
Computer Graphics & Image Processing

© 2019 Neil Dodgson

Introduction to 3D Computer Graphics

• 3D  2D projection

• 3D versions of 2D operations
• clipping, transforms, matrices

• 3D scan conversion
• depth-sort, z-Buffer

173

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Modern graphics cards

• most graphics processing is done on a separate graphics card

• the CPU communicates primitive data over the bus to the special purpose Graphics
Processing Unit (GPU)

• video memory (dual-ported Dynamic RAM (DRAM)) used for storing the image to
be output and textures

174

output

stage
display

Buffer A
B

U

S

Buffer B

GPU

Texture

memory

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Double buffering

• if we allow the currently displayed image to be updated then we may see bits of the
image being displayed halfway through the update
• this can be visually disturbing, especially if we want the illusion of smooth animation

• double buffering solves this problem: we draw into one frame buffer and display from
the other

• when drawing is complete we flip buffers

175

output

stage

Buffer A

Buffer B

GPU

CGRA 151 — Trimester 2 — 2019

Graphics card architecture

176

output

stage
display

Buffer A
B

U

S

Buffer B

GPU

Texture

memory

What
happens in
the GPU?

Introduction to Computer Graphics

© 2019 Neil Dodgson 176

CGRA 151 — Trimester 2 — 2019

A graphics card architecture

178
based on nVIDIA’s GeForce 6 architecture

Vertex Shader
(programmable)

Rasterizer
(z-buffer)

Pixel Shader
(programmable)

Raster
Operations

Unit

Texture Unit

3D triangles

textures frame buffers

Geometry stage Rasterisation stage

Memory

Introduction to Computer Graphics

© 2019 Neil Dodgson 178

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Surfaces in 3D: polygons

• 3 vertices (triangle) must be planar

• > 3 vertices, not necessarily planar

179

this vertex is in front

of the other three,

which are all in the

same plane

a non-planar

“polygon” rotate the polygon about

the vertical axis

should the result be this

or this?

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Splitting polygons into triangles

• some graphics processors accept only triangles

• an arbitrary polygon with more than three vertices isn’t guaranteed to be planar; a
triangle is

180

which is preferable?

?

CGRA 151 — Trimester 2 — 2019

Three-dimensional objects

• polyhedra comprise multiple connected polygons

• polygon meshes
• open or closed

• manifold or non-manifold

• curved surfaces
• must be converted to polygons to be drawn

181

Introduction to Computer Graphics

© 2019 Neil Dodgson 181

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D transformations

• 3D homogeneous co-ordinates

• 3D transformation matrices

182

(, , ,) (, ,)x y z w x
w

y

w
z
w→

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















m

m

m

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1



















1 0 0

0 1 0

0 0 1

0 0 0 1

t

t

t

x

y

z



















cos sin

sin cos

 

 

−

















0 0

0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

 

 

−



















cos sin

sin cos

 

 

0 0

0 1 0 0

0 0

0 0 0 1

−



















translation

scale rotation about y-axisrotation about z-axis

x

y

zFor right-handed coordinate system

rotation about x-axisidentity

In any 2D coordinate system when you choose two of xyz-axis, if you want

a counter-clockwise rotation angle theta, for y-z (rotate about x-axis, means

rotate about the origin in the yz-plane) and x-y, you will find the

relationship between the two axis is the same with how we normally define

a 2D coordinate system, where when the first axis is pointing right, the

second should be pointing up.

However, in a right-handed 3D system, for x-z plane, (when we want to

rotate about the y-axis), you can see when x is poiting right, z’s positive

direction is pointing down.

CGRA 151 — Trimester 2 — 2019

3D rotations – right-handed

183

y

z

x x

y

z

Here, x axis points backward

For right-handed coordinate system, positive direction of z-axis is down

z axis points backward

rotation about x-axis rotation about y-axis rotation about z-axis

  

1 0 0 0

0 0

0 0

0 0 0 1

cos sin

sin cos

 

 

−



















cos sin

sin cos

 

 

−

















0 0

0 0

0 0 1 0

0 0 0 1

cos sin

sin cos

 

 

0 0

0 1 0 0

0 0

0 0 0 1

−



















Keep the x coordinate Keep the y coordinate Keep the z coordinate

x

y

z

y axis points backward

X is forward, O is backward

Introduction to Computer Graphics

© 2019 Neil Dodgson 183

CGRA 151 — Trimester 2 — 2019

• To be consistent for rotation about the three axis in right-handed system,
we can define “rotating by ” as “rotating about one axis by a counter-
clockwise angle  ”
• If just look at the 2 dimensions, we are doing a rotation in a 2D plane about the origin.

