Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Introduction to Computer Graphics
Whakataki ki Whakairoiro Rorohiko
CGRA |51

Prof. Neil Dodgson, Dr Fang-Lue Zhang, Joshua Scott

Fanglue.Zhang@ecs.vuw.ac.nz (course coordinator)

Joshua.Scott@ecs.vuw.ac.nz (teaching fellow)

Welcome to CGRA |51 Introduction to Computer Graphics

The word “graphics” can be interpreted in several ways. Here we mean
anything visual drawn by the computer.The course covers practical
aspects of making computer graphics along with the background required
to understand how a computer generates visual information, how a
computer stores visual information and the structures that generate it,
and how the human perceptual system works to perceive it.

The Maori “whaka-iro-iro” is the closest translation to “graphics” and
adds useful shades of meaning.“whakairoiro” as a noun means simply
“carving”.As a verb it is closer to what we are about:“to carve, to
ornament with a pattern, decorate”.As a modifier, it conveys “carved,
ornamented, ornate, elaborate, decorative”*. This course will teach you
much about how we produce ornate, elaborate and decorative computer
output.

*Translations taken from the Maori Dictionary
http://maoridictionary.co.nz/

©2019 Neil Dodgson 1

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Outline

High school
mathematics

el ielnlnlly-@ Mathematical
NI foundations

Human vision | Basic graphics
Introductory and displays | algorithms

programming
course in Java
or Processing

We ask that you have done a programming course before taking
CGRAI5I. This can be in Java (COMP102, COMPI12) or in Processing
(DSDN 142)

We also ask that you have basic mathematics, either ENGR121, any of
the MATH 100-level courses, or |6 NCEA mathematics credits.

We use vectors and matrices in this course. To remind yourself about
these, please go check out the Mathematics Workbook on the course
Assignments web page. The workbook is designed to help you revise you
all the bits of mathematics that you will need. There is a mathematics
assignment due in Week 6 for you to demonstrate your mathematical
knowledge. The terms test and the exam will have mathematics
questions.

©2019 Neil Dodgson 2

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

< July 2019 >

. M T w T F S s
OUtIIne today—‘? 130 :1 ‘52 ~.ﬁa :.:
_ . 2% o
‘Computer graphics programming 2 % 3
in Processing
August 2019
M T w : 12 :Si f
Behind the scenes: AR A R
fundamental algorithms in 22 2 1 % n 1
computer graphics and the
mathematics needed for them L e
2 3 4 5 6 7 :3
n 9 10 1 12 13 14 15
Beyond the algorithms: © 7o w20 N 2
A = 23 24 25 26 27 28 29
fundamental concepts, including %
human perception, colour, October 2019
images, displays MOT SN e

7 8 9 10 M 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27

The course has three parts, divided time-wise so that you get the
knowledge needed to complete the assighments early on.

Programming: to teach you how to use a Java-like graphics language,
Processing, to consolidate what you learnt in COMP102, COMP1 12 or
DSDN142, to teach you something about algorithm design, especially
about ways to optimise an algorithm.

Behind the scenes: so that you know what is going on when you tell a
computer to draw a line, render a triangle mesh, or run a game.

Fundamental concepts: so that you know the limitations of what we do
and why those limitations exist.

©2019 Neil Dodgson 3

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

< July 2019 >
. . . " T w T F S s
Administration XILTEE
today a. 10 1 13 14
1517 |820 21
22 24 25 27 28
* Course representative =@~
— nominations by Friday* August 2019
. T3 I1) 5 M T w ; F S i
no penalty” withdrawal by 19 July o 0 5123
* Five assignments (35%), Tuesdays at 9a.m. 152‘? 2 25
26 27 28 29 30 N
* Three programming assignments
* Mathematics worksheet P b 212
M T w T F S s
* Project —~ ‘
] 16 August . 7 ;n’\@)\/'l; 152 :;3 7 .Br
* One test (10%), L5-August, in lecture time #@)e v » x 2
23 25 26 27 28 29
* One exam (55%), date to be confirmed =
October 2019
gz + 4 8 6
Lo Do
21 22 23 24 25 2% o
* to Joshua Scott <Joshua.Scott@ecs.vuw.ac.nz> Sl

These dates are correct at the time of printing. They are subject to
change.

Please check the dates on the course web page:
https://ecs.victoria.ac.nz/Courses/CGRAI51_2019T2/

To pass the course you must:

e score at least 50% overall;

* score at least 40% on all five assignments put together;
* score at least 40% on the exam.

©2019 Neil Dodgson 4

nad
Line

nad
Oval

nad
Line

nad
Line

Introduction to Computer Graphics

The project

* Write either
a 2D game or
a 2D interactive art work
* Multiple objects
* Interacting with each other
* With user interaction
* Compelling, interesting, challenging, fun

* Mid-trimester break: plan it
* 3 September: submit plan (C

* 8 October: submit code ()

Project management
Plan early.

Get a basic version working early and then repeatedly refine it
into something better.

Always be willing to reassess, refine, rethink your plan in response to
what goes wrong, what goes right, what feedback you get from others,
what other work you need to complete, and what else is going on in
your life.

Your timetable for success

Weeks |-6: Get inspiration, try some bits of experimental coding, think
up a plan for what you are going to do.

Mid-trimester break: Write your plan and get some code started.

Week 7: Submit plan.

Weeks 7 & 8: Get feedback from a tutor in the planning session.

Week 9: Submit assignment 3 and really get started on your project
programming.

Week 10: Have a basic version running. You could hand this in if you
absolutely had to.

Week | |: Have something working that you would be happy to hand in.

Week 12: Have something really good that you do hand in.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Examples

These are screen shots from:
Frogger

A top-down racing game
Pong

Pong meets the absolute minimum specification for the project but it is

too simple to get an A grade mark. Some crazier version of Pong might
be interesting.

©2019 Neil Dodgson 6

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Laboratories and Lectures

* Laboratories Mon Tue Wed Thu Fri
* CO242 (Stream A)
* or CO243 (Stream B) 9 lecture lecture
* Sign up for one session using i
myAllocator
* Attend that session each week 1
12
* Lectures
* Tuesday, Thursday, Friday, 9 a.m. 13 Yellow
* MCLT 101 “ _—
* Recorded
15 Violet

Laboratories are named after colours.You attend the same session each
week, whether it is for a tutorial, a marking session, a planning session or
a help desk.There are no laboratories in Week 6. Stream A has a
laboratory (a marking session) in the study week after lectures have

finished.
The cyan sessions are timetabled so that Design students (and others
who are not normally based on the Kelburn campus) can attend both a

Lecture and a Lab in a single two-hour visit to the Kelburn campus.

About the colours

. Red, Orange, Yellow, Green, Blue, Violet are the six main colours that we identify in the
spectrum or the rainbow.
. Red, Yellow, Blue are the primary colours used by artists. Orange Green and Purple are the

artist’s secondary colours, made by mixing two of the primaries. Purple (a mix of Red and Blue)
is not quite the same thing as Violet (a colour at the end of the spectrum).

. Red, Green, Blue are the three primary colours used in additive displays (such as LCD panels).
Mixing all three primaries produces white in an additive system.

. Yellow, Cyan, Magenta are the three primary colours used in subtractive displays (such as ink jet
printers). Mixing all three primaries produces black in a subtractive system.

We will discuss colour in detail in the final part of the course.

©2019 Neil Dodgson 7

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

o Week Stream A (CO242) |Stream B (C0243
L b t () ()
a’ o ra o rl es Week 1 Tutorial 1 Tutorial 1
* Tutorial: working through b |acdne £ Ltttk
preparation fOI‘ an Week 3 Tutorial 2 Marking 1
assignment, guided by a tutor Week 4 » Marking 2 ‘Tutorial (maths)
o Marking' 10 minutes with a Week 5 Tutorial (maths) Marking 2
marker Weeko
. " o, Mid-tri break
* Planning: discussing your -t brea ,
plan for)’OUI‘ project With a Week 7 vrTutorlaI 3 ”Plannmg
tutor Week 8 Planning Tutorial 3
* Helpdesk: a tutor is on hand Weekd sl stectili 2o
Week 11 Helpdesk Helpdesk
Week 12 Marking (project)
Study week Marking (project)

In Tutorial sessions you will have a worksheet to work through and
tutors available to help you. The worksheets help you prepare yourself
to attempt the assignments. You are encouraged to attempt the
worksheets before the Tutorial session so that you can bring your
problems to the tutors. People who complete the worksheet can work
on their assignments during the Tutorial and ask the tutor for help.

For Marking sessions you will have a |0 minute marking slot with a
marker. You can spend the rest of the session working towards your

next assignment or quietly discussing challenges with your classmates.

The Planning session is a |0 minute meeting with a tutor to discuss
your plan for your project.

Helpdesk sessions are times where a tutor will be on hand to help with
your project.

©2019 Neil Dodgson 8

Introduction to Computer Graphics

Why Processing?

* Java-like language
* Quick to get things working
* Sketch-based programming model

f

TR S5 ()

o e
| =
G ___,\‘;S
.

Java-like: so that you can use the experience you already have from COMP102 and
COMPI 12

Quick to get things working: you do not need to remember a load of special steps
just to get a graphics window open on the screen. It is easy to get something to show
up and easy to get interaction with the user through the mouse.

Sketch-based: the idea is that you make small programs that are “sketches” like rough
ideas in an artist’s sketch book.These are later put together (or reworked) as a larger
program in Processing.

Processing is on the ECS machines and can be downloaded, free, for your own
machine from:
http://www.processing.org/

Get Processing running. Go to the Help menu and select Getting Started. Copy and
paste the simple drawing example (just below the image of white circles) and see
how easy it is to specify a window, interact with the mouse, and draw something
simple.

Processing has extensive help available, including a reference manual for every built-in
function with example code for each.The reference manual can be accessed from the
Help menu in Processing or at this web page:

http://www.processing.org/reference/

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Course texts

Fundamentals

Viake: |
Getting =g
Started with
Processing

"= . |

A Hands-On Introduction to Making
Interactive Graphics

Casey Reas & Ben Fry

Available as eBooks
through Talis
(Reading List link on
the course web site)

They support the
course rather than
define the course:
read them to get an
alternative view

Both books are provided by Victoria University of Wellington to all
students on the course as eBooks, which can be read online.

You can access them through the University’s Talis system (the Reading
List link on the course website).

In these notes | refer to them as “Fundamentals of Computer Graphics” and

“Getting Started with Processing”.

For information on the philosophy behind Processing, and what
Processing can do for you, see Getting Started with Processing, Chapter |

(pages 1-5).

For an opinion on the very wide range of things that could be considered

within the remit of “computer graphics” see Fundamentals of Computer
Graphics, Sections |.| and 1.2 (pages 14)

©2019 Neil Dodgson

10

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

What is Computer Graphics?

Scene
description

Computer Image analysis &
graphics computer vision

T (o]e]

D] D > Digital >
Image image Image D
capture u display

Image processing

Computer graphics is technically the process of taking a scene
description, that is some way of describing a set of graphical objects,

and converting this into a digital image. However, “computer graphics”

can be taken much more broadly to include any of the processes shown
in the diagram.

