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Introduction to 3D Computer Graphics

• 3D  2D projection

• 3D versions of 2D operations
• clipping, transforms, matrices

• 3D scan conversion
• depth-sort, z-Buffer
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Modern graphics cards

• most graphics processing is done on a separate graphics card

• the CPU communicates primitive data over the bus to the special purpose Graphics 
Processing Unit (GPU)

• video memory (dual-ported Dynamic RAM (DRAM)) used for storing the image to 
be output and textures
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Double buffering

• if we allow the currently displayed image to be updated then we may see bits of the 
image being displayed halfway through the update
• this can be visually disturbing, especially if we want the illusion of smooth animation

• double buffering solves this problem: we draw into one frame buffer and display from 
the other

• when drawing is complete we flip buffers
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Graphics card architecture
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A graphics card architecture

178
based on nVIDIA’s GeForce 6 architecture
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Surfaces in 3D: polygons

• 3 vertices (triangle) must be planar

• > 3 vertices, not necessarily planar
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this vertex is in front 

of the other three, 

which are all in the 

same plane

a non-planar 

“polygon” rotate the polygon about 

the vertical axis

should the result be this

or this?
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Splitting polygons into triangles

• some graphics processors accept only triangles

• an arbitrary polygon with more than three vertices isn’t guaranteed to be planar; a 
triangle is

180

which is preferable?

?
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Three-dimensional objects

• polyhedra comprise multiple connected polygons

• polygon meshes
• open or closed

• manifold or non-manifold

• curved surfaces
• must be converted to polygons to be drawn
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3D transformations

• 3D homogeneous co-ordinates

• 3D transformation matrices
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In any 2D coordinate system when you choose two of xyz-axis, if you want 

a counter-clockwise rotation angle theta, for y-z (rotate about x-axis, means 

rotate about the origin in the yz-plane) and x-y, you will find the 

relationship between the two axis is the same with how we normally define 

a 2D coordinate system, where when the first axis is pointing right, the 

second should be pointing up.

However, in a right-handed 3D system, for x-z plane, (when we want to 

rotate about the y-axis), you can see when x is poiting right, z’s positive 

direction is pointing down.

CGRA 151 — Trimester 2 — 2019



3D rotations – right-handed
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• To be consistent for rotation about the three axis in right-handed system, 
we can define “rotating by ” as “rotating about one axis by a counter-
clockwise angle  ”
• If just look at the 2 dimensions, we are doing a rotation in a 2D plane about the origin.

3D rotations – what do we really have?
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If b changes the positive direction:For the general form we learned in 2D:
For counter-clockwise rotation: 

a,b represent any two dimensions out of x,y,z

Sin(-a) = -sin(a)

Introduction to Computer Graphics

© 2019 Neil Dodgson 184

CGRA 151 — Trimester 2 — 2019



• But if we use the same rotation matrix no matter where the second axis 
points, we get a general form to rotate from one axis to another axis:

3D rotations – what do we really have?
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We actually rotate by  from the positive 
direction of the first axis to the positive 

direction of the second axis

Sin(-a) = -sin(a)

Cos(-a) = cos(a)

Trigonometry
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3D rotations – left-handed
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For left-handed coordinate system, normally define clockwise rotation by 

rotation about x-axis rotation about y-axis rotation about z-axis
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3D transformations are not commutative
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A transformation example I

• the graphics package Open Inventor defines a cylinder to be:

• centre at the origin, (0,0,0)

• radius 1 unit

• height 2 units, aligned along the y-axis

• this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

• we want to draw a cylinder of:

• radius 2 units

• the centres of its two ends located at (1,2,3) and (2,4,5)

• its length is thus 3 units

• what transforms are required?
and in what order should they be applied?
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A transformation example 2

• order is important:
• scale first

• rotate 

• translate last

• scaling and translation are straightforward
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A transformation example 3

• rotation is a multi-step process
• break the rotation into steps, each of which is rotation about a principal axis

• work these out by taking the desired orientation back to the original axis-aligned 
position

• the centres of its two ends located at (1,2,3) and (2,4,5)

• desired axis: (2,4,5)–(1,2,3) = (1,2,2)

• original axis: y-axis = (0,1,0) – (0,-1,0) = (0,2,0)

190
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A transformation example 4

• desired axis: (2,4,5)–(1,2,3) = (1,2,2)

• original axis: y-axis = (0,2,0)