3D rotations – what do we really have?

184

a

b



𝑎′
𝑏′

=
cos𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

𝑎
𝑏

𝑎′
𝑏′

=
cos𝜃 sin 𝜃
−sin 𝜃 cos𝜃

𝑎
𝑏

a

b



If b changes the positive direction:For the general form we learned in 2D:
For counter-clockwise rotation:

a,b represent any two dimensions out of x,y,z

Sin(-a) = -sin(a)

Introduction to Computer Graphics

© 2019 Neil Dodgson 184

CGRA 151 — Trimester 2 — 2019

• But if we use the same rotation matrix no matter where the second axis
points, we get a general form to rotate from one axis to another axis:

3D rotations – what do we really have?

185

𝑎′
𝑏′

=
cos𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

𝑎
𝑏 a

b



We actually rotate by  from the positive
direction of the first axis to the positive

direction of the second axis

Sin(-a) = -sin(a)

Cos(-a) = cos(a)

Trigonometry

Introduction to Computer Graphics

© 2019 Neil Dodgson 185

CGRA 151 — Trimester 2 — 2019

3D rotations – left-handed

186
For left-handed coordinate system, normally define clockwise rotation by 

rotation about x-axis rotation about y-axis rotation about z-axis



















−

1000

0cossin0

0sincos0

0001





















 −

1000

0100

00cossin

00sincos























−

1000

0cos0sin

0010

0sin0cos





Keep the x coordinate Keep the y coordinate Keep the z coordinate

x

y
z

Here, x axis points backward z axis points backwardy axis points backward

y

z

 x

y

x

z



Test your understanding in left-handed coordinate system.

Introduction to Computer Graphics

© 2019 Neil Dodgson 186

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D transformations are not commutative

187

x

y

z

x

x

z

zx

y

z

-90°rotation

about z-axis

90°rotation

about x-axis

-90°rotation

about z-axis

90°rotation

about x-axis

opposite

faces

↭
↭

↭

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

A transformation example I

• the graphics package Open Inventor defines a cylinder to be:

• centre at the origin, (0,0,0)

• radius 1 unit

• height 2 units, aligned along the y-axis

• this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

• we want to draw a cylinder of:

• radius 2 units

• the centres of its two ends located at (1,2,3) and (2,4,5)

• its length is thus 3 units

• what transforms are required?
and in what order should they be applied?

188

x

y

2

2

CGRA 151 — Trimester 2 — 2019

A transformation example 2

• order is important:
• scale first

• rotate

• translate last

• scaling and translation are straightforward

189

x

y

2

2

x

y

3

4



















=

1000

0200

005.10

0002

S



















=

1000

4100

3010

5.1001

T

translate centre of

cylinder from (0,0,0) to

halfway between (1,2,3)

and (2,4,5)

scale from

size (2,2,2)

to size (4,3,4)

S

Introduction to Computer Graphics

© 2019 Neil Dodgson 189

CGRA 151 — Trimester 2 — 2019

A transformation example 3

• rotation is a multi-step process
• break the rotation into steps, each of which is rotation about a principal axis

• work these out by taking the desired orientation back to the original axis-aligned
position

• the centres of its two ends located at (1,2,3) and (2,4,5)

• desired axis: (2,4,5)–(1,2,3) = (1,2,2)

• original axis: y-axis = (0,1,0) – (0,-1,0) = (0,2,0)

190

Introduction to Computer Graphics

© 2019 Neil Dodgson 190

CGRA 151 — Trimester 2 — 2019

A transformation example 4

• desired axis: (2,4,5)–(1,2,3) = (1,2,2)

• original axis: y-axis = (0,2,0)