©2019 Neil Dodgson

11

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

How widely used is computer graphics?

* It is everywhere!

* All visual computer output|
¢ on screen
* printed

* Games
* Visual effects
* Post-production

* Books, magazines, ¢
newspapers =

©2019 Neil Dodgson 12

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Coordinate system

* x-axis runs left-to-right
* y-axis runs top-to-bottom

[sketch_160411f

* point (0,0) is at top left 0,0 99,0

* Processing’s default window size is
100X100

0,99 99,99

The default window is 100x100 pixels.

The top left pixel is always (0,0), no matter what the window size is.

Notice that the pixel numbering starts at zero.This means that, in a
100x 100 pixel window, the bottom right pixel will be (99,99).

©2019 Neil Dodgson 13

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Getting started with Processing: line()

sketch_160411b v
line(10,10,90,99);

® sketch...

AN

line(10,10,90,90) — draw a line from point (10,10) to point (90,90)

line is a function name

10,10,90,90 are its four parameters

line(x1,yl,x2,y2) — draw a line from point (x1l,yl) to point (x2,y2)

The textbook, Getting Started with Processing, Chapter 2 (pages 7—12) gives
more information on writing your first Processing program, including:

* where to download the software for your own computer

(www.processing.org)
* how to write a one-line program (they use an ellipse rather than a

line)

* some simple mouse interaction (we’ll be doing that in a few slides’
time)

* how to save your code (there’s the usual Save option on the usual
File menu)

* where to go to find example code and a reference manual
(www.processing.org)

©2019 Neil Dodgson 14

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The x-axis runs horizontally left-to-right

2 a horizontal line —
e 1ine(10,10,90,10);
[two lines making an arrowheac

Bl 1ine(90,10,80,5);
& 1ine(90,10,80,15);

Here we see three lines:

* along line running from (10,10) to (90,10).This long line is horizontal:
the second coordinates, known as the y-coordinates, of the two

points are the same.

* two short lines running from (90,10) to either (80,5) or (80,15).
These two lines start and end at the same x-coordinate but the y-
coordinate is different for the second point of each, so one is above

the long line and the other is below the long line.

The symbol “//” introduces a comment. Processing ignores anything that

is written between the “//”’ and the end of the line.

Comments are important for making code understandable to a human:
while the code may be clear to you now, it will not be clear to someone

else and it will not be clear to you in six months’ time.

©2019 Neil Dodgson

15

Introduction to Computer Graphics

The y-axis runs vertically top-to-bottom

a horizontal line

1line(10,10,90,10);

two lines making an arrowhead
1ine(90,10,80,5);
1line(90,10,80,15);

a vertical line

1ine(10,10,10,90);
two lines makin

1ine(10,90,5,80);
1ine(10,90,15,80);

g an arrowhead

To make the vertical arrow we have switched the x and y coordinates of
all the points.

Notice that the y-axis goes down.This is consistent with Victoria
University of Wellington’s Java graphics environment (used in COMP102)
but it is upside down compared to what is normally used in mathematics,
where the y-axis goes up.You just have to get used to it.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

16

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Five lines

example 2.01 from Processing bool

1ine(10,80,30,40);
1ine(20,80,40,40) ; /////
1ine(30,80,50,40);
1line(40,80,60,40);
1ine(50,80,70,40);

Draw 5 lines, all with the same y-coordinate (80) at their start point and
the same y-coordinate (40) at their end point.

The textbook, Getting Started with Processing, Chapter 3 (pages 13-31)
takes you through all the material that we are about to cover, including
drawing lines, rectangles, ellipses, triangles, polygons, in colour, in
greyscale. It will provide you with an alternative introduction to that
provided in these slides.

The “Processing book” referenced on the slide itself is yet another
introduction to Processing: Processing: a programming handbook visual
designers and artists, Casey Reas and Ben Fry, MIT Press, Second Edition,
2014.We do not have an eBook version of that, which is why we’re using
some of the examples from that book in the lecture slides.

©2019 Neil Dodgson 17

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

background(), stroke(), strokeWeight()

example 2.02 from Processing boo
background(0);

stroke(255);

strokeWeight(5);
1line(10,80,30,40);
1line(20,80,40,40);
1line(30,80,50,40);
1line(40,80,60,40);
1ine(50,80,70,40);

Introducing some simple functions:

background(0) — set the background colour to be greyscale value 0,
which is black, and fill the window with that colour

stroke(255) — set the colour for drawing strokes (lines and edges) to
be greyscale value 255, which is white

strokeWeight(5) — set the weight of strokes to be 5.The weight is the
width of the drawn line and it is measured in pixels

A note on notation: at the top of the slide is written “background(),
stroke(), strokeWeight()” with the parenthesis “()” but without the
parameters inside the parenthesis. This is a shorthand to tell you that
background, stroke and strokeVVeight are the names of functions.

In the Processing code window, the names of functions are written in
blue, automatically, so that you know that they are system-defined
functions.We will later see how Processing uses other colours to identify
system-defined variables and commands.

©2019 Neil Dodgson 18

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Pixel: the smallest addressable unit on the screen

[sketch_160411f

0,0 99,0

’ 0,99 99,99

The image on the right was drawn using Processing, showing a 100X 100 gray
rectangle in a Processing window of size 300200 .

The black boundary is exactly one pixel wide and is outside the Processing 100X 100
drawing frame.The number “0” is drawn as |5 pixels wide and 22 pixels high. On my
desktop monitor it is 5mm high, which means my desktop monitor has about 4.4
pixels per millimeter.

Monitor resolutions are measured in pixels per inch (ppi). One inch is 25.4
millimeters. So my desktop monitor has a resolution of about | 10 pixels per inch

(ppi).-

My monitor is marketed as a 27 inch display with 2560X 1440 pixels. The 27 inches is
measured diagonally from corner to corner. Pixels are usually as tall as they are wide,
so the 2560X 1440 means that my monitor has an aspect ratio of 16:9.That is, its
width is 16/9 times its height. A 27 inch display therefore can be calculated as having a
width of 23.53 inches and a height of 13.24 inches. Thus its resolution is 108.8 pixels
per inch.

For many years, monitors had about 100 ppi, just like my current desktop monitor.
This is sufficiently coarse that you can see individual pixels if you look closely. Higher
resolutions became available from 2010, starting with the iPhone 4. Pixel densities are
now regularly over 300 ppi.At that fine resolution, it is hard or impossible for a
human eye to see the individual pixels. There is more on this later in the course.

©2019 Neil Dodgson 19

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Addressing individual pixels: point()

background(255) ; white background
stroke(0); draw in black
point(10,10); four points
point(90,10);

point(10,90);

point(90,90);

point(0,0); top left
point(l,1);

point(98,98);

point(99,99); bottom right
point(100,100); outside the drawing area

Notice that the bottom right hand pixel is (99,99).The function call
point(100,100) tries to draw a pixel outside the drawing area, so nothing
is drawn.

Later in the course we consider how the graphics system of a computer

ensures that each application is only drawing inside its own window,
rather than scribbling all over the screen.

©2019 Neil Dodgson 20

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

What is an image?

e two dimensional function

* value at any point is an
intensity or colour

* not digital!

The image that you see on the screen is not a digital image. It is a digital
image that has been converted to analogue (physical) form by the display

device, whether that device is a computer screen, a projector or a
printer.

See Fundamentals of Computer Graphics, Section 3.2 (pages 59—64).Also
useful to read through the earlier part of Chapter 3.

©2019 Neil Dodgson 21

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

What is a digital image!?

* a contradiction in terms
* if you can see it, it’s not
digital
« if it’s digital, it’s just a digital

collection of numbers :
image

L a SamP|Ed and IS0 56 M2a4 30 1 78 79 21145 156 52 136 143 65 115129 41128 143 50 85

106 11 74 96 14 85 07 23 66 74 23 73 82 20 67 76 21 40 48 7 33 39 0 54 54 19
ntt d . f 42 27 6 19 10 3 50 60 28 102107 41208 88 63204 75 54 187 82 63179 63 46 158 62
46146 49 40 52 65 21 60 68 11 40 51 17 3537 028 29 08360156 2 0 1 13 14
qua Ise verSIon o a B8 243 173 161 231 140 69 239 142 89 230 143 80210126 79 184 88 48 152 69 35123 51
. 27104 41 23 55 45 9 36 27 02828 22028 7 40 28 16 13 13 1 224167 112240
r'eal lmage 174 80227 174 78227 176 87 233177 64 213149 78 196 123 57 141 72 31 108 53 22121
62 22 126 50 24101 49 35 16 21 112 5 0 14 16 11 3 0 0237 176 B3 244 206 123
241 206 144 238 222 147 221 190108216170 77190 135 52136 63 38 76 36 7 113 56 26
156 83 38107 652 21 31 14 7 9 6 O 20 14 12255214 112242 215 108 246 227 133 239
® a rectangular array of 232152 229209 123 232 193 98 208 162 64 170 133 47 142 90 32 29 19 27 89 52 21171
116 49114 64 29 75 49 24 10 9 5 11 16 9237 190 82 249 221 122 241 226 128 240219
° * 126240 189 93 218 173 60 188 135 33 219 186 79 182 184 93 136 104 85 112 69 37 191 163
Intens.ty or colour B0 122 74 28 80 51 18 19 37 47 16 37 32223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 96 224 220 123 210 194 109 152 159 62 1560 96 40 116 73 28 146 104
46 109 50 24 75 48 18 27 33 33 47100 118216 177 88 223 189 91 239 209 111 236 213
I 117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41108 66 22 103
va. ues 69 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 184 108 228 203 102 228 200
100 212180 78 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 16 0 11 6 0 64 50 91 54 80 ©83 220 186 97 212 190 105 214 177 86 208
166 71 196 150 64 175127 42170 117 49139 89 30 102 53 12 84 43 13 79 46 15 72 42
1410 13 4 12 8 0 639104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56160 120 54146 67 41 118 67 24 90 52 16 75 46 16 68 42 1913 7 9 10 §
018 11 3 66111116 70100 102 78 103 96 57 71 82162 111 66 141 96 37 152 102 51
130 B0 31 110 63 21 B3 44 11 60421228 8 0 7 510 18 4 0 17 10 2 30 20 10
68 88 08 53 88 94 59 91102 69 99110 54 80 79 23 69 85 31 34 25 53 41 26 21 2 29
08001710 411 0 0 3421 13 47 35 23 38 26 14 NS e

intensity is also known as greyscale or, in the world of film and
photography, as black & white

colour is usually specified by three numbers. Here we are using

RGB, but there are many other useful three-dimensional colour
spaces. Why three dimensions? That is explained later in the course.

©2019 Neil Dodgson 22

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

RGB Colour

* In computer, we need to represent colour by
some set of numbers

* preferably a small set of numbers which can be
quantised to a fairly small number of bits each
* We use three numbers for each point to

represent the different intensity of primary
colour light

* Red
* Green
* Blue

A representation of additive color
mixing. Projection of primary
color lights on a white screen

A representation of additive color mixing. Projection of primary
color lights on a white screen shows secondary colors where two

overlap; the combination of all three of red, green and blue in equal
intensities makes white.