• zero the z-coordinate by rotating about the x-axis
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A transformation example 5

• then zero the x-coordinate by rotating about the z-axis

• we now have the object’s axis pointing along the y-axis
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A transformation example 6

• the overall transformation is:
• first scale

• then take the inverse of the rotation we just calculated

• finally translate to the correct position
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Application: display multiple instances

• transformations allow you to define an object at one location and then place multiple 
instances in your scene
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3D  2D projection

• to make a picture
• 3D world is projected to a 2D image

• like a camera taking a photograph

• the three dimensional world is projected onto a plane

195

The 3D world is described as a set 

of (mathematical) objects

e.g. sphere radius (3.4)

centre (0,2,9)

e.g. box size (2,4,3)

centre (7, 2, 9)

orientation (27º, 156º)

Line of sight intersect with a point on an object

CGRA 151 — Trimester 2 — 2019



Computer Graphics & Image Processing

© 2019 Neil Dodgson

Types of projection

• parallel
• e.g.

• useful in CAD, architecture, etc

• looks unrealistic

• perspective
• e.g.

• things get smaller as they get farther away

• looks realistic
• this is how cameras work
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Normally, when we talk about projection, we mean projecting to a plane 

which is parallel to x-y plane, perpendicular to z axis

Parallel projection include both oblique projection and orthographic 

projection, parallel lines of the source object produce parallel lines in 

the projected image.

Parallel projection is the way we draw stereo geometry in high school. It is 

also used in modern CAD designing software. Because they need to check 

the accurate distance from the different views.

Oblique projection is a type of parallel projection:

it projects an image by intersecting parallel rays (projectors), try to 

depict the 3 dimensional information.

from the three-dimensional source object with the drawing surface 

(projection plane).

Oblique projection is commonly used in technical drawing. The cavalier 
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projection was used by French military artists in the 18th century to 

depict fortifications.

Like cavalier perspective, one face of the projected object is parallel 

to the viewing plane, and the third axis is projected as going off at an 

angle (typically 63.4°). Unlike cavalier projection, where the third axis 

keeps its length, with cabinet projection the length of the receding 

lines is cut in half.
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Perspective

• First known example
• Holy Trinity fresco

• Masaccio,1425

• Santa Maria Novella, Florence

197

God’s gift of Christ on the cross.

Lines converge to point at infinity level with the viewer’s eye.

When it was executed, no actual coffered barrel vault had been constructed 

since the Romans.

Plus Mary, St John and kneeling donors outside the frame of the picture.
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School of Athens by Raphael

painted 1510–11

Fresco in the

Vatican

Perspective projection
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Perspective projection examples
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Gates Building – the rounded version
(Stanford University)

Gates Building – the rectilinear version
(University of Cambridge)
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False perspective
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MC Escher’s 1961 lithograph Waterfall

Escher Haus in the Hague

Ames Room in the City of Sciences in Paris
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Calculating 
perspective

201

Albrecht Dürer’s 1525 woodcut ‘Man drawing a Lute’

A lute is any plucked string instrument with a neck (either fretted or 

unfretted)
Metropolitan Museum of Art in New York

Computer Graphics & Image Processing CGRA 151 — Trimester 2 — 2019

© 2019 Neil Dodgson 201



Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing volume
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eye point

(camera point)

viewing plane

(screen plane)

the rectangular 

pyramid is the viewing 

volume

everything within the 

viewing volume is 

projected onto the 

viewing plane
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Geometry of perspective projection
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Projection as a matrix operation
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Perspective projection
with an arbitrary camera

• we have assumed that:
• screen centre at (0,0,d)

• screen parallel to xy-plane

• z-axis into screen

• y-axis up and x-axis to the right

• eye (camera) at origin (0,0,0)

• for an arbitrary camera we can either:
• work out equations for projecting objects 

about an arbitrary point onto an arbitrary 
plane

• transform all objects into our standard co-
ordinate system (viewing co-ordinates) and 
use the above assumptions

205
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A variety of transformations

• the modelling transform and viewing transform can be multiplied together to produce a single 
matrix taking an object directly from object co-ordinates into viewing co-ordinates

• either or both of the modelling transform and viewing transform matrices can be the identity 
matrix

• e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates

• this is a useful set of transforms, not a hard and fast model of how things should be done
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Viewing transform 1

• the problem:
• to transform an arbitrary co-ordinate system to the default viewing co-ordinate 

system

• camera specification in world co-ordinates
• eye (camera) at (ex, ey, ez)

• look point (centre of screen) at (lx, ly, lz)

• up along vector (ux, uy, uz)

• perpendicular to

207

world

co-ordinates

viewing

co-ordinatesviewing 

transform

u

e

l

el

Before, we talked about how to transform some vector into another vector, 

or to the new positions. But now we are talking about transform a whole 

coordinate system, which means that these transformations can be 

performed to change the coordinates of any given points from one system 

to another.