• zero the z-coordinate by rotating about the x-axis

191

22

1

22

2
arcsinθ

1000

0θcosθsin0

0θsinθcos0

0001

+
−=



















−
=R

y

z

)2,2,1(

()
)0,8,1(

0,22,1 22

=

+



Introduction to Computer Graphics

© 2019 Neil Dodgson 191

CGRA 151 — Trimester 2 — 2019

A transformation example 5

• then zero the x-coordinate by rotating about the z-axis

• we now have the object’s axis pointing along the y-axis

192

2
2

2

81

1
arcsinφ

1000

0100

00φcosφsin

00φsinφcos

+

=

















 −

=R

x

y

)0,8,1(

)0,3,0(

0,81,0
2

2

=









+



Introduction to Computer Graphics

© 2019 Neil Dodgson 192

CGRA 151 — Trimester 2 — 2019

A transformation example 6

• the overall transformation is:
• first scale

• then take the inverse of the rotation we just calculated

• finally translate to the correct position

193














=














−−

w

z

y

x

w

z

y

x

SRRT
1

2

1

1

'

'

'

'

Introduction to Computer Graphics

© 2019 Neil Dodgson 193

CGRA 151 — Trimester 2 — 2019

Application: display multiple instances

• transformations allow you to define an object at one location and then place multiple
instances in your scene

194

Introduction to Computer Graphics

© 2019 Neil Dodgson 194

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D  2D projection

• to make a picture
• 3D world is projected to a 2D image

• like a camera taking a photograph

• the three dimensional world is projected onto a plane

195

The 3D world is described as a set

of (mathematical) objects

e.g. sphere radius (3.4)

centre (0,2,9)

e.g. box size (2,4,3)

centre (7, 2, 9)

orientation (27º, 156º)

Line of sight intersect with a point on an object

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Types of projection

• parallel
• e.g.

• useful in CAD, architecture, etc

• looks unrealistic

• perspective
• e.g.

• things get smaller as they get farther away

• looks realistic
• this is how cameras work

196

(, ,) (,)x y z x y→

(, ,) (,)x y z x
z

y

z→

Normally, when we talk about projection, we mean projecting to a plane

which is parallel to x-y plane, perpendicular to z axis

Parallel projection include both oblique projection and orthographic

projection, parallel lines of the source object produce parallel lines in

the projected image.

Parallel projection is the way we draw stereo geometry in high school. It is

also used in modern CAD designing software. Because they need to check

the accurate distance from the different views.

Oblique projection is a type of parallel projection:

it projects an image by intersecting parallel rays (projectors), try to

depict the 3 dimensional information.

from the three-dimensional source object with the drawing surface

(projection plane).

Oblique projection is commonly used in technical drawing. The cavalier

CGRA 151 — Trimester 2 — 2019

projection was used by French military artists in the 18th century to

depict fortifications.

Like cavalier perspective, one face of the projected object is parallel

to the viewing plane, and the third axis is projected as going off at an

angle (typically 63.4°). Unlike cavalier projection, where the third axis

keeps its length, with cabinet projection the length of the receding

lines is cut in half.

Introduction to Computer Graphics

© 2019 Neil Dodgson 196

CGRA 151 — Trimester 2 — 2019

Perspective

• First known example
• Holy Trinity fresco

• Masaccio,1425

• Santa Maria Novella, Florence

197

God’s gift of Christ on the cross.

Lines converge to point at infinity level with the viewer’s eye.

When it was executed, no actual coffered barrel vault had been constructed

since the Romans.

Plus Mary, St John and kneeling donors outside the frame of the picture.

Computer Graphics & Image Processing CGRA 151 — Trimester 2 — 2019

© 2019 Neil Dodgson 197

Computer Graphics & Image Processing

© 2019 Neil Dodgson

198

School of Athens by Raphael

painted 1510–11

Fresco in the

Vatican

Perspective projection

CGRA 151 — Trimester 2 — 2019

Perspective projection examples

199

Gates Building – the rounded version
(Stanford University)

Gates Building – the rectilinear version
(University of Cambridge)

Introduction to Computer Graphics

© 2019 Neil Dodgson 199

CGRA 151 — Trimester 2 — 2019

False perspective

200

MC Escher’s 1961 lithograph Waterfall

Escher Haus in the Hague

Ames Room in the City of Sciences in Paris

Computer Graphics & Image Processing CGRA 151 — Trimester 2 — 2019

© 2019 Neil Dodgson 200

Calculating
perspective

201

Albrecht Dürer’s 1525 woodcut ‘Man drawing a Lute’