©2019 Neil Dodgson 23

https://en.wikipedia.org/wiki/Primary_color

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Sampling resolution

256x256 128x128 64x64

2x2 4x4 8x8 16x16

a digital image is a rectangular array of intensity values
each value is called a pixel (“picture element”)

sampling resolution is normally measured in pixels per inch (ppi) or,
equivalently, dots per inch (dpi)

displays have a resolution between 100 and 400 dpi
printers have resolutions of between 600 and 3000 dpi

but printers display only two levels (ink or no ink) while displays show
many many gradations of colour

©2019 Neil Dodgson 24

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

8 bits
(256 levels)

Quantisation levels

7 bits

(128 levels)

6 bits

5 bits
(32 levels)

(64 levels)

—

“4bits
(16 levels)

1bit 3bits
(2 levels) (4 levels) (8 levels)

each intensity value is a number

for digital storage the intensity values must be quantised
limits the number of different intensities that can be stored
limits the brightest intensity that can be stored

how many intensity levels are needed for human consumption?
8 bits often sufficient

some applications use 10 or 12 or 16 bits
more detail later in the course

colour is stored as a set of numbers
usually as 3 numbers of 5—16 bits each
more detail later in the course

printers can generally only show a mark or no mark in each pixel (one
bit per pixel)

how we get (apparent) gradations of grey and how we get (apparent)
colour are explained later in the course

©2019 Neil Dodgson 25

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Colour

* background(), stroke(),
fill() all set colour values
for drawing

* one number:
a grey value
in the range 0-255
0 = black
255 = white

* examples:
fill(255);
background(200);
stroke(0);

® sketch_16041...

0

25
B 50
H 75
B 100
125
I 150
175
[1200
I 225

stroke(125);

1250

The sample greys at right were generated by a simple Processing
program which filled each box with the appropriate grey value and wrote
the corresponding number next to it. The maximum grey value is 255.
The numbers in the examples go from 0 to 250 in steps of 25.The
background of the window is white, which is colour 255.You can just tell
that 250 is slightly darker than pure white.

See Getting Started with Processing, pages 23—-27.

©2019 Neil Dodgson 26

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Colour

* background(), stroke(), fill()
all set colour values for
drawing

* three numbers:
a colour
red, green, blue
each in the range 0-255

* examples:
background(100,50,0);
fill(0,250,0);
stroke(250,100,50);

4
o
=)

0,50,0

0,100,0

I
I
|
|
ﬁ

0,150,0

|
|
H

0,200,0

[
0,250,0

———
0,0,0
]

0,0,50

0,0,100

0,0,150

0,0,200

0,0,250

50,0,0

50,50,0

50,100,0

50,150,0

50,200,0

ColourScale

100,0,0
100,50,0
100,100,0
100,150,0

100,200,0

150,0,0

150,50,0

150,100,0

150,150,0

200,0,0

200,50,0

200,100,0

200,150,0

250,0,0

250,50,0

250,100,0

250,150,0

150,200,0

200,200,0

L |
250,200,0

50,250,0

50,50,0

50,50,50

50,50,100

50,50,150

50,50,200

50,50,250

J
100,250,0

100,100,0
100,100,50
100,100,100
100,100,150
100,100,200

100,100,250

[
150,250,0

150,150,0

150,150,50
&
150,150,100

[
200,250,0

|
250,250,0

[
200,200,0

250,250,0

[]
200,200,50

[|
250,250,50

[]
200,200,100

[|
250,250,100

]
150,150,150

[J
200,200,150

[J
250,250,150

[]
150,150,200

[]
200,200,200

[|
250,250,200

[|
150,150,250

[]
200,200,250

[
250,250,250

Notice that the color() function is allowed to take either one parameter
(a grey value) or three parameters (colour represented by red, green and

blue components). Processing has several functions that have different

versions that depend on the number of parameters. This means you need

to read carefully the function definitions in the Processing reference

manual.

The reference manual is available from inside Processing, from the Help
menu choose “Reference”. Go have a look at it. In particular look at the
definition of background(), which is the first item in the third column.

Notice that there are several more possibilities for number and type of

parameter.

The (red, green, blue) triple used to represent colour is usually

abbreviated RGB.

Want an easy way to select colours and get their RGB values: try a utility

like http://www.colorpicker.com

See Fundamentals of Computer Graphics, Section 3.3 (pages 64—65).

We discuss representations of colour in detail later in the course.

©2019 Neil Dodgson

27

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Colour in action

background(0@);

strokeWeight(5):

stroke(255,0,0); a red line
1ine(10,80,30,40);
stroke(255,255,0); a yellow line
1ine(20,80,40,40);

stroke(0,255,0); a green line
1ine(30,80,50,40) ;

stroke(0,0,255); a blue line
1line(40,80,60,40);
stroke(255,0,255); a magenta line

1ine(50,80,70,40);

Some things to note about these RGB colours:

0,255,0 is a very bright green, brighter than you might expect compared

to red and yellow.

0,0,255 is vivid but dark blue, though it is clearly blue it’s quite hard to

distinguish from the black background.

255,0,255 is “magenta”, a shade of purplish-pink. Purples and pinks are
colours that are not found in the rainbow. Magenta (255,0,255) is one of
the standard inks used in colour printers along with cyan (0,255,255),

yellow (255,255,0) and black (0,0,0).

The reasons for all of these observations are explained later in the
course, when we discuss human perception and colour representations.

©2019 Neil Dodgson

28

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The processing loop: setup() and draw()

* setup()
Rotatingline * run once when the program starts
Fiout Argle & 0.8 * usually includes size()
id setup(){
; s1ze(400,400); . draw()

* run repeatedly
id draw(){

¢, s ; * once every fraction of a second
o * screen is updated at end of draw()

0+200, s*50+200, c*150+200, s*150+200) ;
angle = angle + 0.02 ; b frameRate()

} :
* tells Processing how often to call draw()

This is for a live demo.The example code is in file RotatingLine.

For the live demo, we first see what RotatinglLine does.Then show how frameRate()
affects what can be seen. It is instructive to change the angle increment to 0.2 for
slow frame rates.

You need to be happy with the cosine and sine functions later in the course. If you
are a bit hazy on them, you should refresh your memory before we meet them again.
See Getting Started with Processing, pages | 13—117, for a nice introduction and
Fundamentals of Computer Graphics, Section 2.3 (pages 18-20) for a summary of facts.

There are three variables in this program, one global variable (angle) that is available
from anywhere in the program, and two local variables (c and s) that are available only
in the draw() function. If you are a bit hazy on variables, then you need to read Getting
Started with Processing, Chapter 4, pages 35—40, which is a quick tutorial on defining
and using variables.

For more on the setup()/draw() approach see Getting Started with Processing, Chapter
5, pages 49-53, which gives a worked example for you to copy and learn from.

Now move to a simpler demo, drawing a line...

©2019 Neil Dodgson 29

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

A simple animation

* height and width are pre-defined

StrobingLine variables

t y=0;

o 2 15 00 * int declares an integer variable
s1ze(200,600);

frameRate(60);
} . -
e VOId means that a functlon returns

vid draw(){ no value

background(255) ;

strokeWeight(5);

line(0, y%height, width, y%height);

y=y+1; * % is an operator that returns the

} remainder after division

We can do this as a simple example, building up the various features to
the final version shown above.The most basic, but boring, version of the
draw function is just:

volid draw () {
line(0, 50, 200, 50);

Add to this, one at a time, in the following order and see how each

changes the output:
background ()

strokeWeight ()

width

parameter vy

the mod operator: y$height

©2019 Neil Dodgson 30

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

triangle()

stroke(0); black o

noSmooth() ; do not smooth

fi11(255,0,0); red rectangle
rect(10,10,40,30);

fi11(0,192,0); green ellipse
ellipse(30,70,40,30);

fill(64,64,255); blue triangle
triangle(70,20,60,80,90,50);

Some more basic shapes: rect(), ellipse(),

background(255); white backgroun

You will meet all these in assignment |.

If you have not already, have a look at Getting Started with Processing,

Chapter 3 (pages 13-31).

©2019 Neil Dodgson

31

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

How would you specify a rectangle?
‘rectMode(CORNER) rectMode(CORNERS)
* a rectangle needs four left,top left,top
parameters
o
rect(a,b,c,d); P
: right,bottom
* default is width
rect(left,top,width,height);
rectMode(CENTER) rectMode(RADIUS)
<
® R ° e
centreX,centreY . centreX,centreY “
®
S ——
width radiusX

This is partly “behind the scenes”, because we need to think about why Processing has
four different ways to specify rectangles.

An axis-aligned rectangle (that’s a rectangle with edges parallel to the horizontal and
vertical axes, rather than one that is rotated) can be specified by exactly four
numbers.You cannot specify one with fewer than four parameters and you do not
need more than four.

The different ways of thinking about how to place a rectangle reflect that different
people really do think about these things in different ways. They also reflect that some
methods are more useful in some circumstances than others.

For example, when drawing a rectangle using the mouse, you likely think about the
top-right approach.You click the mouse button, which specifies one corner, then drag
and release the mouse button at the other corner.

There is at least one more way you could sensibly specify a rectangle with four
numbers. Think about it.

You can probably understand why someone might want to use the top two methods

and maybe the bottom left one, but why the bottom right one? It is because of how
we think about ellipses.

©2019 Neil Dodgson 32

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

How would you specify an ellipse?

ellipseMode(CORNER) ellipseMode(CORNERS)
* an ellipse needs four |eft|.top |Eft,.top
parameters
i e
(*)]
ellipse(a,b,c,d); P

right,b’ottom

¢ default is width
ellipse(centreX,centreY,
width,height); ellipseMode(CENTER) ellipseMode(RADIUS)
=
° = @
centreX,centreY X centreX,centreY
width radiusX

Ellipses have exactly the same four modes of specification.

For an ellipse the bottom two methods make more sense than the top
two.

©2019 Neil Dodgson 33

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Order is important

background(255); // white background(255); [/ white
fill(255,0,0); // red fill(e,192,0); [/ green
rect(10,10,80,30); // rectangle ellipse(50,50,40,70); // ellipse
fill1(e,192,0); // green fill(255,0,0); /[red
ellipse(50,50,40,70); // ellipse rect(10,10,80,30); /[rectangle

Processing draws using the “painter’s algorithm”.Whatever is drawn later
is drawn on top of what was drawn earlier.

©2019 Neil Dodgson 34

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Simple interaction
int e b, ¢; d3
a5 * mousePressed() is called whenever a mouse button is

s1ze(500,500) ; pressed down
}

| draw(){
ckground (255) ; * mouseDragged() is called whenever a mouse button is
down and the mouse has moved

id mousePressed(){

* mouseX and mouseY are pre-defined variables that give
you the location of the mouse

anoo
nonon

)
T o

e

* what do you need to change to get this to work
correctly for the other three types of rectMode() ?

| mouseDragged(){

c
d
}

This is example code DrawSimpleRectangle

When the mouse is pressed, Processing calls the mousePressed()
function which, in this case, sets both corners of the rectangle to be at
the current mouse location.