A lucky thing is that these transformations are the same for any position if 

you find them.

We have to find something we have already know what’s the coordinates 

after transformations.

CGRA 151 — Trimester 2 — 2019



Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 2

• translate eye point, (ex,ey,ez), to origin, (0,0,0)

• scale so that eye point to look point distance,      , is distance from origin to screen 
centre, d
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Viewing transform 3

• need to align line      with z-axis
• first transform e and l into new co-ordinate system

• then rotate e''l'' into yz-plane, rotating about y-axis
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Viewing transform 4

• having rotated the viewing vector onto the yz plane, rotate it 
about the x-axis so that it aligns with the z-axis
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Viewing transform 5

• the final step is to ensure that the up vector actually points up, i.e. along the positive 
y-axis
• actually need to rotate the up vector about the z-axis so that it lies in the positive y half of the yz

plane
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why don’t we need to multiply u by S or T?

u is a vector rather than a point, all we care about is its direction

Translating a vector makes no difference to its direction

Scaling makes no difference to its direction, so long as the scaling is the 

same in all dimensions
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Viewing transform 6

• we can now transform any point in world co-ordinates to the equivalent point in 
viewing co-ordinate

• in particular:

• the matrices depend only on e, l, and u, so they can be pre-multiplied together
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Clipping in 3D

• clipping against a volume in viewing co-ordinates

213

x

y

z

d

2b

2a

a point (x,y,z) can be clipped 

against the pyramid by 

checking it against four 

planes:

x z
a

d
x z

a

d

y z
b

d
y z

b

d

 − 
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What about clipping in z?

• need to at least check for z < 0 to 
stop things behind the camera from 
projecting onto the screen

• can also have front and back clipping 
planes:
z > zf and   z < zb

• resulting clipping volume is called the 
viewing frustum

214

zf
x

y

z

zb

x

y

z

oops!
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Clipping in 3D — two methods

• clip against the viewing frustum
• need to clip against six planes

• project to 2D (retaining z) and clip against the axis-aligned cuboid
• still need to clip against six planes

• these are simpler planes against which to clip

• this is equivalent to clipping in 2D with two extra clips for z

215

x z
a

d
x z

a

d
y z

b

d
y z

b

d
z z z zf b= − = = − = = =

x a x a y b y b z z z zf b= − = = − = = =

Which is best? It depends on how you implement things. The top version 

requires those multiplications. The bottom version requires that you do the 

projection first.
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Bounding volumes & clipping

• can be very useful for reducing the amount of work involved in clipping

• what kind of bounding volume?

• axis aligned box

• sphere

• can have multiple levels of bounding volume

216
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3D scan conversion

• lines

• polygons
• depth sort

• Binary space partition tree

• z-buffer

217
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3D line drawing

• given a list of 3D lines we draw them by:
• projecting end points onto the 2D screen

• using a line drawing algorithm on the resulting 2D lines

• this produces a wireframe version of whatever objects are represented by the lines

218

So your 2D line drawing algorithms from earlier in the course work 

perfectly in 3D.
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Hidden line removal

• by careful use of cunning algorithms, lines that are hidden by surfaces can be carefully 
removed from the projected version of the objects
• still just a line drawing

• extraordinarily important in the 1960s and 1970s

• will not be covered further in this course

219
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3D polygon drawing

• given a list of 3D polygons we draw them by:
• projecting vertices onto the 2D screen

• but also keep the z information

• using a 2D polygon scan conversion algorithm on the resulting 2D polygons

• in what order do we draw the polygons?
• some sort of order on z

• depth sort

• Binary Space-Partitioning tree

• is there a method in which order does not matter?
• z-buffer

220

It is not straight forward to get depth order according to the z coordinates. 

