Admin

- Teaching evaluation is closing soon, do it on NuKu
- Project full code due in week 6
- Project marking in week 7
- Time management
 - Research, Open ended,
 - Block some days for project

Today

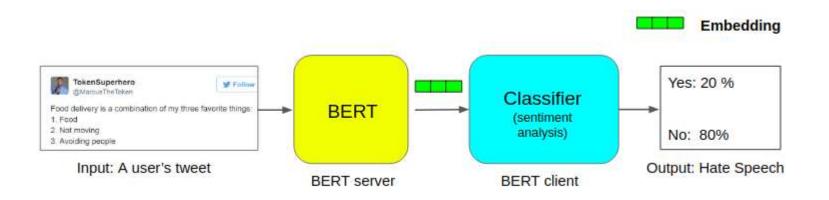
- Last lecture on the first half of this course
- BERT for text classification
- Some of my thesis students' projects
 - Representation, Multi-view representation
 - Learning the network architecture and meta parameters

BERT and text classification:

 The pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of NLP tasks.

Typically,

- Each sentence is changed to a vector
- List of sentences is changed to a matrix, can be directly fit into any classifier.
- Many extensions: Sentence-BERT is much faster



BERT for text classification

- Use CLS token as sentence representation
- Use the output of the final encoder layer
- Use the output of any encoder layer
- Use the pretrained token embeddings from BERT
- You may try simple classifiers
 - LR
 - MLP
- Or CNN

Python implementation

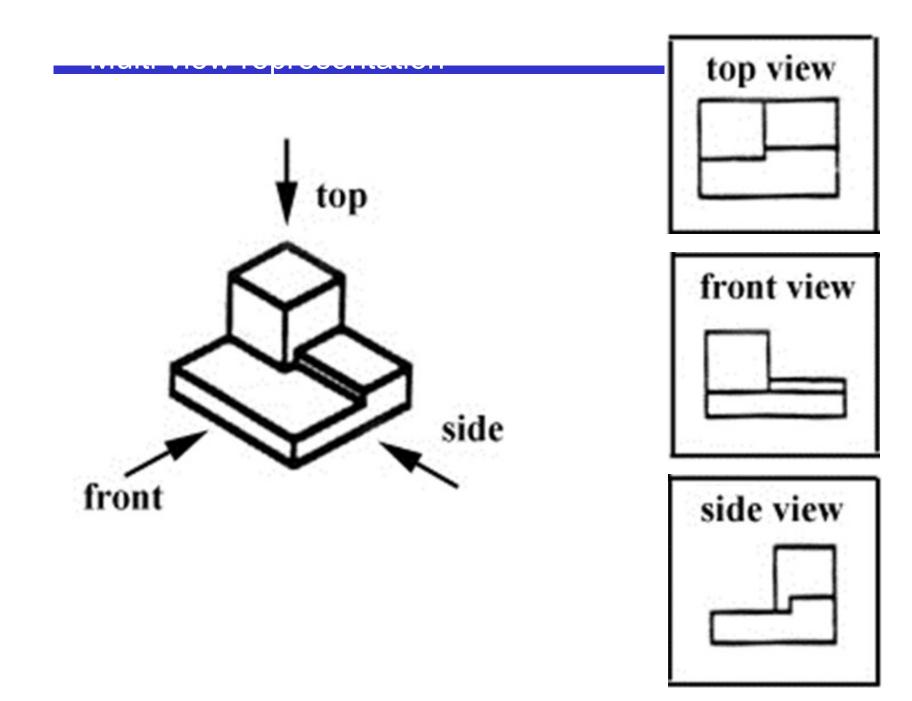
- Code from Tobias Tuan Ha
- Sentence embedding using RoBERTa
- <u>https://colab.research.google.com/drive/13ZKL3b18j3lvLXtGq</u> <u>YY4VuGlwRnUFKmL</u>
- BERT for text classification tutorial (with IMDB)
 - <u>https://www.tensorflow.org/tutorials/text/classify_text_with_bert</u>
 - BERT encoder as a kerasLayer
- More recent tutorial
 - https://curiousily.com/posts/sentiment-analysis-with-bert-and-huggingface-using-pytorch-and-python/

Features (Representation)

