
AIML428

• Thursday Presentations
• Nanda, Ella, Hadas, Huixin(Joy), Ye li, Guangyong
• Submit your pptx file using our submission system

• Today
• Implement CNN for text classification

• Project
• Step1; due this Friday
• You may follow one of the online tutorials 
• Submit the source files online

• Do not include the dataset 
• Use README file to explain 

• where the data is, 
• how to run your file
• A very brief summary on what you have done



Python for CNN with word embedding 

• A simplified example is attached at schedule page

• Sequence model: preserving word order

• Train word embedding as part of a deep learning model

• Use pre-trained word embedding

• Built CNN

• Train CNN: compile, fit

• Discussions



Prepare data: Sequential model 

• Sequence model: preserving word order

• Creating a tokenizer object, tokenizes the texts into words

• Each word is transferred to its integer ID
• Creates a vocabulary using all words or the top K tokens (e.g. 20000)

• Transforming text documents to sequence of word IDs and 
pad them

• Converts the tokens into sequence vectors
• Pads the sequences to a fixed sequence length



Design the model

• Embedding layer

• Convolutional layer

• Pooling layer

• Dense layer

• Output layer (Dense layer)



Embedding with random initial weights

• a word embedding can be learned as part of a deep learning 
model. This can be a slower approach, but tailors the model 
to a specific training dataset.

• The Embedding layer is initialized with random weights and 
will learn an embedding for all of the words in the training 
dataset.

• input_dim: This is the size of the vocabulary in the text data. 

• output_dim: This is the size of the vector space in which 
words will be embedded.

• input_length: This is the length of input sequences, as you 
would define for any input layer of a Keras model.



How to use pre-trained word embeddings

• Each word index gets mapped to a dense vector of real 
values representing that word’s location in semantic space

• Loading the pre-trained word embeddings
• Dictionary: 

• Key: word
• Value: vector

• Create a mapping of token and their respective embeddings
• Each word ID, maps to a vector



The Input: example



Embedding layer Parameters

• vocab_size as input_dim: how many unique words (or top K) in 
the vocabulary

• Embedding dimensions as output_dim: The number of 
dimensions we want to use to represent word embeddings—
i.e., the size of each word vector. Recommended values: 50–
300. If you use pre-trained embeddings, it depends on which 
file you use.

• weights: the mapping between word Id to their embeddings

• input_length is the maximum length of documents.

• Trainable: whether you want to change these weights
• Default is trainable, normally trainable is better



Summary on Embeddings

• Can add a embedding layer without the weights, so the 
word vector weights are learned as part of the network, but 
can be slow

• Can use pre-trained

• Can train a standalone word embedding using local data 
set, save and use later, more efficient

101



Convolutional layer

• 1D

• Number of filters

• Kernel size: The size of the convolution window. 
Recommended values: 3 or 5



Parameters

• Number of layers in the model: The number of layers in a neural 
network is an indicator of its complexity. 

• Too many layers will allow the model to learn too much information 
about the training data, causing overfitting. 

• Too few layers can limit the model’s learning ability, causing 
underfitting. 

• For text classification datasets, normally we use 6 or 9 layers. In the 
example, we tried one, two, three layers.

• Number of units per layer: The units in a layer must hold the 
information for the transformation that a layer performs. 

• For the first layer, this is driven by the number of features. 
• In subsequent layers, the number of units depends on the choice of 

expanding or contracting the representation from the previous layer. 
• Try to minimize the information loss between layers. We tried unit 

values in the range [8, 16, 32, 64], and 32/64 units worked well.



The output: binary or multiple-class

the activation function of the last layer 
should be softmax, and the loss 
function used to train the model should 
be sparse categorical cross-entropy.
Softmax is a function that takes as input a vector 

of K real numbers, and normalizes it into a 
probability distribution consisting of K 
probabilities. All values are normalised to range 

[0, 1] and sum to one.

the activation function of 
the last layer should be a 
sigmoid function, and the 
loss function used to train 
the model should be 
binary cross-entropy



Train the model, learning parameters

• Metric: How to measure the performance of our model using 
a metric. 

• Loss function: A function that is used to calculate a loss value 
that the training process then attempts to minimize by tuning 
the network weights. 

• Optimizer: A function that decides how the network weights 
will be updated based on the output of the loss function. 

Metric accuracy

Loss function - binary classification binary_crossentropy

Loss function - multi class 
classification

sparse_categorical_crossentropy

Optimizer adam



Compile and fit

• In Keras, we can pass these learning parameters to a model 
using the compile method. 

• Then use fit: training data, validation data, number of epochs, 
batch size, learning rate, verbose

• Do not use test data in the learning process
• Further split the training data into training and validation

• Epochs: the number of times that the learning algorithm will work 
through the entire training dataset

• Batch size: the number of samples to work through before updating 
the internal model parameters. 

• verbose: how much details you want to see



Learning rate

• Learning rate: This is the rate at which the neural network 
weights change between iterations. 

• A large learning rate may cause large swings in the weights, and we 
may never find their optimal values. 

• A low learning rate is good, but the model will take more iterations to 
converge. 

• It is a good idea to start low, say at 1e-4. If the training is very slow, 
increase this value. If your model is not learning, try decreasing 
learning rate.



Source: embeddings and CNN

• https://machinelearningmastery.com/use-word-embedding-
layers-deep-learning-keras/#:~:text=2.-
,Keras%20Embedding%20Layer,API%20also%20provided%
20with%20Keras.

• A tutorial with examples and explanation
• https://developers.google.com/machine-learning/guides/text-

classification

• More code for pre-processing and train standalone word 
vectors.

• https://machinelearningmastery.com/develop-word-embedding-model-
predicting-movie-review-sentiment/

• More online tutorials on the assignment page