They are not polygons all parallel to image plane.
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Depth sort algorithm

① transform all polygon vertices into viewing co-ordinates
and project these into 2D, keeping z information

② calculate a depth ordering for polygons, based on the most distant z co-ordinate in 
each polygon

③ resolve any ambiguities caused by polygons overlapping in z

④ draw the polygons in depth order from back to front
• “painter’s algorithm”: later polygons draw on top of earlier polygons

• steps ① and ② are simple, step ④ is 2D polygon scan conversion, step ③ requires 
more thought

221
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Resolving ambiguities in depth sort

• may need to split polygons into smaller polygons to make a coherent depth ordering

222

OK

OK

split

1

1




❖



split

❖








Even when every pair of polygons are OK to get a depth sort, we may also 

get some conflict when we want to put them in a coherent list  concave
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Resolving ambiguities: algorithm

• for the rearmost polygon, P, in the list, need to compare each polygon, Q, which 
overlaps P in z
• the question is: can I draw P before Q?

① do the polygons y extents not overlap?

② do the polygons x extents not overlap?

③ is P entirely on the opposite side of Q’s plane from the viewpoint?

④ is Q entirely on the same side of P’s plane as the viewpoint?

• if all 4 tests fail, repeat ③ and ④ with P and Q swapped
(i.e. can I draw Q before P?), if true swap P and Q

• otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

• draw rearmost polygon once it has been completely checked

223

tests get 

more 

expensive

This algorithm gets awfully complicated awfully quickly. Is it really the best 

way to do things? 

For small numbers of polygons with few overlaps it is very good. For a 

modern system with lots of polygons and lots of overlaps it is very 

expensive.

Robot with the backmost rectangle can fail 3 but pass 4
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Split a polygon by a plane

• remember the Sutherland-Hodgman algorithm
• splits a 2D polygon against a 2D line

• do the same in 3D: split a (planar) polygon by a plane

• line segment defined by (xs,ys,zs) and (xe,ye,ze)

• clipping plane defined by ax+by+cz+d=0

• test to see which side of plane a point is on:
• k=ax+by+cz+d

• k negative: inside, k positive: outside, k=0: on edge

• apply this test to all vertices of a polygon; if all have the same sign then the polygon is entirely on 
one side of the plane

224

s
e

inside outside

p
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Depth sort: comments

• the depth sort algorithm produces a list of polygons which can be scan-converted in 
2D, backmost to frontmost, to produce the correct image

• it is cheap for small number of polygons, but becomes rapidly more expensive for 
large numbers of polygons

• the ordering is only valid from one particular viewpoint

225

CGRA 151 — Trimester 2 — 2019



Computer Graphics & Image Processing

© 2019 Neil Dodgson

Back face culling: a time-saving trick

• if a polygon is a face of a closed 
polyhedron and faces backwards with 
respect to the viewpoint then it need 
not be drawn at all because front 
facing faces would later obscure it 
anyway
• saves drawing time at the the cost of 

one extra test per polygon

• assumes that we know which way a 
polygon is oriented

• back face culling can be used in 
combination with any 3D scan-
conversion algorithm

226






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Binary Space-Partitioning trees

• BSP trees provide a way of quickly calculating the correct depth order:
• for a collection of static polygons

• from an arbitrary viewpoint

• the BSP tree trades off an initial time- and space-intensive pre-processing step against 
a linear display algorithm (O(N)) which is executed whenever a new viewpoint is 
specified

• the BSP tree allows you to easily
determine the correct order in
which to draw polygons by
traversing the tree in a simple way

227

The BSP tree was used 

in the 1993 game Doom

proof by contradiction
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BSP tree: basic idea

• a given polygon will be correctly scan-converted if:
• all polygons on the far side of it from the viewer are scan-converted first

• then it is scan-converted

• then all the polygons on the near side of it are scan-converted

228
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Making a BSP tree

• given a set of polygons
• select an arbitrary polygon as the root of the tree

• divide all remaining polygons into two subsets:

• those in front of the selected polygon’s plane

• those behind the selected polygon’s plane

• any polygons through which the plane passes are split into two polygons and the two parts put into the 
appropriate subsets

• make two BSP trees, one from each of the two subsets

• these become the front and back subtrees of the root

• may be advisable to make, say, 20 trees with different random roots to be sure of 
getting a tree that is reasonably well balanced

229

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a 
polygon by an arbitrary plane – both of which were discussed for the depth-sort algorithm.

