- FloatWritable

- ByteWritable: a sequence of bytes
- Text: a UTF8 text

- VIntWritable and VLongWritable: variable length integer and
long values

- NullWritable: a zero-length Writable type that can be used when
you don't want to use a key or value type

AIML427 Week9:37

Hadoop Data Types (cont.)

e Hadoop build-in data types can only be used as value types.

- ArrayWritable: This stores an array of values belonging to a
Writable type. To use this type as the value type of a reducer's
input, you need to create a subclass of ArrayWritable to specify
the type of the Writable values stored in it.

- TwoDArrayWritable: This stores a matrix of values belonging to
the same Writable type. Similarly, you need to specify the type
of the stored values by creating a subclass of this type.

- MapWritable: This stores a map of key-value pairs. Keys and
values should be of the Writable data types.

- SortedMapWritable: This stores a sorted map of key-value
pairs. Keys should implement the WritableComparable interface.

AIML427 Week9:38

Data Types Example

e Specify the data types for key-value pairs using the generic-
type variables.
public class SampleMapper extends Mapper

<LongWritable, Text, Text, IntWritable> {
Y Y

input types output types

public void map(L\ongWritabIe key, Text valuje, Context context) {
Y

public class SampleReducer extends Reducer

<Text, IntWritable, Text, IntWritable> {
— A _/

Y V

input types output types

public void reduce(T\ext key, Iterable<IntWritable> values,

Y ~
Context context) {

AIML427 Week9:39

Data Type Configuration

e Specify the output data types for both the reducer and the
mapper

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

e If mapper has different data types for the output key-value
Dairs:

job.setMapOutputKeyClass(Text.class);

job.setMapOutputValueClass(IntWritable.class);

AIML427

Set Input & Output Paths

Week9:40

e Set the input paths to the job.
FileInputFormat.setInputPaths(job, new Path(inputPath));
e Set multiple HDFS input paths:
- Set the array of Paths as the list of inputs for the job:
FileInputFormat.setInputPaths(job, Path... inputPaths)
- Or by providing a comma-separated list of paths:
FileInputFormat.setInputPaths(job, commaSepartedString)

- Or use the addInputPath() to add input paths:

FileInputFormat.addInputPath(job, Path path)
e Set the output path to the job.

FileOutputFormat.setOutputPath(job, new Path(String));

AIML427

WordCount Example

Week9:41

import java.io.IOException;

import java.util.*;

iImport org.apache.
import org.apache.
iImport org.apache.

import org.apache.
// Note: org.apache.hadoop.mapred is an older API

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

Nad
Nad
Nad

Nad

oop.fs.Path;
oop.conf.*;
00p.i0.*;
oop.mapreduce.*;

public class WordCount { //Driver class

// Map class
// Reduce class
// Main function

AIML427 Week9:42

WordCount Example - Map class

public static class Map extends Mapper
<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

AIML427 Week9:43

WordCount Example - Reduce class

public static class Reduce extends Reducer
<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{

int sum = 0;
for (IntWritable val : values) {

sum += val.get();

»

context.write(key, new IntWritable(sum));

AIML427 Week9:44

WordCount Example - Main function

public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
conf.set(MRJobConfig.NUM_MAPS, "3");
Job job = Job.getlInstance(conf, "Word Count New");
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) 2 0 : 1);
by

https://hadoop.apache.org/docs/r2.8.0/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

AIML427 Week9:45

Where can I access to a Hadoop platform?

e Cloud platform with Hadoop installation

|
amazn|EC2 AL

Windows Azure

Google Actual Cloud Platform

+ Install your own cluster. E(CS Had()()p Cluster
(CO246)

AIML427 Week9:46

ECS Hadoop Cluster

e To help you get started with your assignment, school has
install a Hadoop cluster in the lab C0O246 which allows you
to try out some basic operations with a Hadoop cluster.

e The installed version is 3.3.6.

e Use your ECS account to access this Hadoop cluster which is

a 8-node Hadoop cluster including:

- co246a-1.ecs.vuw.ac.nz
- co0246a-2.ecs.vuw.ac.nz

- co246a-/.ecs.vuw.ac.nz
- co246a-8.ecs.vuw.ac.nz
and:

- NameNode: co246a-a.ecs.vuw.ac.nz
- YARN resource manager host: co246a-9.ecs.vuw.ac.nz

e Lab tutorial

https://ecs.wgtn.ac.nz/foswiki/pub/Courses/AIML427_2024T1/Assignments/AIML427_Hadoop_2024.pdf

AIML427 Week9:47

Exploring HDFS

e HDFS supports a traditional hierarchical file organization.

e A user or an application can create directories and store
files inside these directories.

e hadoop fs <args> or hdfs dfs <args>
e IS

- Usage: hadoop fs -Is [-R] [-t] [-S] [-r] [-u] <args>
» -R: Recursively list subdirectories encountered.
» -t: Sort output by modification time (most recent first).
» -S: Sort output by file size.
» -r: Reverse the sort order.
» -U: Use access time rather than modification time for display
and sorting.

e mkdir: create directory
- Usage: hadoop fs -mkdir [-p] <paths>
» -p: creating parent directories along the path.

AIML427

Exploring HDFS (cont.)

Week9:48

put: Copy local files to HDFS. Also reads input from stdin

\\ /7

and writes to destination if the source is set to "-
- Usage: hadoop fs -put [-f] [- | <localsrcl> ..]. <dst>
- hadoop fs -put -f localfilel localfile2 /user/hadoop/hadoopdir

get: Copy files to the local file system.
- Usage: hadoop fs -get [-f] <src> <localdst>
cp: Copy files from source to destination.

