AIML4238

» Thursday Presentations
- Nanda, Ella, Hadas, Huixin(Joy), Ye li, Guangyong
« Submit your pptx file using our submission system

* Today

« Implement CNN for text classification

* Project
« Step1; due this Friday
* You may follow one of the online tutorials
« Submit the source files online
* Do not include the dataset
« Use README file to explain
« where the data is,
* how to run your file
* A very brief summary on what you have done



Python for CNN with word embedding

« A simplified example is attached at schedule page

Sequence model: preserving word order

Train word embedding as part of a deep learning model

Use pre-trained word embedding

Built CNN
Train CNN: compile, fit

Discussions



Prepare data: Sequential model

« Sequence model: preserving word order

« Creating a tokenizer object, tokenizes the texts into words

« Each word is transferred to its integer 1D
« Creates a vocabulary using all words or the top K tokens (e.g. 20000)

» Transforming text documents to sequence of word IDs and
pad them
« Converts the tokens into sequence vectors
- Pads the sequences to a fixed sequence length



Design the model

 Embedding layer

Convolutional layer

Pooling layer

Dense layer

Output layer (Dense layer)



Embedding with random initial weights

» a word embedding can be learned as part of a deep learning
model. This can be a slower approach, but tailors the model
to a specific training dataset.

- The Embedding layer is initialized with random weights and
will learn an embedding for all of the words in the training
dataset.

 input_dim: This is the size of the vocabulary in the text data.

« output_dim: This is the size of the vector space in which
words will be embedded.

* input_length: This is the length of input sequences, as you
would define for any input layer of a Keras model.



How to use pre-trained word embeddings

- Each word index gets mapped to a dense vector of real
values representing that word’s location in semantic space

* Loading the pre-trained word embeddings
* Dictionary:
» Key: word
« Value: vector

« Create a mapping of token and their respective embeddings
« Each word ID, maps to a vector



The Input: example

The mouse
ran up the
clock

The mouse
ran down

the ]
mouse | 2 1,2, 3,4,1,5]
ran | 3
up 4
clock |5
down | 6 (342,36

= 4)

Embedding layer (output dim

[[0.236,
[0.006,
[0.305,
[0.421,
[0.236,
[0.844,

-0.141, 0.000, 0.045],
0.652, 0.270, -0.556],
0.569, -0.028, 0.496],
0.195, -0.058, 0.477],
-0.141, 0.000, 0.045],
-0.001, 0.763, 0.201]]

[[0.236,
[0.006,
[0.305,
[0.466,

-0.141, 0.000, 0.045],
0.652, 0.270, -0.556],
0.569, -0.028, 0.496],
-0.326, 0.884, 0.007])]




Embedding layer Parameters

vocab_size as input_dim: how many unique words (or top K) in
the vocabulary

Embedding dimensions as output_dim: The number of
dimensions we want to use to represent word embeddings—
l.e., the size of each word vector. Recommended values: 50—
300. If you use pre-trained embeddings, it depends on which
file you use.

weights: the mapping between word Id to their embeddings
input_length is the maximum length of documents.

Trainable: whether you want to change these weights
 Default is trainable, normally trainable is better



Summary on Embeddings

- Can add a embedding layer without the weights, so the
word vector weights are learned as part of the network, but
can be slow

« Can use pre-trained

» Can train a standalone word embedding using local data
set, save and use later, more efficient

101



Convolutional layer

« 1D
 Number of filters

 Kernel size: The size of the convolution window.
Recommended values: 3 or 5



Parameters

« Number of layers in the model: The number of layers in a neural
network is an indicator of its complexity.

« Too many layers will allow the model to learn too much information
about the training data, causing overfitting.

» Too few layers can limit the model’s learning ability, causing
underfitting.

* For text classification datasets, normally we use 6 or 9 layers. In the
example, we tried one, two, three layers.

* Number of units per layer: The units in a layer must hold the
information for the transformation that a layer performs.

* For the first layer, this is driven by the number of features.

* In subsequent layers, the number of units depends on the choice of
expanding or contracting the representation from the previous layer.

 Try to minimize the information loss between layers. We tried unit
values in the range [8, 16, 32, 64], and 32/64 units worked well.



The output: binary or multiple-class

SIGMOID

Output layer
Binary classification

Yes »

5

No

the activation function of

the last layer should be a
sigmoid function, and the
loss function used to train

the model should be
binary cross-entropy

» 0.01 Class 1
Class 1
>
<
E »0.14 Class 2
LL
3
Class 2
»0.85 Class 3

Output layer
Multi-class classification

the activation function of the last layer
should be softmax, and the loss
function used to train the model should
be sparse categorical cross-entropy.

Softmax is a function that takes as input a vector
of K real numbers, and normalizes it into a
probability distribution consisting of K
probabilities. All values are normalised to range

[0, 1] and sum tO one.



Train the modelz Iearning parameters

» Metric: How to measure the performance of our model using
a metric.

 Loss function: A function that is used to calculate a loss value
that the training process then attempts to minimize by tuning
the network weights.

« Optimizer: A function that decides how the network weights
will be updated based on the output of the loss function.




Compile and fit

* |In Keras, we can pass these learning parameters to a model
using the compile method.

* Then use fit: training data, validation data, number of epochs,
batch size, learning rate, verbose
* Do not use test data in the learning process
 Further split the training data into training and validation

« Epochs: the number of times that the learning algorithm will work
through the entire training dataset

 Batch size: the number of samples to work through before updating
the internal model parameters.

* verbose: how much details you want to see



Learning rate

* Learning rate: This is the rate at which the neural network
weights change between iterations.

* A large learning rate may cause large swings in the weights, and we
may never find their optimal values.

A low learning rate is good, but the model will take more iterations to
converge.

* Itis a good idea to start low, say at 1e-4. If the training is very slow,
increase this value. If your model is not learning, try decreasing
learning rate.



Source: embeddings and CNN

* https://machinelearningmastery.com/use-word-embedding-
layers-deep-learning-keras/#.~:text=2.-
,Keras%20Embedding%20Layer,AP1%20also%20provided%
20with%20Keras.

A tutorial with examples and explanation

* https://developers.google.com/machine-learning/guides/text-
classification

* More code for pre-processing and train standalone word
vectors.

* More online tutorials on the assignment page