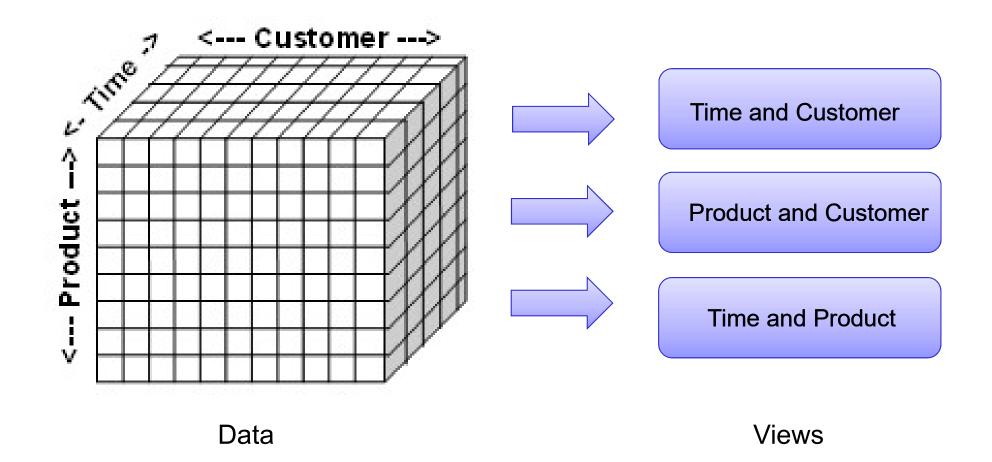
mass	width	height	color_score	label
192	8.4	7.3	0.55	1
180	8.0	6.8	0.59	1
86	6.2	4.7	0.80	2
176	7.4	7.2	0.60	1
90	7.1	5.6	0.75	2

Text representation

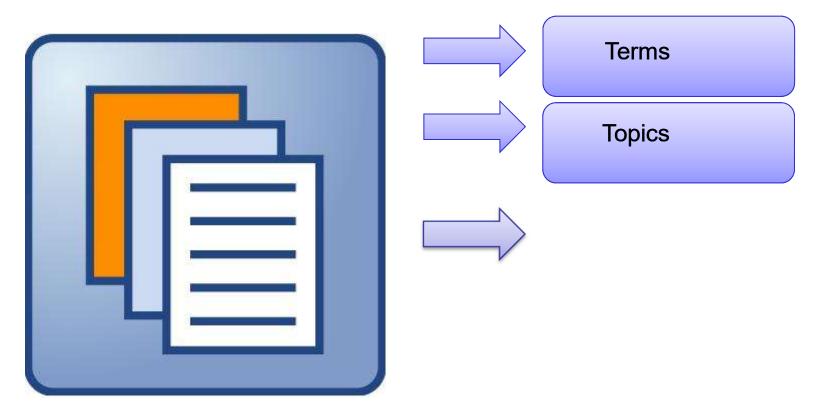
- TF.IDF
- Word embedding
- Multiple sense embedding
- Sentence representation
- Higher level
 - Document representation
- Multi-view representation



Data Representation



Multiple Views of Documents



<u>Abdul Wahid</u>, Xiaoying Gao, <u>Peter Andreae</u>: **Multi-view clustering of web documents using multi-objective genetic algorithm.** <u>IEEE</u>

Congress on Evolutionary Computation 2014: 2625-2632

Ontology based representation

(Domain knowledge)

An example:

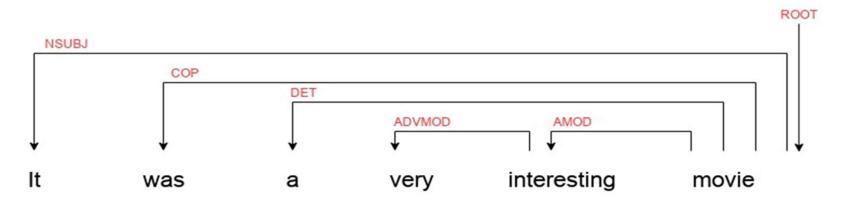
• "Hyperlipidemia: The patient's Lipitor was increased to 80 mg q.d. A progress note in the patient's chart from her assisted living facility indicates that the patient has had shortness of breath for one day."

Detected Phrases	Extracted Concepts	Scientific Name	Selected
hyperlipidaemia	[Disease or Syndrome] [Finding]	hyperlipidemia	×
80	[Quantitative Concept]	80	×
charter and of here of h	[Sign or Symptom]		\checkmark
shortness of breath	[Clinical Attribute]	Dyspnea	×
	[Intellectual Product]		×
one day	[Temporal Concept]	One day	×

Mahdi Abdollahi, Xiaoying Gao, Yi Mei, Shameek Ghosh, Jinyan Li, Michael Narag: Substituting clinical features using synthetic medical phrases: Medical text data augmentation techniques. Artif. Intell. Medicine 120: 102167 (2021)

Term dependency

Dependency Parse Trees



Dependency based word embeddings: context contains the words with dependency, may be far away in a sentence.