- Usage: hadoop fs -cp [-f] URI [URI ...] <dest>

- hadoop fs -cp /user/hadoop/filel /user/hadoop/file2

- hadoop fs -cp /user/hadoop/filel /user/hadoop/file2
/user/hadoop/dir

mv: Moves files from source to destination

- Usage: hadoop fs -mv URI [URI ...] <dest>

rm: Delete files specified as args

- Usage: hadoop fs -rm [-r] [-skipTrash] [-safely] URI [URI ...]

AIML427

Exploring HDFS (cont.)

Week9:49

appendToFile Append single src, or multiple srcs from local

file system to the destination file system.
n fs -appendToFile <localsrc> ... <dst>

- Usage
- hadoo
- hadoo

/user/

: hadoo
0 fs -ap
0 fs -ap

pendToFi

nendToFi

hadoop/hadoopfi
- hadoop fs -appendToFile -

hdfs://nn.example.com/hadoop/hadoopfile Reads the
input from stdin.

cat: Copies source paths to stdout.

- Usage: hadoop fs -cat URI [URI ...]
- hadoop fs -cat /user/hadoop/filel /user/hadoop/filel

copyFromLocal: -f overwrite if exist.

- Usage: hadoop fs -copyFromLocal <localsrc> URI
- hadoop fs -copyFromLocal -f localfile /fuser/hadoop/

copyTolLocal:
- Usage: hadoop fs -copyToLocal URI <localdst>

e localfile /user/hadoop/hadoopfile
e localfilel localfile2
e

AIML427 Week9:50

Compile & Running a MapReduce Program

e Compile the MapReduce program: WordCount.java

- mkdir wordcount_classes

- javac -d wordcount_classes WordCount.java

- jar cvf wordcount.jar -C wordcount_classes/ .

- Is
e Run:

- hadoop jar wordcount.jar myPackage.WordCount input output
e Check the results:

- hdfs dfs -cat output/part-r-00000

e Step by step tutorial of how to use the school cluster can be
found at the lab tutorial document.

AIML427

51

Set Environment Variables

Week9:51

e Run:

export HADOOP_VERSION=3.3.6

export HADOOP_HOME=/local/Hadoop/hadoop-
$HADOOP_VERSION

export PATH=${PATH}:$HADOOP_HOME/bin

export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
Or save the bove three lines into a file and source it:

» source AIML427_hadoop_setup.csh

e Set PATH for Java:

need java

e set CLASSPATH for Hadoop:

hadoop classpath --glob > setup_hadoop_classpath.csh

vim setup_hadoop_classpath.csh: add setenv CLASSPATH at
the beginning and delete the last component of the line.
source setup_hadoop_classpath.csh

AIML427

Where to get big data?

Week9:52

UCI machine learning repository: https://archive.ics.uci.edu/ml/index.html
Kaggle datasets (machine learning competitions):
https.//www.kaggle.com/competitions

Transportation Statistics:
https://www.transtats.bts.gov/DL\ SelectFields.asp?Table\ 1D=236

Government open data:

https.//open.canada.ca/data/en/dataset?portal\ type=dataset

The CIA World Factbook (provides information on the history, population,
economy, government, infrastructure, and military of 267 countries):
nttps://www.cia.gov/library/publications/download/

~inancial dataset from Lending Club:
nttps://www.lendingclub.com/info/download-data.action

Research data from Yahoo: http://webscope.sandbox.yahoo.com/index.php

https://archive.ics.uci.edu/ml/index.html
https://www.kaggle.com/competitions
https://www.transtats.bts.gov/DL%5C_SelectFields.asp?Table%5C_ID=236
https://open.canada.ca/data/en/dataset?portal%5C_type=dataset
https://www.cia.gov/library/publications/download/
https://www.lendingclub.com/info/download-data.action
http://webscope.sandbox.yahoo.com/index.php

AIML427

Where to get big data?

Week9:53

Amazon AWS public dataset http://aws.amazon.com/public-data-sets/
abeled visual data from Image Net http://www.image-net.org
Compiled YouTube dataset http://netsqg.cs.sfu.ca/youtubedata/

Collected rating data from the MovieLens site
http://grouplens.org/datasets/movielens/

Movie dataset http://www.imdb.com/interfaces

Social science data http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies

Datasets from World Bank http://data.worldbank.org

Rich set of data from datahub https://datahub.io/dataset

Yelp's academic dataset https.//www.yelp.com/academic dataset
Source of data from GitHub https://github.com/caesar0301/awesome-
public-datasets

Dataset archives from Reddit https.//www.reddit.com/r/datasets/

http://aws.amazon.com/public-data-sets/
http://www.image-net.org
http://netsg.cs.sfu.ca/youtubedata/
http://grouplens.org/datasets/movielens/
http://www.imdb.com/interfaces
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies
http://data.worldbank.org
https://datahub.io/dataset
https://www.yelp.com/academic_dataset
https://github.com/caesar0301/awesome-public-datasets
https://www.reddit.com/r/datasets/

AIML427 Week9:54

References

e https://hadoop.apache.org/docs/stable/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html|

e Hadoop MapReduce cookbook, Perera, Srinath and
Gunarathne, Thilina (2013).

e https://medium.datadriveninvestor.com/the-why-and-how-
of-mapreduce-17c3d99fa900

e https://data-flair.training/blogs/hadoop-mapreduce-tutorial/

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://medium.datadriveninvestor.com/the-why-and-how-of-mapreduce-17c3d99fa900