So long as the mouse button is pressed down, Processing calls the
mouseDragged() function whenever the mouse moves from its current
location. In the example, this sets the second corner of the rectangle
(c,d) to the new mouse position. The other corner (a,b) stays where it is
because mouseDragged() does not update it.

You might like to switch to drawing ellipses to see how that feels; then go
back to rectangles.

Homework:Work out how to get each of the four types of rectMode()
to work: CORNERS, CORNER, RADIUS, CENTER

©2019 Neil Dodgson 35

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

What is Processing doing behind the scenes?
(/]
& @
> S
S CSS
$ @ 5L
(,oQ <& é{ '@QQQO
setup() s & FELE
£« Q\.e,;' :eo
¢
4 Mouse and |
d raw() keyboard
events

setup() is called exactly once, when the program starts

draw() is called repeatedly, after each time draw() runs, Processing goes
into a wait state until the right length of time has passed to get the frame
rate right.

The computer itself keeps a constant watch on the keyboard and the
mouse. If anything about them changes then a system interrupt occurs.
Processing watches out for these interrupts and stores them up. It runs
the appropriate callback functions, like keyPressed() or mouseDragged(),
but only during the wait phase. If a key or mouse event happens during
draw(), then Processing waits until draw() has finished before running the
appropriate callback function.

©2019 Neil Dodgson

36

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The mouse functions

oid setup(){
s1ze(500,500) ; mousePressReleaseDragMove

}
i draw(){
}
| mouseMoved(){
fi11(255,128,128);
ellipse(mouseX ,mouseY,50,50) ;

4 mouseDragged(){
fi11(e,0,255);
ellipse(mouseX,mouseY,50,50);

| mousePressed(){
fi11(128,128,255);

ellipse(mouseX, se¥,100,100);
}
| mouseReleased(){
fi11(255,0,0);
ellipse(ex €Y,100,100);
}
| mouseClicked(){
fi11(0,255,0);
rect(mouseX-40, mouseY-40,80,80);

What is going on here? [Code: mousePressReleaseDragMove]

We have written code for all five of the mouse callback routines. In each callback, Processing
draws a different shape.

Moving the mouse

Small circles show mouseMoved() and mouseDragged() in pink and dark blue. mouseMoved()
is called for mouse movement when no mouse button is pressed, mouseDragged() is called
for movement when a mouse button is pressed.

Pressing and releasing mouse buttons
Large circles show mousePressed() and mouseReleased(), light blue for mousePressed() and
red for mouseReleased).

mouseClicked() causes a green square to be drawn.

mouseClicked() is an interesting case because a mouse click is defined as a mouse press
followed by a mouse release with no mouse movement in between (i.e., the mouseX and
mouseY values do not change). If this happens, Processing will first call mousePressed() then
mouseReleased() and finally mouseClicked(). If you run the program you will see a blue circle
drawn when you press the mouse. When you let go (having not moved the mouse) it will
draw a red circle immediately followed by a green square.

Notice that the draw() function contains no code. It is, however, needed: Processing draws
everything to an off-screen buffer, and copies this to the screen window at the end of the
draw() function. If you don’t have draw() then Processing will never draw anything on the
screen.

©2019 Neil Dodgson 37

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The key functions

* keyPressed() — like mousePressed() * keyTyped() — a light version
o ksvReleasad.— lik Released of keyPressed() that ignores
eyReleased() ike mouseReleased() GaifiEr] and REHEH keys

* variables key and keyCode and doesn't set keyCode

keyPressed() and keyReleased() are useful if you are doing control, like in
a game — there is a simple example in the program moveBallUsingKeys

keyTyped() is useful if you want textual input — all you care about then
is what key has been typed, not when it was pressed and released

But how much of this stuff about keyboard input do you actually need to
remember?

What you need to know is that these functions exist and that you can
look up the details in the Reference manual if you want to use keyboard
input.

Feeling confused by all of the different concepts that have been
introduced so far? Now would be a good time to go read Getting Started
with Processing, Chapters 3—5 (pages 13—74). This will give you a different
view of the Processing world, will consolidate what you have learnt, and
will fill in some bits that the lectures have not covered.

©2019 Neil Dodgson 38

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bits of ellipses: arc()
s1ze(200,200);
ellipse(50, 50, 75, 75) ;
arc(150, SO, 75, 75, O, PI/2) ;
arc(50, 150, 75, 75, PI/4, T+PI/4) ;
arc{ 150, 150, 75, 75, radians(98), radians(225));

* first four parameters of arc() are

same as ellipse()
()

« fifth and sixth parameters are the

C Q start and end angles of the arc

* angles are in radians

Getting Started with Processing, Examples 3-7 and 3-8 (pages 18-20)
explain arcs and radians.

©2019 Neil Dodgson

39

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Radians

* one radian produces an arc whose
length is equal to a radius

* a full circle has 21T radians

* Processing pre-defines:
« TWO _PI

1 ¢
. Pl
« HALF_PI | o
- QUARTER _PI L

* if you like degrees...
* radians(d) converts d° to radians

You need to get comfortable with radians because, although you can
always convert degrees to radians using the radians() function, you will
find many Processing examples written using radians.

See Fundamentals of Computer Graphics, Section 2.3.1 (page 18).
TWO Pl is a full circle

Pl is half a circle
HALF_Pl is quarter a circle

©2019 Neil Dodgson 40

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bouncing ball: a practical programming example

* Draw a ball

* Make it move in a straight line

* Make it bounce off the window edges
* Add gravity

* Add mouse interaction

/

—_ T

In this practical programming example, we will go over:

setup(), draw(), size(), frameRate(), background() — setting up the basics
fill(), stroke(), noStroke(), noFill() — setting drawing colours

ellipse() — drawing a ball

variables — storage locations for information

postion, velocity, acceleration — very basic physics

if() — conditional executing of code

conditions — use of greater than and less than, boolean results

Some of the parts of this example are also covered in Getting Started with Processing
pages 104-107.

Debugging Processing programs:

When you need to find out what is going on inside your Processing program you can
print information to the standard output window, which is that black area at the
bottom of the Processing sketch window. The functions for doing this are print() and
printin(). The only difference is that printin() adds a new line after it has printed.

Getting Started with Processing, Examples 5-1 and 5-2 (pages 49-50) show a couple of
simple examples of using the printin() function. Example 5-8 (page 54) has an example
of a debugging use of printin(), where the printed ouptut allows you to check that the
program is behaving in the way that you want it to.

©2019 Neil Dodgson 41

Introduction to Computer Graphics

Position,Velocity

* position (x,y)

* velocity .ii"’y Y1
* change in position per unit time e/ocl.t e
‘A

X, = X1 + U, Y2

Y2=y1 10
* more correctly:

Xy = X1 + v, (L, — 1)
Y2=y1+v, (- t)

x1 x2

Velocity is change in position per unit time.To work out the position
after a unit time, simply add the velocity.

CGRA 151 — Trimester 2 — 2019

To be more general, multiply the velocity by the change in time to get the

new position.

©2019 Neil Dodgson

42

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Position,Velocity, represented as vectors

* position (x,y) X= [;CI]

* velocity V= [z;] Y1

) Y2

Xy = X1 + v, (L — ty)
Y2=y1+tv, (- t)

It is painful to have to write out two almost identical equations: one for x
and one fory.

We bundle these equations together using vectors.

Convention is that a vector is represented by a boldface upright
character, while scalars are represented by italic characters.

A scalar value is a single number. A vector is made up of two or more
scalars.

See Fundamentals of Computer Graphics, Sections 2.4,2.4.1,2.4.2 (pages
21-23).

©2019 Neil Dodgson

43

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Position,Velocity, represented as vectors
X
* position (x,y) X= [y]
* velocity V= [zx] Y1
y

C@” —}

X, =Xy +V(t; — t;)

These vectors allow us to write two equations as one.

Notice that we have used the standard convention that position (x,)) is
represented by a vector called x.You need to get used to the idea that
we might use the same letter to mean two different things. Of course,
you can tell them apart (one is italic, the other is bold), and the context
generally lets you know which is meant.

©2019 Neil Dodgson

44

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Position, Velocity, represented as vectors

* position (x,y) X= [;CI]

* velocity V= [z;] Y1

C@” —}

X, = X, + VAt

Velocity is change in position per unit time.To add velocity to position,
we need to know what the difference in time is between the two

positions. Here we show the standard notation that is used for difference,
the delta symbol.

At:tz—tl

©2019 Neil Dodgson 45

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Position,Velocity, Acceleration

X
* position (x,)) X= [y]
X, = X, + VAt
. Uy
* velocity V= [v]
* change in position per unit time Y
v, =v; +aAt
. ax
* acceleration a= []
Ay

* change in velocity per unit time

Processing has an object type, PVector, that allows you to store and
manipulate vectors.

For example:

Pvector pos, vel ;

pos = new PVector(x, y)

vel = new PVector(vx, vy) ;

pos.add(vel) ; /* this updates pos by adding vel
to pos, similar to saying p += v */

PVector pos2 = PVector.add(pos, vel) ; /* this

creates a new vector, the sum of pos and vel,
leaving those two vectors unaltered */

©2019 Neil Dodgson 46

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

if statement

* if(condition) {
code to run if condition is true

else {
code to run if condition is false
}

This is simply a reminder of one of the important ways to control the
flow of code.

You will remember that condition is something that returns a boolean:
either true or false.

The else part is optional.

©2019 Neil Dodgson 47

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

while loops

» while(condition) {
code to run while condition is true

float angle = 1.0 ;
e(angle < TWO_PI){
arc(50, 50, 80, 80, angle-1, angle, PIE) ;
angle += 1.0 ;

}

The while loop keeps running so long as the condition is true.

Therefore there should be something inside the while loop that might
cause condition to become false, otherwise we run forever

©2019 Neil Dodgson 48

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

for |OOPS Equivalent while loops
» for(initialisation ; condition ; increment) * initialisation ;
{ while(condition){
code to run while condition is true code to run while
} condition is true
increment ;
}
o for(int i=0 ;i<l|0 ;i++){ *inti=0;
printin(i) ; while(<10){
} printin(i) ;
b okt
}

A for loop is a neat way to format more neatly a particular type of while
loop.

Some early programming languages had for loops that could only handle
integers.

For example, in BASIC:

FOR 1 = 0 TO 9 DO

;E"ND

this would do the same as is shown in the Processing code. The Java and
Processing version of for is much more powerful, because you can put

(almost) anything you want as the initialisation, condition and increment
statements.

For loops are so useful that you can find a whole tutorial on ways to use
them in Getting Started with Processing, Chapter 4, starting halfway down
page 40 and going to the end of the chapter (page 48).

©2019 Neil Dodgson 49

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Final primitive (for now): the polygon

size(300,300) ;

beginShape() ;
vertex(50,50) ;
vertex(250,40) ;
vertex(260,250) ;
vertex(150,270) ;
vertex(150,150) ;
vertex(30,170) ;

endShape(CLOSE) ;

You will use the polygon in assignment |.

triangle(), quad() and rect() all draw particular types of polygon
(respectively, 3 sides, 4 sides, and 4 sides aligned with the axes).