A lute is any plucked string instrument with a neck (either fretted or

unfretted)
Metropolitan Museum of Art in New York

Computer Graphics & Image Processing CGRA 151 — Trimester 2 — 2019

© 2019 Neil Dodgson 201

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing volume

202

eye point

(camera point)

viewing plane

(screen plane)

the rectangular

pyramid is the viewing

volume

everything within the

viewing volume is

projected onto the

viewing plane

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Geometry of perspective projection

203

y

z

d

(, ,)x y z
(', ' ,)x y d

x x
d

z

y y
d

z

'

'

=

=

(, ,)0 0 0

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Projection as a matrix operation

204

x x
d

z

y y
d

z

'

'

=

=

x

y

1/ d

z / d

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

1 0 0 0

0 1 0 0

0 0 0 1/ d

0 0 1/ d 0

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

x

y

z

1

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

z
z

1
'=

This is useful in the z-buffer

algorithm where we need to

interpolate 1/z values rather

than z values.















→



















wz

wy

wx

w

z

y

x

/

/

/

 remember

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Perspective projection
with an arbitrary camera

• we have assumed that:
• screen centre at (0,0,d)

• screen parallel to xy-plane

• z-axis into screen

• y-axis up and x-axis to the right

• eye (camera) at origin (0,0,0)

• for an arbitrary camera we can either:
• work out equations for projecting objects

about an arbitrary point onto an arbitrary
plane

• transform all objects into our standard co-
ordinate system (viewing co-ordinates) and
use the above assumptions

205

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

A variety of transformations

• the modelling transform and viewing transform can be multiplied together to produce a single
matrix taking an object directly from object co-ordinates into viewing co-ordinates

• either or both of the modelling transform and viewing transform matrices can be the identity
matrix

• e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates

• this is a useful set of transforms, not a hard and fast model of how things should be done

206

object in

world

co-ordinates

object in

viewing

co-ordinatesviewing

transform

object in

2D screen

co-ordinates
projection

object in

object

co-ordinates modelling

transform

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 1

• the problem:
• to transform an arbitrary co-ordinate system to the default viewing co-ordinate

system

• camera specification in world co-ordinates
• eye (camera) at (ex, ey, ez)

• look point (centre of screen) at (lx, ly, lz)

• up along vector (ux, uy, uz)

• perpendicular to

207

world

co-ordinates

viewing

co-ordinatesviewing

transform

u

e

l

el

Before, we talked about how to transform some vector into another vector,

or to the new positions. But now we are talking about transform a whole

coordinate system, which means that these transformations can be

performed to change the coordinates of any given points from one system

to another.

A lucky thing is that these transformations are the same for any position if

you find them.

We have to find something we have already know what’s the coordinates

after transformations.

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 2

• translate eye point, (ex,ey,ez), to origin, (0,0,0)

• scale so that eye point to look point distance, , is distance from origin to screen
centre, d

208

el

T =

−

−

−



















1 0 0

0 1 0

0 0 1

0 0 0 1

e

e

e

x

y

z

el S

el

el

el

= − + − + − =



















() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0

0 0 0

0 0 0

0 0 0 1

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 3

• need to align line with z-axis
• first transform e and l into new co-ordinate system

• then rotate e''l'' into yz-plane, rotating about y-axis

209

el

e S T e 0 l S T l'' ''=   = =  

22

1

''''

''
arccosθ

1000

0θcos0θsin

0010

0θsin0θcos

zx

z

ll

l

+
=

















 −

=R

x

z

(' ' , ' ' , ' ')l l lx y z

()0
2 2

, ' ' , ' ' ' 'l l ly x z+



Crooked

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

210

Viewing transform 4

• having rotated the viewing vector onto the yz plane, rotate it
about the x-axis so that it aligns with the z-axis

22

2

''''''

'''
arccosφ

1000

0φcosφsin0

0φsinφcos0

0001

zy

z

ll

l

+
=



















−
=R

y

z

(, ' ' ' , ' ' ')0 l ly z

()0 0

0 0

2 2
, , ' ' ' ' ' '

(, ,)

l l

d

y z+

=



l R l''' ''= 1

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 5

• the final step is to ensure that the up vector actually points up, i.e. along the positive
y-axis
• actually need to rotate the up vector about the z-axis so that it lies in the positive y half of the yz

plane

211

u R R u'''' =  2 1

22

3

''''''''

''''
arccosψ

1000

0100

00ψcosψsin

00ψsinψcos

yx

y

uu

u

+
=

















 −

=R

why don’t we need to multiply u by S or T?

