AIML428

- Project baseline due in week 4
- Typical text classification
 - Text representation: Word embedding
 - Classification algorithm: CNN
- Today
 - Introduction to word embedding
 - Motivation
 - Word2Vec: Two models

Review

- Text classification
 - Text representation

 Bag-of-words model 					
•		a	b	С	d
Each unique word is a feature:Each document is a vector	aacab	1	1	1	0
	bcdaa	1	1	1	1
Term weight:count	Dodda	•	•	•	•
• TFIDF:	aacab	3	1	1	0
 Classification algorithms 	bcdaa	2	1	1	1
K Nearest NeighbourNaïve BaseSupport Vector Machine	aacab	3	1	1	0
	bcdaa	2	1	1	1.41

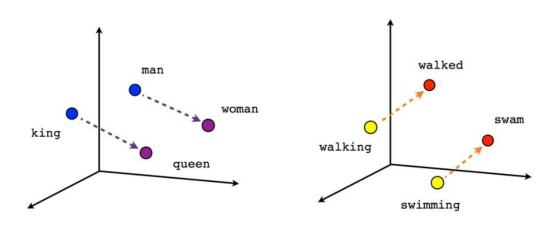
One classical model for many traditional algorithms

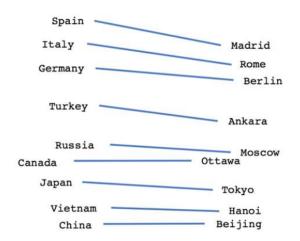
The distance between any two words

- Previously
 - Two words are either the same: 0
 - Two words are not the same: indefinite

- But some words are semantically related
 - good and excellent, bad and terrible
 - day and night, good and bad
- Key question: how to decode the meaning of a word
 - Cat
 - The cat (Felis catus) is a domestic species of small carnivorous mammal.

Linguistic Regularities



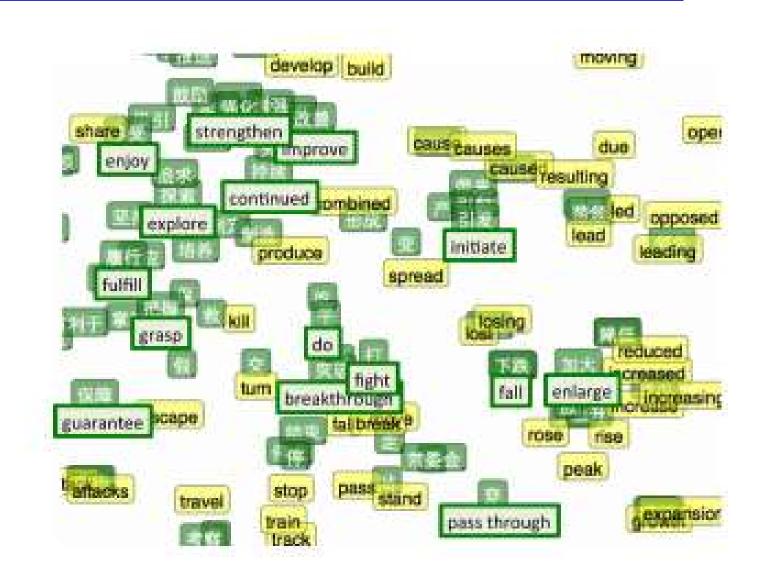


Male-Female

Verb tense

Country-Capital

Vector space: Language independent



Represent each word as a vector

• Cat= [0.83, 0.52, -1.63, 0.07, -0.36, ... -1.2, 0.02]

- So we can use cosine similarity to measure the distance
- We can even do math on it
 - king + women man = queen
- Questions:
 - What are the dimensions
 - How many dimensions
 - How to get the value for each dimension

Word Embeddings

- Word Vectors
- Word Embeddings
- Vector-space word representations
- Continuous space word representations models
- •

A word embedding is a form of representing words using a dense vector representation.

 $[0.83, 0.52, -1.63, 0.07, -0.36, \dots -1.2, 0.02]$

cat

- Examples
 - wiki-news-300d-1M.vec
 - globe.6B.50d
- Word2Vec, Glove, FastText

Word2Vec

Tomas Mikolov

Mikolov, T., Yih, W. T., & Zweig, G. (2013, June). Linguistic regularities in continuous space word representations. In hlt-Naacl (Vol. 13, pp. 746-751).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Distribution Hypothesis

"You shall know a word by the company it keeps"

John Rupert Firth

Consider the Context: (phrase minus word)

The _____ hurt its paw.

What would make sense here?

Cat, Dog, or Siberian_Tiger? YES

X-Wing, Lollygag? NO

What does this mean?

It means that Dog and Tiger are similar to each other:

And not to 'X-Wing'

How is Distribution Hypothesis relevant?

It means that:

If you know how well any two words fit all contexts, then you know how similar they are in meaning.

Therefore:

If you train a model to predict the likelihood of a word appearing in a context, then you are training it to find the meaning of the word.

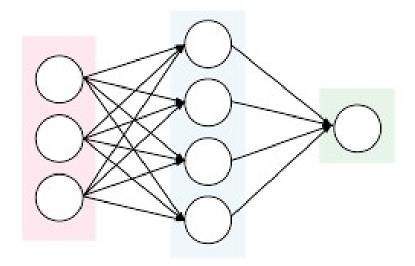
This is exactly what word2vec does!

Conceptualise Word2Vec

Given what we have learned, we need to:

Define how the model predicts the likelihood of a word in a context.

Cover how the word vectors are trained to maximise predictive accuracy.