The example shows how you can create a polygon with an arbitrary
number of sides.The same idea is used in various ways throughout
computer graphics.Ve will meet it later when we look at drawing
curves.

©2019 Neil Dodgson 50

Introduction to Computer Graphics

for loops creating a series of vertices

numSides = 7

id setup(){
size(300, 300) ;

| draw() {
beginShape() ;
t1=0; 1 < numSides ; i++)
i T I / numSides) + 1) * width/2,
n(i =T I / numSides) + 1) * ight/2) ;
)

rertex(cos
(s
endShape(CL

}

Notice that, unlike the previous slide, we do not need to have an explicit
list of vertex() commands between the beginShape() and endShape()
commands. Processing is quite happy to keep track of all vertices given to
it between the beginShape() and endShape() commands, and will draw the
appropriate polygon when endShape() is called.

Look at that use of cosine and sine.We are saying that x=cos(theta) and
y=sin(theta) for some theta. As we increase theta from 0 to TWO_PI, the
value of (x,y) goes round a circle.We multiply by width/2 and height/2 to
make the circle fit exactly in the window.The “+1”" in the brackets is
because otherwise the circle (and hence the polygon) would be centred
on point (0,0), the top left corner of the window.We will come back to
how to move the point (0,0) to somewhere more convenient later in the
course.

Now consider how to change the number of sides using the x-coordinate
of the mouse.

Try this:
numSides = 12 * mouseX / width + 3 ; /* the +3
ensures that we have at least a triangle */

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

51

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

nested loops

* Especially useful for doing things in
two dimensions

size(200,200) ; 0O00ooooooooog
for(int i=0 ; <12 ; +i++){ o o o

rect(i*15, j*15, 10, 10) ; 0000000ooooo

} 00000ooooooo
} o o o o o o e

This example can be expanded on in several ways to demonstrate a
range of effects.

For example, what if you wanted the squares to fill the window?

First of all, you have decide what you mean by having the squares fill the
window.

Do you want 12 x |2 squares!?

If so, what size do you want them and with what spacing?

Or do you want a bunch of squares of size 10x10, spaced 5 units apart
(so the squares are placed on a grid spacing of 15x15)?

See Getting Started with Processing, Examples 4-10 to 4-13 (pages 44—46).

©2019 Neil Dodgson 52

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Parameters: make your code easier to read and reuse

size(200,200) ;

int numSquares = 12 ;
t squareSize = 10 ;
k . _ . oooooooooooo
t squareSpacing = 15 ; 0000oo0o0oooo
for(int i=0 ; i<numsquares ; i++){ 0000000000080
£ N s g 0oooooooogoo
or (t j=0@ ; j<numSquares ; j++) { SSEESESSSEBS
okt T8 : - ;
rect(1 squargSpac1ng, J équareSpac1ng,[jDDEHjDDEHH]DD
squareSize, squareSize) ; goooooogoooon
gooooooooooo
} 00000000o0ooo
} o o o o o o o e)

Parameters help improve the readability of your code and make it easier
to modify.

Now let us say that we want numSquares across the window, and we
want squareSize to stay at |0.

We can calculate squareSpacing as:

int squareSpacing = width / numSquares ;

If we want to be able to cope with numSquares not exactly dividing into
width then:

float squareSpacing = 1.0 * width
/ numSquares ;

Alternatively, we could set squareSpacing to be a constant and calculate
numSquares instead.

©2019 Neil Dodgson 53

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Snake: a practical programming example

* A“snake” is drawn as 100 circles

* When the mouse is moved, the oldest
circle is replaced by a new circle at
the mouse position

* Store the (x,y) positions of the circles
in arrays

In this practical programming example, we will go over:

|. Storing the coordinates in arrays.
2. Using mouseMoved() to update the array.

Making the code more complex in stages:

3. Simply draw each of the 100 circles in the default fill and stroke.
4. Change to draw from back to front.
5. Change to have noStroke and fade out of colour as we go from front

to back.

©2019 Neil Dodgson

54

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

/“— the slope of the line

y=mx+c

N

the y-intercept

C—=1"

Behind the scenes: how do you draw a line?

We now move to considering one of the core algorithms in computer
graphics: drawing a straight line.We will look at two line drawing
algorithms, as worked examples of how to do good algorithm design.The
algorithms are a digital differential analyser (DDA) algorithm based on
the explicit line equation y=mx+c and the Midpoint algorithm based on

the implicit line equation ax+by+c=0.

Line drawing is implemented on all graphics cards. Its main use there is as

part of the polygon filling algorithm — more on that later.

©2019 Neil Dodgson

55

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Behind the scenes: how do you draw a line?

y
y=mx+c
c_,,,.:" i R
For a line passing through (xy,y,) and (x;,): , Codo)
W=V B
X, — X €=Yo—MXo

See the two similar triangles.
V1-Vo is to X=X, as m is to 1, which means m=(y,—,)/(x;—x)

Once you have m you can work out ¢ by substituting into the formula,
with one of the given points: y,=m x, + ¢,s0 c =y, —m x,

©2019 Neil Dodgson

56

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Behind the scenes: how do you draw a line?

* a straight line can be defined by:
y=mx+c

* a mathematical line is “length without breadth”
* a computer graphics line is a set of pixels

* which pixels do we need to turn on to draw a
given line?

Without peeking at the next slide (which has the answer!), think about
which pixels you would turn on to represent this line.

©2019 Neil Dodgson 57

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Which pixels do we use!?

* there are two sensible alternatives:

every pixel through which the line passes the “closest” pixel to the line in each column
for lines of slope less than 45° X \/ for lines of slope less than 45°
either one or two pixels in each column always just one pixel in each column

The left hand version produces lines that look “lumpy”.The right hand
version produces lines that are the best that you can achieve with pixels,
if you are only allowed to have them “on” or “off”.

©2019 Neil Dodgson 58

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Line drawing algorithms — preparation |

* pixel (x,y) has its centre at real co-ordinate (x,y)
* it thus stretches from (x—'%, y—'2) to (x+%, y+%2)

yH Y-

pixel (x,y)

y+ 1

YA

¥

y-Yo ' :
x-1% x-Y x+Ys x+1%

x-1 X x+1

not every graphics system uses this convention. Some put
real co-ordinate (x,y) at the bottom left hand corner of the pixel.

Two warnings:

|. | have used the convention that pixel (x, y) runs from (x—'2, y—'2) to
(x+Y2, y+'4), which is also the convention used in Fundamentals of

Computer Graphics. Others may make the assumption that pixel (x, y)
runs from (x,) to (x+1, y+1).

2. You will notice that, in the lecture notes and in Fundamentals of
Computer Graphics, the y-axis runs upwards, while in Processing the
y-axis runs downwards.You just have to get used to the
inconsistency. All mathematics texts will have the y-axis pointing up.
Some graphics systems have it pointing down.

©2019 Neil Dodgson

59

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Line drawing algorithms — preparation 2

* the line goes from (x,,y,) to (x;,»;)
* the line lies in the first octant: (0 <m < 1) and x, < x;

| (191

(*0:Y0)

We can get x, < x; by exchanging the end points if necessary.

There are then four cases that need variations on the same algorithm:
m <—1 one pixel in each row
—1 <m <0 one pixel in each column
0<m<1 one pixel in each column
1 <m one pixel in each row

We’'ll develop an algorithm for the case 0 < m < 1 where there is one

pixel turned on in each column and where the line slopes upwards from
left to right.

©2019 Neil Dodgson 60

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Naive algorithm for integer end points

Initialisation | floatm = (y, — ye) / (x, — x,)]
float c= y, — m*x, P
int x=x,
int y=y, F .‘
Iteration WHILE x < x, DO X
DRAW(x,y)
X=Xx+1
yi=m*x+c

yi

y = ROUND(yi)

END WHILE

I yi is the floating point “y-intercept”: the y value at which the line we are drawing intercepts the vertical line at x.

yi is a floating point variable
y is an integer variable

For this naive algorithm, we could dispense with y entirely, and just use
the command DRAW/(x,ROUND(yi)), but it is useful for the algorithm’s

development in the next slides to include yi at this stage.

ROUND() is a function that rounds a floating point number to the
nearest integer

DRAWY() is a function that turns on a single pixel. It is equivalent to
Processing’s point() function.

©2019 Neil Dodgson 61

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Initialisation

Iteration

float m = (v, — yo) / (x; — xo)

int x=x,

float yi = y,

int y=y,

WHILE x < x, DO
DRAW(x,y)
X=x+1
yi=yi+m

y = ROUND(yi)

END WHILE

DDA line algorithm for integer end points

A | m
y §Va

(x00)] .‘ T

X X+1
!
yé&y m
f

X X'

yi

yi’

I DDA = “digital differential analyser” — it uses the difference (m) in y between one column and the next

We have replaced

with

This gives an immediate performance gain because, on each time round
the loop, we have replaced a multiplication and an addition by a single

addition.

Over a very long line, this might mean that we accumulate some small
error because of doing thousands of additions, but no line in computer
graphics is going to be more than a few thousand pixels long, so the

yi=m*x+c

yi=yi+m

errors will be irrelevant.

©2019 Neil Dodgson

62

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

DDA line algorithm for floating point end points

Initialisation | float m = (y, —y,) / (x; — xo) > a
int x = ROUND(x,) —
float yi = y, + m * (X-x,) y —T—==1
int y = ROUND(yi) sy |
Iteration WHILE x < ROUND(x,) DO X X+1
DRAW(x,y)
X=x+1
yi=yi+m

y = ROUND(yi)

END WHILE

We need to calculate the initial y from the rounded off initial position of x, because we will not
necessarily get the right answer by rounding x; and y, independently.

The only difference is in the initialization.

Today’s machines have floating point multiplication that is (almost) as fast
as floating point addition. It is still worth using the DDA algorithm
because it replaces two floating point operations in the loop with one.

You could ask why we do not simply round the end points to the nearest
integer and then use an integer version of the algorithm. Rounding end
points is not good because it would mean (1) that animation would
become jerky as the endpoints of the line move and (2) that dividing any

line in two could lead to the two halves drawing (slightly) different sets of
pixels to the un-split line.

©2019 Neil Dodgson 63

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

float m = (y; — yo) / (x; — xo)
int x=ROUND(x,)

float yi =y, + m * (x-x)

int y=ROUND(yi)
floatyf =yi—y

WHILE x < ROUND(x,) DO
DRAW(x,y)
X=X+1
yf=yf+m
IF (yf>%) THEN

y=y+1
yf=yf-1
END IF
END WHILE

DDA algorithm without ROUNDing in the loop

{I/ " l
y——1 m
o lK T yi = y+yf
(x0:Y0) : et
>4 oS
; 7 = l y'+yf
y&y > o m
— y+yf
X X

| Splitting the y-coordinate into fractional (yf) and integer (y) parts avoids rounding on every cycle. |

Replacing ROUND: Here we split y into integer and fractional parts and
replace the ROUND operation with an IF statement.