u is a vector rather than a point, all we care about is its direction

Translating a vector makes no difference to its direction

Scaling makes no difference to its direction, so long as the scaling is the

same in all dimensions

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Viewing transform 6

• we can now transform any point in world co-ordinates to the equivalent point in
viewing co-ordinate

• in particular:

• the matrices depend only on e, l, and u, so they can be pre-multiplied together

212

world

co-ordinates

viewing

co-ordinatesviewing

transform

x

y

z

w

x

y

z

w

'

'

'

'














=     















R R R S T3 2 1

e l→ →(, ,) (, ,)0 0 0 0 0 d

M R R R S T=    3 2 1

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Clipping in 3D

• clipping against a volume in viewing co-ordinates

213

x

y

z

d

2b

2a

a point (x,y,z) can be clipped

against the pyramid by

checking it against four

planes:

x z
a

d
x z

a

d

y z
b

d
y z

b

d

 − 

 − 

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

What about clipping in z?

• need to at least check for z < 0 to
stop things behind the camera from
projecting onto the screen

• can also have front and back clipping
planes:
z > zf and z < zb

• resulting clipping volume is called the
viewing frustum

214

zf
x

y

z

zb

x

y

z

oops!

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Clipping in 3D — two methods

• clip against the viewing frustum
• need to clip against six planes

• project to 2D (retaining z) and clip against the axis-aligned cuboid
• still need to clip against six planes

• these are simpler planes against which to clip

• this is equivalent to clipping in 2D with two extra clips for z

215

x z
a

d
x z

a

d
y z

b

d
y z

b

d
z z z zf b= − = = − = = =

x a x a y b y b z z z zf b= − = = − = = =

Which is best? It depends on how you implement things. The top version

requires those multiplications. The bottom version requires that you do the

projection first.

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Bounding volumes & clipping

• can be very useful for reducing the amount of work involved in clipping

• what kind of bounding volume?

• axis aligned box

• sphere

• can have multiple levels of bounding volume

216

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D scan conversion

• lines

• polygons
• depth sort

• Binary space partition tree

• z-buffer

217

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D line drawing

• given a list of 3D lines we draw them by:
• projecting end points onto the 2D screen

• using a line drawing algorithm on the resulting 2D lines

• this produces a wireframe version of whatever objects are represented by the lines

218

So your 2D line drawing algorithms from earlier in the course work

perfectly in 3D.

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Hidden line removal

• by careful use of cunning algorithms, lines that are hidden by surfaces can be carefully
removed from the projected version of the objects
• still just a line drawing

• extraordinarily important in the 1960s and 1970s

• will not be covered further in this course

219

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

3D polygon drawing

• given a list of 3D polygons we draw them by:
• projecting vertices onto the 2D screen

• but also keep the z information

• using a 2D polygon scan conversion algorithm on the resulting 2D polygons

• in what order do we draw the polygons?
• some sort of order on z

• depth sort

• Binary Space-Partitioning tree

• is there a method in which order does not matter?
• z-buffer

220

It is not straight forward to get depth order according to the z coordinates.

They are not polygons all parallel to image plane.

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Depth sort algorithm

① transform all polygon vertices into viewing co-ordinates
and project these into 2D, keeping z information

② calculate a depth ordering for polygons, based on the most distant z co-ordinate in
each polygon

③ resolve any ambiguities caused by polygons overlapping in z

④ draw the polygons in depth order from back to front
• “painter’s algorithm”: later polygons draw on top of earlier polygons

• steps ① and ② are simple, step ④ is 2D polygon scan conversion, step ③ requires
more thought

221

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Resolving ambiguities in depth sort

• may need to split polygons into smaller polygons to make a coherent depth ordering

222

OK

OK

split

1

1




❖



split

❖








Even when every pair of polygons are OK to get a depth sort, we may also

get some conflict when we want to put them in a coherent list concave

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Resolving ambiguities: algorithm

• for the rearmost polygon, P, in the list, need to compare each polygon, Q, which
overlaps P in z
• the question is: can I draw P before Q?

① do the polygons y extents not overlap?

② do the polygons x extents not overlap?

③ is P entirely on the opposite side of Q’s plane from the viewpoint?

④ is Q entirely on the same side of P’s plane as the viewpoint?