Normal word embedding uses a sliding window of fixed size to get the context.

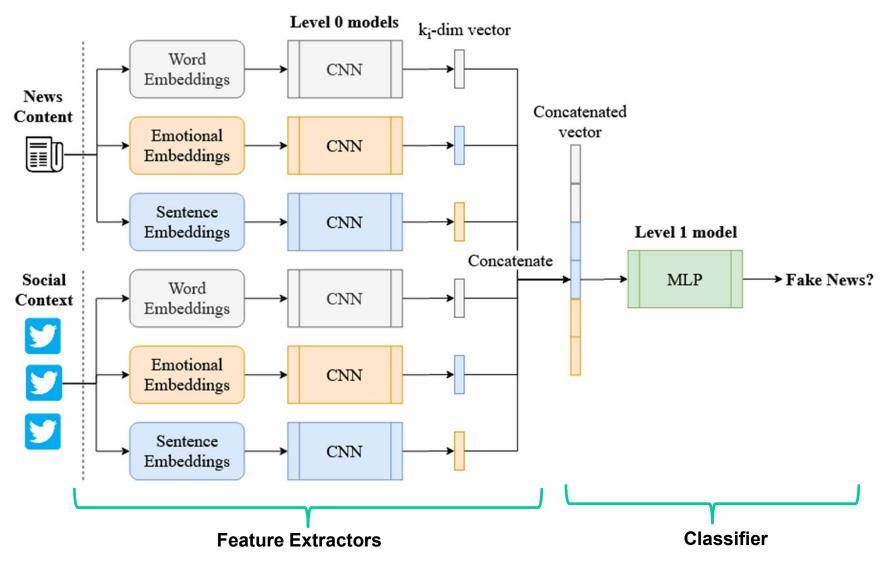
<u>Kosisochukwu Judith Madukwe</u>, Xiaoying Gao, <u>Bing Xue</u>: **Dependency-Based Embedding for Distinguishing Between Hate Speech and Offensive** Language. <u>WI/IAT 2020</u>: 860-868

Emotion embedding

 NRC Word-Emotion Association Lexicon (EmoLex) [Mohammad2013]

	anger	anticipation	disgust	fear	joy	negative	positive	sadness	surprise	trust
I.	0	0	0	0	0	0	0	0	0	0
love	0	0	0	0	1	0	1	0	0	0
this	0	0	0	0	0	0	0	0	0	0
movie	0	0	0	0	0	0	0	0	0	0

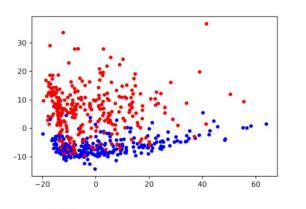
Multi-view representation for fake news detection



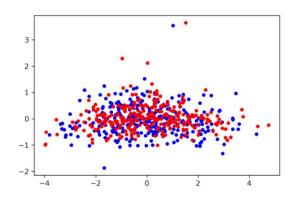
Tuan Ha, Xiaoying Gao: Fake News Detection Using Multiple-View Text Representation. PRICAI (2) 2021: 100-112

Comparison of Features

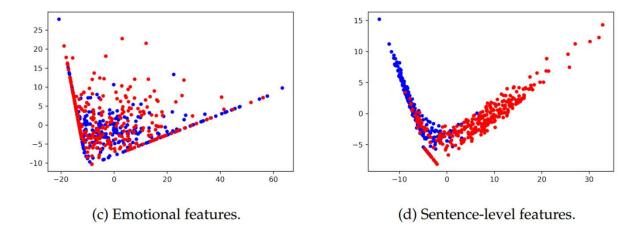
• Projection of text representations (Red: fake news, Blue: real news)



(a) Multiple-view Text Representation.