See the example on Wikipedia:

https://en.wikipedia.org/wiki/Binary_space_partitioning
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Drawing a BSP tree

• if the viewpoint is in the front child side of the root’s polygon’s plane then:
• draw the BSP tree for the back child of the root

• draw the root’s polygon

• draw the BSP tree for the front child of the root

• otherwise:
• draw the BSP tree for the front child of the root

• draw the root’s polygon

• draw the BSP tree for the back child of the root

230
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Scan-line algorithms

• instead of drawing one polygon at a time:
modify the 2D polygon scan-conversion algorithm to handle all of the polygons at 
once

• the algorithm keeps a list of the active edges in all polygons and proceeds one scan-
line at a time
• there is thus one large active edge list and one (even larger) edge list

• enormous memory requirements

• still fill in pixels between adjacent pairs of edges on the scan-line but:
• need to be intelligent about which polygon is in front

and therefore what colours to put in the pixels

• every edge is used in two pairs:
one to the left and one to the right of it

231
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z-buffer polygon drawing

• depth sort & BSP-tree methods involve 
clever sorting algorithms followed by 
the invocation of the standard 2D 
polygon scan conversion algorithm

• by modifying the 2D scan conversion 
algorithm we can remove the need to 
sort the polygons
• makes hardware implementation easier

• this is the algorithm used on graphics cards

232
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z-buffer basics

• store both colour and depth at each 
pixel

• scan convert one polygon at a time 
in any order

• when scan converting a polygon:
• calculate the polygon’s depth at each 

pixel

• if the polygon is closer than the 
current depth stored at that pixel
• then store both the polygon’s colour and 

depth at that pixel

• otherwise do nothing

233
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z-buffer algorithm

234

FOR every pixel (x,y)

Colour[x,y] = background colour ;

Depth[x,y] = infinity ;

END FOR ;

FOR each polygon

FOR every pixel (x,y) in the polygon’s projection

z = polygon’s z-value at pixel (x,y) ;

IF z < Depth[x,y] THEN

Depth[x,y] = z ;

Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;

END FOR ;

END FOR ;

this requires you to 

project the polygon’s 

vertices to 2D and run 

the 2D polygon scan-

conversion algorithm

this requires you to 

modify the 2D algorithm 

so that it can compute 

the z-value at each pixel
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z-buffer example

235

9 9 9 9  

8 8 8 8  

7 7 7   

6 6 6   

5 5    

4 4    

9 9 6 6 6 6

8 6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6

5 5 6 6 6 6

4 4   6 6

9 2 3 4 5 6

8 3 4 5 6 6

6 4 5 6 6 6

6 5 6 6 6 6

5 5 6 6 6 6

4 4   6 6
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Interpolating depth values 1

• just as we incrementally interpolate x as we move along each edge of the polygon, we 
can incrementally interpolate z:
• as we move along the edge of the polygon

• as we move across the polygon’s projection
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Interpolating depth values 2

• we thus have 2D vertices, with added depth information

• we can interpolate x and y in 2D

• but z must be interpolated in 3D
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this point is halfway 
between front and 

back in 2D (measure 
with a ruler if you do 

not believe it)

this point is halfway 
between front and 
back in 3D (count the 
rungs on the ladder)
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Interpolating depth values 3
(the gory details: only for those who really want to know)

238

𝑥 = 𝑎𝑧 + 𝑏𝑑

𝑥′ = 𝑥
𝑑
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𝑧
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𝑧
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𝑧2
1

𝑧
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1

𝑧1
+ 𝑡

1

𝑧2

consider the projection onto the plane y=0

interpolate x′ in 2D space

now project to z=d
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Comparison of methods
Algorithm Complexity Notes 

Depth sort O(N log N) Need to resolve ambiguities 

Scan line O(N log N) Memory intensive 

BSP tree O(N) O(N log N) pre-processing step 

z-buffer O(N) Easy to implement in hardware 
 

239

◆ BSP is only useful for scenes which do not change

◆ as number of polygons increases, average size of polygon decreases, so time to 

draw a single polygon decreases

◆ z-buffer easy to implement in hardware: simply give it polygons in any order you 

like

◆ other algorithms need to know about all the polygons before drawing a single 

one, so that they can sort them into order

◆ z-buffer is the standard method used today because it is easy to implement in 

hardware
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Putting it all together - a summary

• a 3D polygon scan conversion algorithm needs to include:
• a 2D polygon scan conversion algorithm 