• if all 4 tests fail, repeat ③ and ④ with P and Q swapped
(i.e. can I draw Q before P?), if true swap P and Q

• otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

• draw rearmost polygon once it has been completely checked

223

tests get

more

expensive

This algorithm gets awfully complicated awfully quickly. Is it really the best

way to do things?

For small numbers of polygons with few overlaps it is very good. For a

modern system with lots of polygons and lots of overlaps it is very

expensive.

Robot with the backmost rectangle can fail 3 but pass 4

CGRA 151 — Trimester 2 — 2019

Split a polygon by a plane

• remember the Sutherland-Hodgman algorithm
• splits a 2D polygon against a 2D line

• do the same in 3D: split a (planar) polygon by a plane

• line segment defined by (xs,ys,zs) and (xe,ye,ze)

• clipping plane defined by ax+by+cz+d=0

• test to see which side of plane a point is on:
• k=ax+by+cz+d

• k negative: inside, k positive: outside, k=0: on edge

• apply this test to all vertices of a polygon; if all have the same sign then the polygon is entirely on
one side of the plane

224

s
e

inside outside

p

Introduction to Computer Graphics

© 2019 Neil Dodgson 224

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Depth sort: comments

• the depth sort algorithm produces a list of polygons which can be scan-converted in
2D, backmost to frontmost, to produce the correct image

• it is cheap for small number of polygons, but becomes rapidly more expensive for
large numbers of polygons

• the ordering is only valid from one particular viewpoint

225

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Back face culling: a time-saving trick

• if a polygon is a face of a closed
polyhedron and faces backwards with
respect to the viewpoint then it need
not be drawn at all because front
facing faces would later obscure it
anyway
• saves drawing time at the the cost of

one extra test per polygon

• assumes that we know which way a
polygon is oriented

• back face culling can be used in
combination with any 3D scan-
conversion algorithm

226







CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Binary Space-Partitioning trees

• BSP trees provide a way of quickly calculating the correct depth order:
• for a collection of static polygons

• from an arbitrary viewpoint

• the BSP tree trades off an initial time- and space-intensive pre-processing step against
a linear display algorithm (O(N)) which is executed whenever a new viewpoint is
specified

• the BSP tree allows you to easily
determine the correct order in
which to draw polygons by
traversing the tree in a simple way

227

The BSP tree was used

in the 1993 game Doom

proof by contradiction

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

BSP tree: basic idea

• a given polygon will be correctly scan-converted if:
• all polygons on the far side of it from the viewer are scan-converted first

• then it is scan-converted

• then all the polygons on the near side of it are scan-converted

228

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Making a BSP tree

• given a set of polygons
• select an arbitrary polygon as the root of the tree

• divide all remaining polygons into two subsets:

• those in front of the selected polygon’s plane

• those behind the selected polygon’s plane

• any polygons through which the plane passes are split into two polygons and the two parts put into the
appropriate subsets

• make two BSP trees, one from each of the two subsets

• these become the front and back subtrees of the root

• may be advisable to make, say, 20 trees with different random roots to be sure of
getting a tree that is reasonably well balanced

229

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a
polygon by an arbitrary plane – both of which were discussed for the depth-sort algorithm.

See the example on Wikipedia:

https://en.wikipedia.org/wiki/Binary_space_partitioning

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Drawing a BSP tree

• if the viewpoint is in the front child side of the root’s polygon’s plane then:
• draw the BSP tree for the back child of the root

• draw the root’s polygon

• draw the BSP tree for the front child of the root

• otherwise:
• draw the BSP tree for the front child of the root

• draw the root’s polygon

• draw the BSP tree for the back child of the root

230

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Scan-line algorithms

• instead of drawing one polygon at a time:
modify the 2D polygon scan-conversion algorithm to handle all of the polygons at
once

• the algorithm keeps a list of the active edges in all polygons and proceeds one scan-
line at a time
• there is thus one large active edge list and one (even larger) edge list

• enormous memory requirements

• still fill in pixels between adjacent pairs of edges on the scan-line but:
• need to be intelligent about which polygon is in front

and therefore what colours to put in the pixels

• every edge is used in two pairs:
one to the left and one to the right of it

231

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

z-buffer polygon drawing

• depth sort & BSP-tree methods involve
clever sorting algorithms followed by
the invocation of the standard 2D
polygon scan conversion algorithm

• by modifying the 2D scan conversion
algorithm we can remove the need to
sort the polygons
• makes hardware implementation easier