Two approaches

There are two ways to train the vectors:

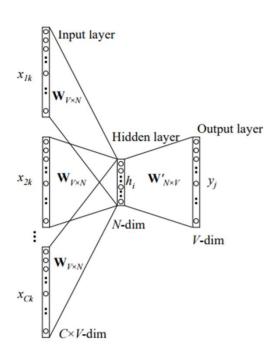
CBOW model (Continuous Bag Of Words)

Input is the context, output is the word

Skip Gram Model

Input: the word, output: the context

Word2Vec Model 1: CBOW



The cat sat on the mat

CBOW (continuous bag of words)
The weights near the output layer are extracted as vector values

Visualisation

https://ronxin.github.io/wevi/

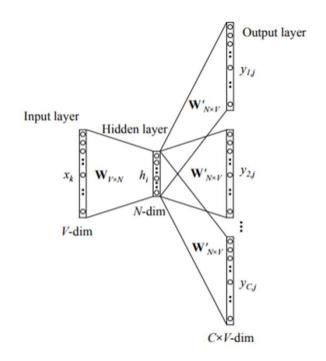
- CBOW
 - Input: two words as context
 - Output: one word as the word
- Skip gram

Word2Vec Model 2: Skipgram

Input: the word,

output: the context

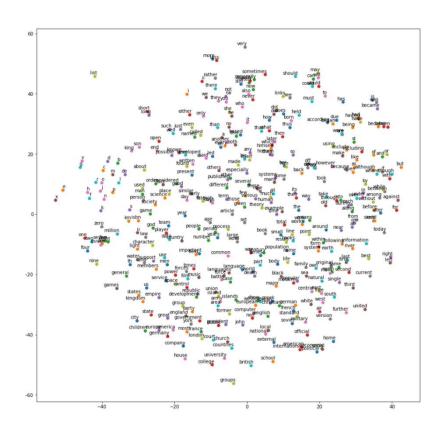
The cat sat on the mat



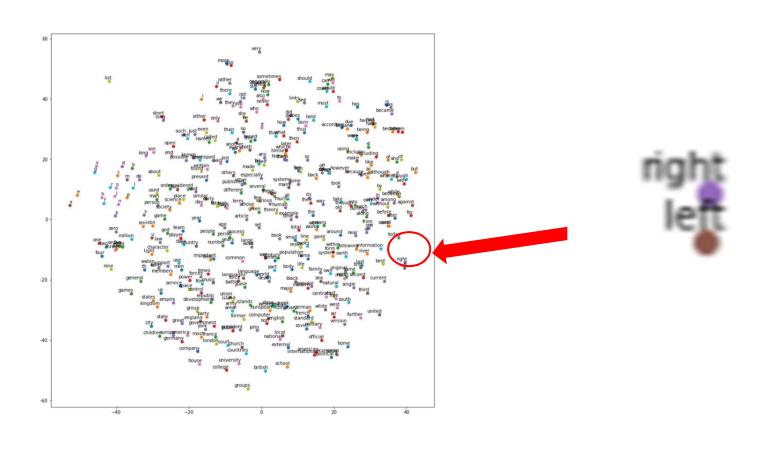
Skipgram

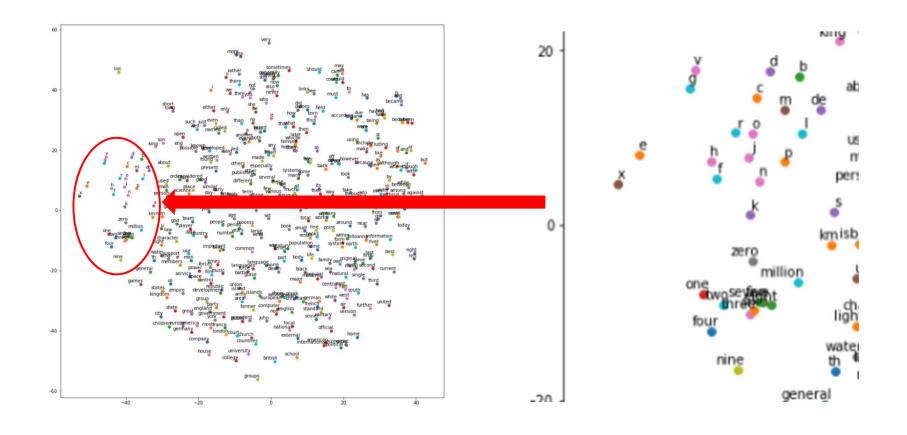
The weights at the input layer side are extracted as vector values

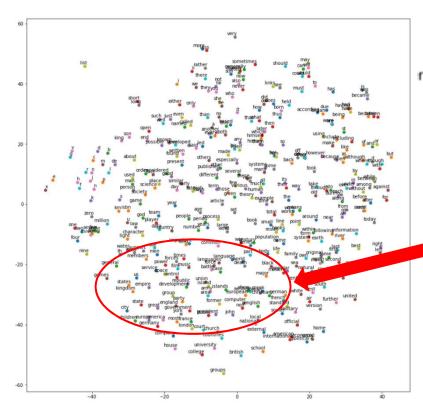
PCA of training on text



Visualisation of a pre-trained embedding







Sources

An Intuitive Understanding of Word Embeddings: From Count Vectors to Word2Vec

 https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-countword2veec/

A visualisation at https://ronxin.github.io/wevi/

A tutorial on Word2Vec as implemented in Tensorflow: https://www.tensorflow.org/tutorials/word2vec

(Contains the link to the original paper by Mikolov and the Google team)