• 2D or 3D polygon clipping

• projection from 3D to 2D

• either:
• ordering the polygons so that they are drawn in the correct order

or:
• calculating the z value at each pixel and using a depth-buffer

240
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Gouraud shading

• for a polygonal model, given a colour at each vertex

• interpolate the colour across the
polygon, in a similar manner to that
used to interpolate z

• surface will look smoothly curved
• rather than looking like a set of polygons

• surface outline will still look polygonal
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[( ' , ' ), ,( , , )]x y z r g b1 1 1 1 1 1

[( ', ' ), ,
( , , )]
x y z

r g b
2 2 2

2 2 2

[( ', ' ), ,( , , )]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

Shading is used in drawing for depicting levels of darkness on paper by 

applying media more densely or with a darker shade for darker areas, and 

less densely or with a lighter shade for lighter areas. The appearance of the 

surface of objects you draw will look natural

In computer graphics, shading refers to the process of altering the color of 

an object/surface/polygon in the 3D scene, based on things like the surface's 

angle to lights, its distance from lights, its angle to the camera and material 

properties (e.g. bidirectional reflectance distribution function) to create 

a photorealistic effect.

Barycentric
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Flat vs Gouraud shading

• note how the interior is smoothly shaded but the outline remains polygonal

242
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Texture mapping

243

all surfaces are smooth and of uniform colour most surfaces are textured with

2D texture maps

the pillars are textured with a solid texture

without with
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Basic texture mapping

244

• a texture is simply an image, with 
a 2D coordinate system (u,v) 

• each 3D object is parameterised 
in (u,v) space

• each pixel maps to some part of 
the surface

• that part of the surface maps to 
part of the texture

u

v
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Paramaterising a primitive

245

• polygon: give (u,v)
coordinates for three 
vertices, or treat as part of a 
plane

• plane: give u-axis and v-axis 
directions in the plane

• cylinder: one axis goes up the 
cylinder, the other around 
the cylinder
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UV mapping
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Sampling texture space

247

u

v

Find (u,v) coordinate of the sample point on the object 

and map this into texture space

Sample texture space to determine the pixel’s colour

Object (on screen)“Texture space”
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248

Sampling texture space: finding the value

Nearest neighbour: the sample 

value is the nearest pixel value to 

the sample point.

Bi-linear: the sample value is the 

weighted mean of the four pixels 

around the sample point.

Bi-cubic (not shown): the sample value is the weighted mean of the sixteen 

pixels around the sample point. Runs at a quarter the speed of bi-linear.

Bilinear calculation:

P(i+t, j+s) = (1-t)(1-s) Pi,j + (t)(1-s) Pi+1,j + (1-t)(s) Pi,j+1 + (t)(s) Pi+1,j+1
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Texture mapping examples

249

nearest-

neighbour
bicubic

u

v

look at the bottom right hand corner of the distorted 

image to compare the two interpolation methods
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Up-sampling

250

nearest-

neighbour

blocky 

artefacts

bicubic

blurry 

artefacts

u

v
 if one pixel in the texture map covers 

several pixels in the final image, you 

get visible artefacts

 only practical way to prevent this is 

to ensure that texture map is of 

sufficiently high resolution that it does 

not happen
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Down-sampling

• if the pixel covers quite a large area 
of the texture, then it will be 
necessary to average the texture 
across that area, not just take a 
sample in the middle of the area

251
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Down-sampling
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without area averaging with area averaging
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Multi-resolution texture

• To make this fast, pre-calculate multiple versions of the texture at different 
resolutions and pick the appropriate resolution to sample from…

• Use tri-linear interpolation to a better result: use bi-linear interpolation on 
each of the two nearest levels and then linearly interpolate between the two 
interpolated values

253

average 2×2 pixels 
to make 1 pixel

CGRA 151 — Trimester 2 — 2019



Computer Graphics & Image Processing

© 2019 Neil Dodgson

The MIP (Latin:  Multum In Parvo) map

• an efficient memory arrangement for a multi-
resolution colour image

• pixel (x,y) is a bottom level pixel location (level 
0); for an image of size (m,n), it is stored at these 
locations in level k:

254

2 2

2

1 1

1

0 0

0
















 +







 +
kk

ynxm

2
,

2














 +








kk

ynx

2
,

2
























 +
kk

yxm

2
,

2

Red

GreenBlue

The origin of the term mipmap is an initialism of the Latin phrase Multum

In Parvo ("much in a small space")

A large block memory vs small blocks 
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