• this is the algorithm used on graphics cards

232

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

z-buffer basics

• store both colour and depth at each
pixel

• scan convert one polygon at a time
in any order

• when scan converting a polygon:
• calculate the polygon’s depth at each

pixel

• if the polygon is closer than the
current depth stored at that pixel
• then store both the polygon’s colour and

depth at that pixel

• otherwise do nothing

233

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

z-buffer algorithm

234

FOR every pixel (x,y)

Colour[x,y] = background colour ;

Depth[x,y] = infinity ;

END FOR ;

FOR each polygon

FOR every pixel (x,y) in the polygon’s projection

z = polygon’s z-value at pixel (x,y) ;

IF z < Depth[x,y] THEN

Depth[x,y] = z ;

Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;

END FOR ;

END FOR ;

this requires you to

project the polygon’s

vertices to 2D and run

the 2D polygon scan-

conversion algorithm

this requires you to

modify the 2D algorithm

so that it can compute

the z-value at each pixel

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

z-buffer example

235

9 9 9 9  

8 8 8 8  

7 7 7   

6 6 6   

5 5    

4 4    

9 9 6 6 6 6

8 6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6

5 5 6 6 6 6

4 4   6 6

9 2 3 4 5 6

8 3 4 5 6 6

6 4 5 6 6 6

6 5 6 6 6 6

5 5 6 6 6 6

4 4   6 6

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Interpolating depth values 1

• just as we incrementally interpolate x as we move along each edge of the polygon, we
can incrementally interpolate z:
• as we move along the edge of the polygon

• as we move across the polygon’s projection

236

(, ,)x y z1 1 1

(, ,)x y z2 2 2

(, ,)x y z3 3 3

(' , ' ,)x y d1 1

(', ' ,)x y d2 2

(' , ' ,)x y d3 3

project

x x
d

z

y y
d

z

a a

a

a a

a

'

'

=

=

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Interpolating depth values 2

• we thus have 2D vertices, with added depth information

• we can interpolate x and y in 2D

• but z must be interpolated in 3D

237

[(' , '),]x y za a a

x t x t x

y t y t y

' () ' () '

' () ' () '

= − +

= − +

1

1

1 2

1 2

1
1

1 1

1 2z
t

z
t

z
= − +() ()

this point is halfway
between front and

back in 2D (measure
with a ruler if you do

not believe it)

this point is halfway
between front and
back in 3D (count the
rungs on the ladder)

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Interpolating depth values 3
(the gory details: only for those who really want to know)

238

𝑥 = 𝑎𝑧 + 𝑏𝑑

𝑥′ = 𝑥
𝑑

𝑧
= 𝑎𝑑 +

𝑏𝑑

𝑧

𝑥′ = (1 − 𝑡)𝑥1′ + 𝑡𝑥2′

𝑎𝑑 +
𝑏𝑑

𝑧
= (1 − 𝑡) 𝑎𝑑 +

𝑏𝑑

𝑧1
+ 𝑡 𝑎𝑑 +

𝑏𝑑

𝑧2
1

𝑧
= (1 − 𝑡)

1

𝑧1
+ 𝑡

1

𝑧2

consider the projection onto the plane y=0

interpolate x′ in 2D space

now project to z=d

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Comparison of methods
Algorithm Complexity Notes

Depth sort O(N log N) Need to resolve ambiguities

Scan line O(N log N) Memory intensive

BSP tree O(N) O(N log N) pre-processing step

z-buffer O(N) Easy to implement in hardware

239

◆ BSP is only useful for scenes which do not change

◆ as number of polygons increases, average size of polygon decreases, so time to

draw a single polygon decreases

◆ z-buffer easy to implement in hardware: simply give it polygons in any order you

like

◆ other algorithms need to know about all the polygons before drawing a single

one, so that they can sort them into order

◆ z-buffer is the standard method used today because it is easy to implement in

hardware

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Putting it all together - a summary

• a 3D polygon scan conversion algorithm needs to include:
• a 2D polygon scan conversion algorithm

• 2D or 3D polygon clipping

• projection from 3D to 2D

• either:
• ordering the polygons so that they are drawn in the correct order

or:
• calculating the z value at each pixel and using a depth-buffer

240

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Gouraud shading

• for a polygonal model, given a colour at each vertex

• interpolate the colour across the
polygon, in a similar manner to that
used to interpolate z