©2019 Neil Dodgson

64

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

* we assumed that the line is in the first octant
* can do fifth octant by swapping end points

* therefore need four versions of the algorithm

3 || 2nd

75t

4th / ﬁl |
5 N W

8th

Line drawing algorithm — more details

Exercise: work out what
changes need to be made to
the algorithm for it to work
in each of the other three
octants

©2019 Neil Dodgson

65

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Ways to represent a line

* Explicit ,
=) 4
= B /)

* Implicit
ax+by+c=0

* Parametric

x(t) = (1 — t)xg + tx, .’(xo,yo)
y)=QA -y, +ty;

Explicit and implicit representation: see Fundamentals of Computer
Graphics, Section 2.5.2 starting halfway down page 33 (pages 33-35).

Parametric representation: see Fundamentals of Computer Graphics, Section
2.5.6 (pages 3940).

©2019 Neil Dodgson

66

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The midpoint line drawing algorithm |

* use an equation based on the implicit formula for a line:
k=ax+by+c ‘
For a line segment

from (xg40) to (x1201),
the line is defined by:

a=Yo—V1
b=x1—xO
C=X0Y1 — %10

* this divides the plane into three regions:
* above the line k>0
* below the line k<0
* on the line k=0

k>0

k<0

The values of a, b, and c are those in Equation 2.18 of Fundamentals of
Computer Graphics (page 34).

Note that this version of c is different from the ¢ in y=mx+c.

©2019 Neil Dodgson 67

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The midpoint line drawing algorithm 2

« first work out the iterative step
* it is often easier to work out what should be done on each iteration and only later
work out how to initialise and terminate the iteration
* given that a particular pixel is on the line, the next pixel must be either

* immediately to the right (E) or
* to the right and up one (NE)

* use a decision variable
(based on k) to determine
which way to go

: \ Evaluate the
~— decision variable
at this point

if < 0 then go NE
if 2 0 then go E

A
This is the current pixel o

The midpoint algorithm is covered in Fundamentals of Computer Graphics,
Section 8.1.1 (pages 163—165). It would help to read also the earlier
parts of Chapter 8 (pages 161-163).

The code letters “E” and “NE” stand for “East” and “North-East”, as if
the pixel grid was a map with North at the top.

©2019 Neil Dodgson 68

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The midpoint line drawing algorithm 3

* decision variable needs to make a decision at point
CptL V) k= a(x, + 1)+ b(y, + 1) + ¢ 3

« if go E then the new decision variable is at
Ct2, %) |

L k =a(xp+2)+b(yp+1/2)+c g_}@_
=k+a

* if go NE then the new decision variable is at Ia

(12, y,+17%2) 2

k'=a(x, +2)+b(y, +3/,) +c
=k+a+b

The decision variable is calculated from the formula k=ax+by+c at the
location (x,y)=(x,+1,y,+V2).

When you decide which way to move, the decision variable moves one
unit to the right and either zero or one unit up.You can then calculate
the new decision variable at the new point.The beauty of this method is
that the new decision variable is easy to compute from the previous one
and the computation does not require multiplication: it is just adding
either a or a+b to the current value of k.

©2019 Neil Dodgson 69

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The midpoint line drawing algorithm 4
Initialisation Iteration
float a = —(y; — yo) WHILE x < ROUND(x;) DO
floatb = (x; —x) DRAW(X,y)
floatc = xo3 —x1 0 IF k>0 THEN)’ase
int x = ROUND(x,) k=k+a -
int y = ROUND((-a*x-c)/b) ELSE
floatk=a* (x+1) +b * (y+%) + ¢ k=k+a+b
y=y+1 1
END IF }case
X=x+1
e N\ END WHILE
y——5~ : First decision
| | point
(xo0) x X+1

As with many graphics algorithms, the initialization is more complicated
than the iterative loop.

©2019 Neil Dodgson 70

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Assignment 2 extension — line drawing

* Implement one of the line drawing
algorithms

* Check it against Processing’s own /
line drawing algorithm

RandomLines
size(300,300);
background(255) ;
stroke(0);
for(int i=0;1<100;7++){

line(random(10,290),random(10,290),
random(10,290),random(10,290));

©2019 Neil Dodgson

71

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Assignment 2 extension — how!

* Write your own line drawing function
myLine (int x0, int yO,
int x1, int yl)

* Use point (x,y) to draw individual pixels

* Write a test harness:

* A test function that draws your line in red
then Processing’s line in blue

* A for loop that calls the test function with a
carefully chosen set of lines (which might be a
random set of lines)

* Then swap the order of drawing in the test
function and run again

* One-pixel-away errors are acceptable

4

©2019 Neil Dodgson 72

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Assignment 2 extension — things to remember

e I ° | you define other

id setup(){ functions you must also
size(300,300) ; use setup ()and draw ()
noLoop(); // call draw() only once

noSmooth(); // don't draw smooth lines

* Use noLoop () to make
void testLines(int xe, yo, int x1, int y1){ Processing call draw () only
stroke(255,0,0); // red once, rather the looping
myLine(x0,y0,x1,yl);

stroke(0,0,255); // blue

} LINe0xa, yRyxL, ¥ 12 * Use noSmooth () to make

Processing draw pixelated lines
void draw(){
background(255) ;

Processing has two modes, which it calls “active” and “static” modes.

“static”’ mode has no functions at all, with all the code executed in order,
once. It creates a static picture, because there is no update loop.

“active” mode uses setup () and draw () to make that update loop.

The challenge is that you cannot mix “active” and “static” modes.This
means that you can define your own functions only in “active” mode. If
you try to define your own functions in “static” mode you will get either
a strange error message (such as “unexpected token”, which doesn’t
make sense unless you realise that in active mode you cannot put
statements outside functions) or the more helpful message ‘It looks like
you’re mixing “active” and “static” modes.’ Remember: if you want to
define any of your own functions, you must also use setup() and draw().
You cannot mix the two modes.

©2019 Neil Dodgson 73

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Uses of a line drawing algorithm

 to draw lines \ /\—E g

* to draw curves as a sequence of lines
* coming later in the course

* a variant is used in polygon filling algorithms
* to run up each of the polygon’s edges

* a similar structure can be used for a circle-drawing algorithm (O < >

©2019 Neil Dodgson 74

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Midpoint circle algorithm |

« implicit equation of a circle is x% + y2 =
* centred at the origin

* decision variable can be k = x2 + y2 —r

* k=0 on the circle, £ > 0 outside, k£ <0 inside

* divide circle into eight octants

* on the next slide we consider only
the second octant, the others are
similar

7'2

2

©2019 Neil Dodgson

75

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Midpoint circle algorithm 2

* decision variable needs to make a decision at point 7
(1, y,—Y2) 2 2 £
P k=(xp+1) +(J’p_1/2) —1r?
« if go E then the new decision variable is at
(x +2’y _1/2) 2 2 \
PO = (2 + (- 1Y) -1 o |
=k+2x,+3
* if go SE then the new decision variable is at
(x,12, y,~1%) 2
¥ = G +2) + (=) -2 N

=k+2x,+3—-2y,+2

This detail is for the second octant.

This slide only covers the increment part of the algorithm. It assumes that
we already know the location of the previous pixel and the current value
of k.

Homework: How would you initialise the algorithm? At which pixel
would you start?

©2019 Neil Dodgson

76

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Midpoint circle algorithm 3

* Drawing an origin-centred circle in all eight octants
Call Octant
Draw(x,y)
Draw(-x,y)
Draw(-x,-y)
Draw(x,-y)
Draw(y,x)
Draw(-y.x)
Draw(-y,-x)
Draw(y,-x)

0 uUh - NN WN

The second-octant algorithm thus allows you to draw the whole circle.

77

©2019 Neil Dodgson 77

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Midpoint circle algorithm 4

* Drawing an circle offset from the origin
Call Octant
Draw(x+xo,y+yo) 2
Draw(-x+xo,y+yo)

Draw(-x+xo,-y+yo)
Draw(x+xo,-y+yo)
Draw(y+xo,x+yo)
Draw(-y+xo,x+yo)
Draw(-y+xo,-x+yo)
Draw(y+xo,-x+yo)

0 uUdh - NOoON W

(xo0,yo0) is the offset vector |

Homework: Implement this algorithm in Processing. Compare it against
Processing’s own circle drawing (using the e1l1ipse () function with

equal width and height parameters).

©2019 Neil Dodgson 78

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Where can we go from here!?
* Can we derive similar algorithms for all curved shapes?
NO!

* A similar method can be derived for ellipses
* but: cannot naively use octants

* use points of 45° slope to divide / \
ellipse into eight sections { e]
* and: ellipse must be axis-aligned \ /

* there is a more complex algorithm which
can be used for non-axis aligned ellipses

* early drawing packages used just ellipses & segments of ellipses

* But graphic design & CAD need something with more flexibility

* spline curves, which need a totally different approach to drawing

This idea of drawing only one pixel in each column (or row) does not
extend well as the shapes get more complicated. We need to consider a

different way of drawing more complex curves. We will get to that later
in the course.

©2019 Neil Dodgson 79

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Polygon filling

* which pixels do we turn on?
[11

[]

* those whose centres lie inside the polygon
* this is a naive assumption, but is sufficient for now

Why is it naive! Because we would really want a pixel to be shaded in
proportion to the fraction of the pixel that is covered by the polygon
rather than just being a binary choice: fully on or fully off.

There is also a subtlety: what about pixels whose centres lies exactly on
an edge. If two polygons share that edge, we don’t want the pixel to
belong to both polygons. In this case we can say, for example, that pixels
on an edge at the left side of the polygon belong to that polygon, while
pixels on edges at the right do not.

©2019 Neil Dodgson 80

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

* on each row from top to bottom:
* fill from left to right

Axis-aligned rectangle — the easiest polygon to fill

int left=10;
int right=90;
int top=20;
int bottom=80;

stroke(255, 0, 0); // red
for (int y=top; y<bottom; y++) {

for (int x=left; x<right; x++) {
point(x, y);

int left=10;
int right=90;

int top=20;
int bottom=80;

noStroke();
fill(e, 0, 255); // blue
rect(left, top, right-left, bottom-top);

The top fragment of code is a loop to draw every pixel in the polygon.

The bottom fragment of code is the equivalent Processing function call of
rect (), which internally does just what happens in the top fragment.

A note on APIs. Processing is a graphical APl (Application Programming
Interface) that has a whole bunch of function to do things so that you
don’t have to write them. In this course we are learning both about how
to use that APl and about what is going on behind the scenes.When
writing computer graphics code, you will always be using APls, some of
which have many more features than Processing.

©2019 Neil Dodgson

81

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Triangles

82

Triangles are the default primitive for graphics cards to draw because:

* Guaranteed to be convex (so no nasty cases to consider).

* Guaranteed to have only three vertices and three edges (so can
explicitely have hardware optimised for the number, rather than
having to cope with an arbitrary number of vertices and edges)

* In 3D, guaranteed to be planar.

We get to 3D drawing later in the course...