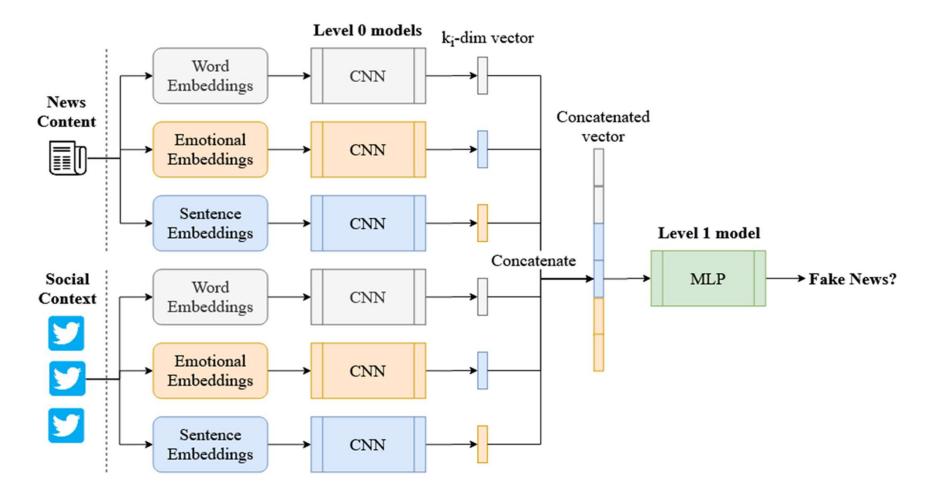


(b) Word-level features.



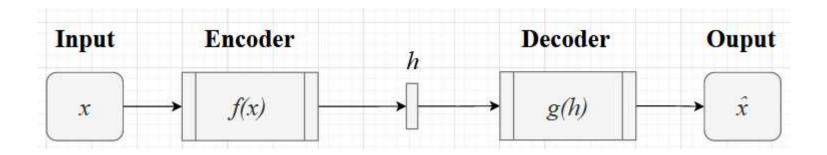
How to learn the multi-view representation?

Tobias Tuan Ha and Xiaoying Gao Evolving Multi-view Autoencoders for Text Classification, WI-IAT21,



Auto-encoders

• A class of neural networks, which are trained to attempt to approximately copy their input x to their output \hat{x} .

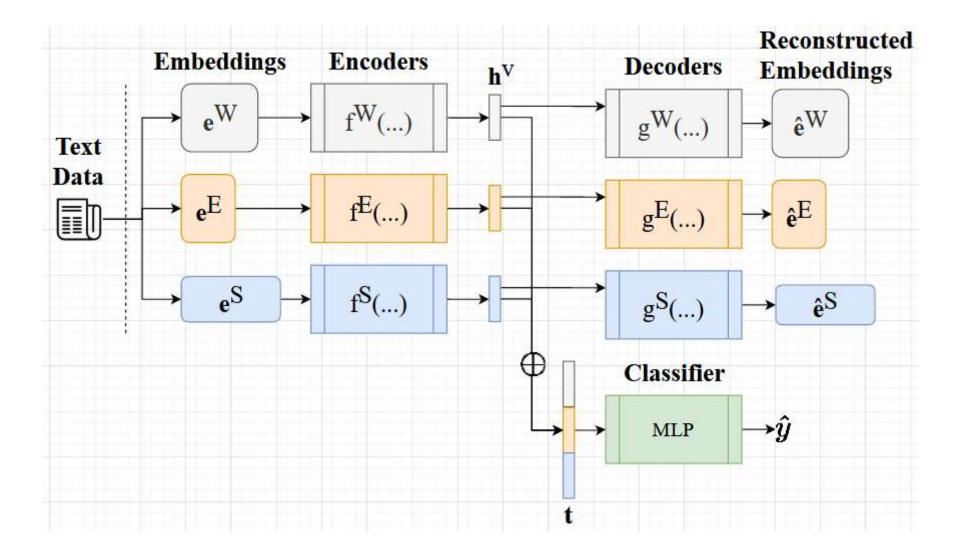


With the simplest Autoencoder, the learning process is described as minimising the loss function

L(x, g(f(x)))

where L is a loss function such as Mean Squared Error (MSE)

Autoencoder to learn multi-view representation



Loss function for learning simultaneously

- In order to train the Autoencoders and the classifier, we introduce an objective function containing two types of losses:
 - the Mean Squared Errors (MSE) as the reconstruction errors of the Autoencoders, and
 - the Cross Entropy as the loss of the classifier.

$$\frac{1}{m} \sum_{i=1}^{m} \left(\alpha \frac{1}{|V|} \sum_{\upsilon \in V} (\boldsymbol{e}_{i}^{\upsilon} - \hat{\boldsymbol{e}}_{i}^{\upsilon})^{2} + \beta(-\sum_{j=1}^{c} (\boldsymbol{y}_{i}^{j} \log(\boldsymbol{p}_{i}^{j}))) \right)$$

Leaning the network architecture: NAS

- Learning methods
 - Evolutionary Computation
 - Genetic algorithms
 - Genetic programming
- Character level model
 - Trevor Londt, Xiaoying Gao, Peter Andreae: Evolving Character-Level DenseNet Architectures Using Genetic Programming. EvoApplications 2021: 665-680