• surface will look smoothly curved
• rather than looking like a set of polygons

• surface outline will still look polygonal

241

[(' , '), ,(, ,)]x y z r g b1 1 1 1 1 1

[(', '), ,
(, ,)]
x y z

r g b
2 2 2

2 2 2

[(', '), ,(, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

Shading is used in drawing for depicting levels of darkness on paper by

applying media more densely or with a darker shade for darker areas, and

less densely or with a lighter shade for lighter areas. The appearance of the

surface of objects you draw will look natural

In computer graphics, shading refers to the process of altering the color of

an object/surface/polygon in the 3D scene, based on things like the surface's

angle to lights, its distance from lights, its angle to the camera and material

properties (e.g. bidirectional reflectance distribution function) to create

a photorealistic effect.

Barycentric

CGRA 151 — Trimester 2 — 2019

Flat vs Gouraud shading

• note how the interior is smoothly shaded but the outline remains polygonal

242

Introduction to Computer Graphics

© 2019 Neil Dodgson 242

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Texture mapping

243

all surfaces are smooth and of uniform colour most surfaces are textured with

2D texture maps

the pillars are textured with a solid texture

without with

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Basic texture mapping

244

• a texture is simply an image, with
a 2D coordinate system (u,v)

• each 3D object is parameterised
in (u,v) space

• each pixel maps to some part of
the surface

• that part of the surface maps to
part of the texture

u

v

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Paramaterising a primitive

245

• polygon: give (u,v)
coordinates for three
vertices, or treat as part of a
plane

• plane: give u-axis and v-axis
directions in the plane

• cylinder: one axis goes up the
cylinder, the other around
the cylinder

CGRA 151 — Trimester 2 — 2019

UV mapping

246

Introduction to Computer Graphics

© 2019 Neil Dodgson 246

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Sampling texture space

247

u

v

Find (u,v) coordinate of the sample point on the object

and map this into texture space

Sample texture space to determine the pixel’s colour

Object (on screen)“Texture space”

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

248

Sampling texture space: finding the value

Nearest neighbour: the sample

value is the nearest pixel value to

the sample point.

Bi-linear: the sample value is the

weighted mean of the four pixels

around the sample point.

Bi-cubic (not shown): the sample value is the weighted mean of the sixteen

pixels around the sample point. Runs at a quarter the speed of bi-linear.

Bilinear calculation:

P(i+t, j+s) = (1-t)(1-s) Pi,j + (t)(1-s) Pi+1,j + (1-t)(s) Pi,j+1 + (t)(s) Pi+1,j+1

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Texture mapping examples

249

nearest-

neighbour
bicubic

u

v

look at the bottom right hand corner of the distorted

image to compare the two interpolation methods

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Up-sampling

250

nearest-

neighbour

blocky

artefacts

bicubic

blurry

artefacts

u

v
 if one pixel in the texture map covers

several pixels in the final image, you

get visible artefacts

 only practical way to prevent this is

to ensure that texture map is of

sufficiently high resolution that it does

not happen

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Down-sampling

• if the pixel covers quite a large area
of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

251

CGRA 151 — Trimester 2 — 2019

Down-sampling

252

without area averaging with area averaging

Introduction to Computer Graphics

© 2019 Neil Dodgson 252

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

Multi-resolution texture

• To make this fast, pre-calculate multiple versions of the texture at different
resolutions and pick the appropriate resolution to sample from…

• Use tri-linear interpolation to a better result: use bi-linear interpolation on
each of the two nearest levels and then linearly interpolate between the two
interpolated values

253

average 2×2 pixels
to make 1 pixel

CGRA 151 — Trimester 2 — 2019

Computer Graphics & Image Processing

© 2019 Neil Dodgson

The MIP (Latin: Multum In Parvo) map

• an efficient memory arrangement for a multi-
resolution colour image

• pixel (x,y) is a bottom level pixel location (level
0); for an image of size (m,n), it is stored at these
locations in level k:

254

2 2

2

1 1

1

0 0

0
















 +







 +
kk

ynxm

2
,

2














 +








kk

ynx

2
,

2
























 +
kk

yxm

2
,

2

Red

GreenBlue

The origin of the term mipmap is an initialism of the Latin phrase Multum

In Parvo ("much in a small space")

A large block memory vs small blocks

CGRA 151 — Trimester 2 — 2019