©2019 Neil Dodgson 82

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Triangle filling — what every graphics card does

EEE L] work out top and bottom
L for(int y=top; y<bottom; y++){
=
= = work out left and right

for(int x=left; x<right; x++) {
point(x, y)

o P }

< 7)

* on each row from top to bottom:

* fill from left to right between the
triangle’s edges

The triangle drawing algorithm presented in these notes is based on
using a modified version of the line drawing algorithm to scan up the
edges of the triangle, and to fill between those edges.

The textbook presents an alternative algorithm that uses barycentric
coordinates. This can be found in of Fundamentals of Computer Graphics
Section 8.1.2 (pages 166—169).You'll also need to read up on barycentric
coordinates in Section 2.7 (pages 44—48).

©2019 Neil Dodgson 83

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Triangle filling — what every graphics card does

A= (xA,: yA)

work out correct order for points, sorted on y value: A, B, C
for(int y=yA; y<yB; y++){
work out left and right
for(int x=left; x<right; x++) {
point(x, y) 7
}
}
for(int y=yB; y<yC; y++){
work out left and right
for(int x=left; x<right; x++) {
point(x, y) 7
}
}

C = (xc,¥c)

* fill rows from y, to y;

* then fill rows from yzto y

Here we are using Processing’s convention that the y-axis points
downwards, so increasing y moves you down.

Notice that here we are assuming that the vertices of the triangle are at

integer coordinates.What changes would be needed to allow floating
point coordinates?

©2019 Neil Dodgson 84

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

For edge intercepts, repurpose DDA
A= (xA,: yA)
T 2
B = (xg,¥p) |- ¥ =41
. . v 4
] N AT _Xp — Xy
C=(xc,yc) ¢ Map = Y8 — Va
XAB Xac Xo — %4
x’AC = Xgc + My Myc = Ve — Va
X'ap = Xap + Myp

This is an extension of our line drawing algorithm.

With two edges, we have to keep track of two lines and therefore two
intercepts, one for each edge.

In the diagram, the current horizontal scan line, y, has two intercepts, x5

and x,c. When we increment y to y’, we need to increment these two
intercepts also, by the appropriate values, m 3z and m .

©2019 Neil Dodgson 85

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Polygon filling — the generic case

[1]

[
* Graphics card solution: convert polygon to triangles

* Alternative: generalise triangle algorithm to arbitrary number of edges

©2019 Neil Dodgson 86

Introduction to Computer Graphics

Initialisation

Iteration

Scanline polygon fill algorithm

I) take all polygon edges and place in an edge list (EL), sorted on
lowest y value

2) start with the first scanline that intersects the polygon, get all
edges which intersect that scan line and move them to an active
edge list (AEL)

3) for each edge in the AEL: find the intersection point with the
current scanline; sort these into ascending order on the x value

4) fill between pairs of intersection points

5) move to the next scanline (increment y); move new edges from
EL to AEL if start point < y ; remove edges from the AEL if
endpoint < y ; if any edges remain in the AEL go back to step (3)

This is the algorithm for an arbitrary number of vertices and edges.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

87

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Scanline polygon fill example

[1]

Homework: try this yourself. Get a piece of squared paper and draw an
arbitrary polygon on it, with five or six edges. Then run the scanline
polygon fill algorithm by hand, keeping track of which edges are in the
edge list, which are in the active edge list, and which have been

discarded.

©2019 Neil Dodgson

88

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Scanline polygon fill details

* how do we efficiently calculate the intersection points?
* use a variant of the DDA algorithm to do incremental calculation
* store current x value, increment value m, starting and ending y values
* on increment do a single addition x=x+m

 what if endpoints exactly intersect
scanlines?

* need to ensure that the algorithm
handles this properly

=N VN
X N

* what about horizontal edges?

* can throw them out of the edge list, they
contribute nothing

How do we handle edge points that exactly intersect?

In the left hand case, the point needs to be included twice: once fro each
edge

In the right hand case, the point needs to be included once: once for one
of the edges and not for the other

This requires that you are careful in how you code your conditions in
the algorithm for when an edge is added to or removed from the AEL.

Do we really throw away horizontal edges?

Rather than explicitly testing for horizontal edges, it is neater and simpler
to code so that a horizontal edge gets added to the AEL and then
removed from the AEL.This requires that, on each scanline you check for
new lines to add to the AEL before you check for lines to remove from
the AEL and do both before you draw anything.

©2019 Neil Dodgson 89

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Curves you need more than C|rc|es

Curves are covered in Fundamentals of Computer Graphics, Chapter |5
(page 339-384).That chapter goes deeper into the material than is
necessary for this course. In this course we will cover particularly Bézier
curves (Section 15.6.1, pages 365—-372). Understanding the material in
Section 15.6.1 requires you to have at least read Sections 15.2 and 15.3,
even if you are not totally confident of that earlier material.

©2019 Neil Dodgson

90

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Curves: you need splines

The spline here is created by a flexible piece of wood held in place by
five lead “ducks”. The wood naturally bends to a shape that is piecewise
cubic: that is, between each pair of ducks the curve is a cubic function.

©2019 Neil Dodgson 91

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Splines were originally used in boat building. Boats would be planned out
in a process call lofting, where the designers would go up into the very
large loft of the factory or boat house, lay out enormous pieces of paper,
and draw the cross-sections of the boat at real-life scale, using the

flexible wood and ducks to get the lines right. The lofting process dates
back at least 200 years.

©2019 Neil Dodgson 92

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bézier cubic splines in Processing

size(300,300);
background(255);

noFill();
bezier(30,30,90,270,210,60,270,240) ;

stroke(255,0,0);
rectMode (CENTER) ;
rect(30,30,10,10);
rect(90,270,10,10);
rect(210,60,10,10);
rect(270,240,10,10);

1ine(30,30,90,270);
1ine(210,60,270,240);

The Bezier curve has four control points. In this case they are at (30,30),
(90,270), (210,60), (270,240).

The Bezier curve starts at the first point, heading in the direction of the
second.

It ends at the fourth point, coming in from the direction of the third.

The first and fourth points define the ends of the curve.The second and
third points define the tangent vectors at the ends.

The Processing sketch, BezierInteraction, allows you to play with a Bézier
curve.

©2019 Neil Dodgson 93

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bezier cubic

* Bézier cubic is defined by two end points
and two other control points

P(t)=(1-1t)3P,
+ 3t(1 —t)*P, A

+ t3p3 P R

where: P; = (x;,y;)
0<st<1

Pierre Bézier worked for Renault in the 1960s

Bézier cubics: Fundamentals of Computer Graphics Section 15.6.1 (pages
365-372).

Work out what happens at =0 and #=1.

©2019 Neil Dodgson 94

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bézier properties

* Tangent vectors at end points are defined by the end point and its adjacent point
To = 3(P, — Py) T; = 3(P3 — P,)
* Weighting functions are cubic Bernstein polynomials

1-1)3 3t(1—1t)? 3t2(1—1t) e

3
* Weighting functions sum to one b;(t) =1

- A
=0 A
| . | | B\
* Bezier curve lies within convex hull of its control points ”

* because weights sum to 1 and all weights are positive / \

Tangent vectors are the direction that the curve leaves the start point
and the direction that it arrives at the end point.

Look at the form of the Bernstein polynomials. For cubics they are:
b,, = k, (1-£ym ¢3-m

where k,, is a constant. For cubics the constants are {l,3,3,1}, which is

one of the rows of Pascal’s triangle. There is a general form for these

polynomials for arbitrary degree, n

br= ki (1-gym ¢-m)

For any degree, the weighting functions always sum to one.This is vital
for ensuring that the cubic curve is invariant to translation. That is, if you
move all the control points by the same distance in the same direction,
the entire curve moves the same distance in the same direction.

The convex hull property is important when we are doing bounding box
calculations (see later) because it means that we know that if the control
points all lie on one side of any given line, the entire Bezier cubic curve
does too.

©2019 Neil Dodgson 95

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Drawing a Bézier cubic — iterative method

* draw as a set of short line segments equispaced in parameter space, ¢

(x0,y0) = Bezier(0)

FORt=0.05TO 1 STEP 0.05 DO
(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0,y0) = (x1,y1)

END FOR

* problems:

* cannot fix a number of segments that is appropriate for all possible Beziers: for some there will be
either too many or too few segments

* distance in real space, (x,p), is not linearly related to distance in parameter space, ¢

The basic idea is that we know how to draw straight lines quickly, so it is
straightforward to approximate the Bézier as a sequence of straight lines.

In this example, we use 20 straight lines (it is 20 because the STEP is
0.05, t ranges from 0 to I, and 20%0.05=1).

The iterative method fixes the number of line segments that should be

used. The adaptive method (see two slides ahead) adapts the number of
line segments to suit the Bézier curve and the pixel resolution of the
display.

©2019 Neil Dodgson 96

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Examples

the tick marks are
spaced 0.05 apartin ¢
(At=0.05)

The top example shows, at left, tick marks spaced evenly in parameter
space at a STEP spacing of 0.05, superimposed on the actual curve.

At right are three approximations drawn with different STEP values:
0.2 approximates the curve using 5 lines,

0.1 approximates it with 10 lines, and

0.05 approximates it with 20 lines.

Notice that the right hand example appears visually to be curved over
most of its length but that you can make out the individual line segments
at the place where the curve turns the tightest. This means that a STEP
size of 0.05 is good enough for parts of this curve but not good enough
for other parts.

At the bottom are three examples of actual curves with tick marks
superimposed at a STEP size of 0.05.The tick marks are equally spaced in
parameter space but notice how they are not equally spaced in real
space.

©2019 Neil Dodgson 97

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Drawing a Bézier cubic — adaptive method

* adaptive subdivision

* check if a straight line between P and P; is
an “adequate approximation” to the Bezier

* if so: draw the straight line
* if not: divide the Bezier into two halves, each
a Bezier; and repeat for the two new Beziers
* need to specify some tolerance for when
a straight line is an adequate
approximation

* when the Bézier lies within half a pixel width co— ———
of the straight line along its entire length

sa|dwexa JuaJYIP 34y |

The illustrations on the right show you examples of three different
Bézier curves and the straight line approximation to them.

The bottom curve is clearly almost a straight line already so you could
just draw the straight line and you are done.

The middle curve is nearly a straight line, but it would depend on how
big the pixels are as to whether it is close enough to a straight line for
the straight line to be a good approximation.

The top curve is clearly not a straight line but, if the two end points
were both in the same pixel, the straight line (i.e., one pixel!) would be a
good approximation.

©2019 Neil Dodgson

98

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Drawing a Bézier cubic (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve
IF Flat(curve) THEN
DrawLine(curve) ~————___ |
ELSE
SubdivideCurve(curve, left, right) |
DrawCurve(left)
DrawCurve(right)
END IF
END DrawCurve

— e.g. if P, and P, both lie
within half a pixel width of
the line joining P, to P;

draw a line between
P, and P;: we already
know how to do this

this requires some
straightforward

This is a

recursive function.

If the curve is sufficiently flat then we draw a line and we are finished.

Otherwise we split the curve into two parts and recurse on each of the
two parts.

We already know how to draw a line.

We need to work out how to test for flathess and how to subdivide a

Bézier curve into two new Bézier curves that, between them, exactly
match the original Bézier curve.