• Word level model

- Hayden Andersen, Sean Stevenson, Tuan Ha, Xiaoying Gao, Bing Xue:
- Evolving Neural Networks for Text Classification using Genetic Algorithm-based Approaches. CEC 2021: 1241-1248

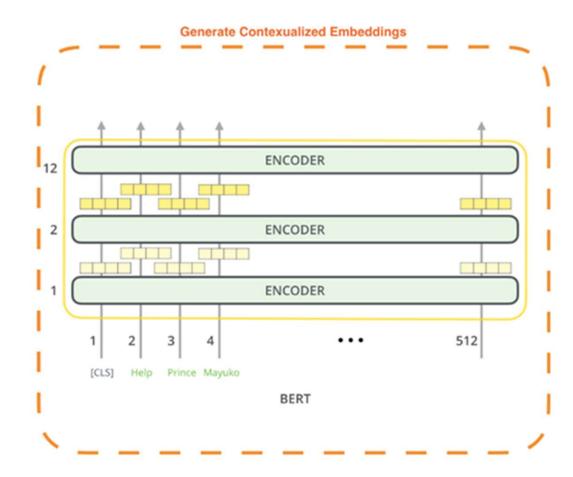
<u>Hayden Andersen</u>, Xiaoying Gao, <u>Bing Xue</u>, <u>Mengjie Zhang</u>: **Evolving network structures for text classification using genetic algorithms.** <u>GECCO</u> <u>Companion 2020</u>: 109-110

BERT based model

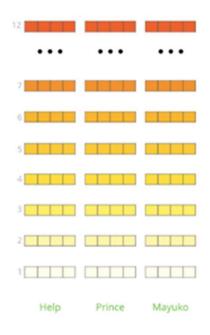
Kosisochukwu Judith Madukwe, Xiaoying Gao, Bing Xue:

A GA-Based Approach to Fine-Tuning BERT for Hate Speech Detection. SSCI 2020: 2821-2828

CLS token, Layers, which layer?

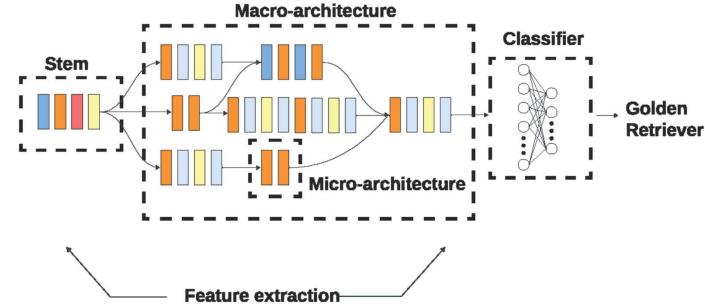


The output of each encoder layer along each token's path can be used as a feature representing that token.

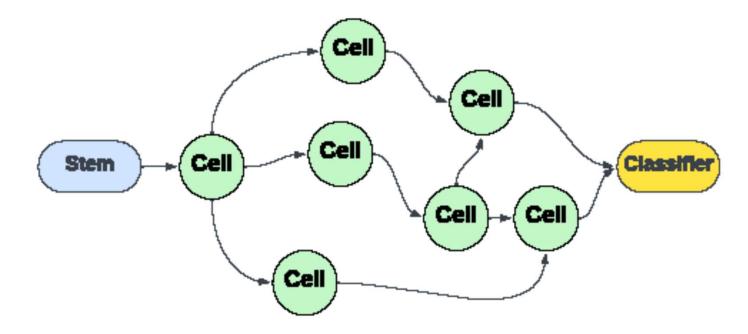


But which one should we use?

CNN architecture search



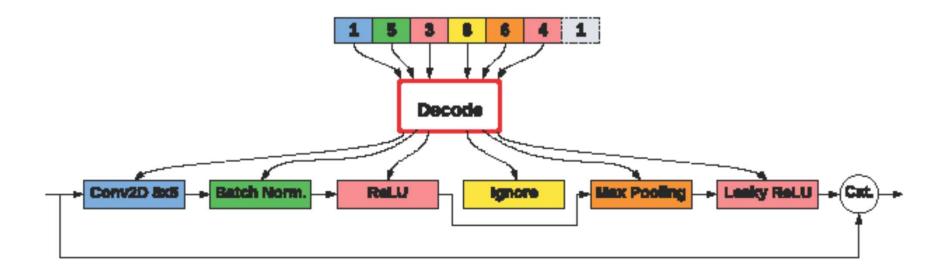
Cellular encoding for NAS



- Sequential
- Parallel

Co- evolution

- Cellular encoding + GP for macro-architecture
- GA for micro-architecture, stem, classifier



Co- evolution