©2019 Neil Dodgson

99

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Checking for flatness K

we need to know

this distance
\/ | :

P(s)
Either solve this: AB - CP(s) =0 y,
so we need to know the
) AB - AC location of this point
Or solve this: s = YEE P(s) = (1—5s)A + sB

Either solution gets you to this equation for s:

(xp — x4)(xc —x4) + VB — Ya) Ve — Ya)
(xg —x4)%* + (yg — ¥a)?

P(s) is the closest point on the line to point C.

Either of the “solve this” equations relies on the dot product. See the
Mathematics Workbook or Fundamentals of Computer Graphics, Sections
2.4.3 (pages 23-24).

The dot product of two vectors, V=(x;, ;) and W=(x,, y,) is calculated as
V-W=x1x1y12

The dot product is also V- W = |V| |W| cosB which, amongst other things,
allows you a way to find cosf where 0 is the angle between V and W.

For the first version, we say that the line connecting point P(s) to C
must be at right angles to line AB. Therefore cos0=0.

For the second version, we know that |AP| = |AC| cosO from
trigonometry.

We also know that the dot product, AB.AC = |AB||AC|cos6.

So to get |AP| we need to divide AB.AC by |AB|.

Then s is the fraction along 4B that P lies, so: s=|AP| / |AB|.
These two divisions by |4B| appear in the denominator of the final
equation as the square of the length of AB.

©2019 Neil Dodgson 100

Introduction to Computer Graphics

Special cases

* if s<0 or s>1 then the distance from point C to the line segment 4B is not
the same as the distance from point C to the infinite line A8

* in these cases the distance is |AC| or |BC| respectively

The subtlety here is that the maths on the previous slide related to the

closest point, P(s), to point C, that lies on the infinite line through A and B.

However, we actually want to know the closest point to the line segment
that runs just between points A and B.This means that, if s lies between 0
and | then the maths on the previous slide is what we need, but if s is
less than 0 or greater than I, then the closest point to C is one of the
two end points: A if s<0 and B if s>1.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

101

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

The effect of different tolerances

* this is the same Bezier curve drawn with four different tolerances

SIS

100 20

©2019 Neil Dodgson 102

Introduction to Computer Graphics

Subdividing a Bézier cubic L%

* a Bézier cubic can be easily subdivided
into two smaller Bézier cubics

0, =k

0,=1R+iP

0,=ih+1B+ih Ry
0,=iR +iR+iB+iR bp,

R,=iPR+3}R+iB+}B
R = R+;P+;P

R, =£Pz+;P3

R, =P,

Exercise: prove that the Bézier cubic curves defined by Qq, 01, 0,, Qs and Ry, Ry, R,, R; match the
Bézier cubic curve defined by Py, P,, P,, P; over the ranges t€[0,'2] and t€[';,1] respectively

There is a Processing program to demonstrate the algorithm: BezierSplitting.
Notice that the points can all be made by repeated averaging:

Define the following simple averages:
Py =(Py+P;)/2

P,=(P,+P,)/2

Pp;=(P,+P5)/2

Py1,=(Py;+P12)/2

Py53=(P1,1P,3)/2

Py125=(Po121P123)/2

Qo =Py Ro=Py123
Q, =Py R=P»;
Q. =Poiz R,=P»;
Q; = Poi23 R;=P;

You can do splits at arbitrary values of ¢ by defining:
Po1(=(1-)PoH(t)P,

Po1a()=(1-t)Po; +(t)P 1,

etc.

Use the same t value for every split, then you get two smaller Beziers that together
exactly match the bigger Bezier.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

103

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Cubic Béziers in typography

* Computer typefaces are defined using cubic Béziers

~—Filled boxes are end-points
~—Hollow circles are the other points

~———Straight lines have only end-points

©2019 Neil Dodgson

104

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Quick case study in Adobe lllustrator

In this case study, we have six letter defined by Bézier curves.

We want the visual effect to be that we have overlapped these curves
and, where they overlap, they appear semi-transparent.A graphics
designer will expect the software to allow them to do this.As software
designers we need to work out how to achieve that visual effect.

How we actually achieve this, in this example, is to split the Bézier curves
at the points where they overlap and to colour each individual section so

that it achieves the desired look.

There are other ways to get the same look, which involve how we do

colour shading with semi-transparent effects.

©2019 Neil Dodgson

105

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

We split the shapes into overlapping and non-overlapping shapes. Each
shape has a series of Bézier curves as its boundary. We colour each
shape so that the pieces appear translucent.

On the left: the top row shows the letters overlapping. The middle row
shows the overlapping regions coloured in black, after the shapes have
been split. The bottom row shows the desired colouring.

On the right, notice that Adobe lllustrator has code that allows it to split

the Bézier curves at arbitrary positions, creating new Bézier curves that
exactly match the originals.

©2019 Neil Dodgson 106

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Types of curve join

C,—continuous in
position only

G, — continuous in

position & tangent

w direction, but not
tangent magnitude

~.__ C,—continuous in position
& tangent vector

Types of continuity: Fundamentals of Computer Graphics Section 15.2.1
(pages 346—348).

Each Bézier curve is defined by its own four points. To make Bézier
curves join up we make the end point of one curve match the start point
of the next. To make them join up smoothly, we also need to worry
about the positions of the control points adjacent to the shared end
point.

©2019 Neil Dodgson 107

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Types of curve join

* each curve is smooth within itself

* joins at endpoints can be:

¢ C, — continuous in both position and tangent vector
* smooth join in 2 mathematical sense

* G, — continuous in position, tangent vector in same direction
* smooth join in a geometric sense

* C, — continuous in position only
* “corner”

¢ discontinuous in position

C, (mathematical continuity): continuous in all derivatives up to the nt" derivative

G, (geometric continuity): each derivative up to the nt has the same “direction”
to its vector on either side of the join

C, =G,

What does this mean in practice!?
For Cy, we make the end points in the same location.

For G, the end point and the control points either side must all be in a
straight line.

For C, the end point and the control points either side must all be in a

straight line and the distance from the end point to the two control
points must be the same.

©2019 Neil Dodgson 108

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Application of Bézier cubics: typography

* typeface: a family of letters designed to look good together
* usually has upright (roman/regular), italic (oblique), bold and bold-italic members

abcd efgh ijkl mnop — Gill Sans abcd efgh ijkl mnop — Times
abcd efgh ijkl mnop — Arial abed ¢fgh ijkl mnop — Garamond

* two forms of typeface used in computer graphics

. LLL L] L L1}
* pre-rendered bitmaps B B o= m
. .) EEER u |
* single resolution (don’t scale well) g B Eumm
* but fast to write to screen so used in the 1980s] 2 "« =

i EEER B .---
* outline definitions

* defined by Bézier cubic curves (scale well)
* need to render (fill) to write to screen
* can include “hints” for how to render at low resolution

These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric Gill for Monotype, 1928-30.
The lowercase italic p is particularly interesting. The mathematics is mainly set in Times New Roman, a roman
typeface commissioned by The Times newspaper in 1931, the design supervised by Stanley Morison.

Outline definitions are rendered to the screen by combining two
algorithms that we already know: first the Bézier outline is converted to
a series of straight lines (a polygon!) then we call the polygon filling
algorithm on that polygonal outline.

©2019 Neil Dodgson 109

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Example typefaces that are Bézier-friendly

typeface: Utopia (1989) typeface: Hobo (1910)
designed as a Postscript typeface by this typeface can be easily
Robert Slimbach at Adobe approximated by Béziers

These typefaces need few control points to define their curves, because
the designers are happy to use what a Bézier curve can deliver.

©2019 Neil Dodgson 110

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Example typefaces that are more fussy

typeface: Helvetica (1957) typeface: Palatino (1950)
abcdQRST23458& = abcdQRST2345&

Compared to the previous slide, these letters need a lot more control
points to get the shapes to exactly match the original, non-computerised,
versions.

©2019 Neil Dodgson 111

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

What if we have no tangent vectors?

* The Catmull-Rom cubic spline goes through all the data points.

/7

° o ®

* Each cubic piece depends on the four surrounding data points ~ Why?

* At each data point the curve must depend solely on the three Why?
surrounding data points
* the tangent at each point is defined as the direction from the preceding
point to the succeeding point
* tangent at P, is V4(P,-Py),at P, is Va(P; -P))

Now we come to the case where we want to have a curve that passes
through all of the points.

A cubic spline curve is defined by four control points. Two of those
points are the two ends of the curve. We need two further points and
we use the next point in each direction.

As we the curve passes through a control point, the four points that
define the curve change over so only three control points control what
happens as the curve passes through that point: the point itself and the
points either side. The curve position is determined by the point (that is,
the curve goes through the point) and the tangent vector at that point is
determined by the control points on either side.

©2019 Neil Dodgson 112

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Catmull-Rom cubic

* method for generating Bezier curves which match the Catmull-Rom model

* calculate the appropriate Bezier control point locations from the given points
* e.g. given points A, B, C, D, the Bezier control points are:

P,=B P,=B+(C-A)/6

* The Catmull-Rom cubic interpolates its controlling data points
+ good for control of movement in animation

* not so good for industrial design because moving a single point modifies the surrounding four
curve segments

* compare with Bezier where moving a single point modifies just the two segments connected to
that point

The formulas for Py and P; are obvious: the Bézier end points are the
same as the Catmull-Rom end points.

The formulas for P, and P, need a bit of explanation:

A Bézier curve’s tangent vector at Py is: 3(P,—P).
A Catmull-Rom’s tangent vector at Py is: (C—A)/2 (see previous slide)
Remember that Py=B, so:
3(P,—Pg)=(C-A)/2
= 3(P,—B)=(C-A)/2
= P,—B=(C-A)/6
= P,=B+(C-A)/6

©2019 Neil Dodgson 113

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

r .
Catmull-Rom Beézier
curve (x0,y0,x1,y1,x2,y2,x3,y3) bezier(x1l,yl,xA,yA,xB,yB,x2,y2)
Catmull-Rom control polygon Bézier control polygon
is shown in orange is shown in red

Catmull-Rom curve in blue Bézier curve in green
xA=x1+(x2-x0)/6 ;
yA=yl+(y2-y0)/6 ;
xB=X2-(x3-x1)/6 ;
yB=y2-(y3-yl) /6 ;

The Catmull-Rom curve and the Bézier curve in this example are
identical. What this slide demonstrates is how to generate a Bézier curve
equivalent to the Catmull-Rom curve. Notice how far away the outer
Catmull-Rom control points are compared to how close to the curve the
Bézier inner control points are.

©2019 Neil Dodgson 114

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Catmull-Rom cubics in Processing

strokeWeight(3) ;

stroke(0,0,102); // blue Catmull-Rom

beginShape() ;

for(int i=0 ; i<numPoints j; i++) {
curveVertex(pts[i].x, pts[i]l.y) ;

}

endShape() ;

* Notice that the curve starts at the
second point and ends at the
second-to-last point

The image and code are from the example code CatmullRomMultiple.
The orange boxes are the points that define the curve. The orange lines
are connected in the order in which the points are used.

©2019 Neil Dodgson 115

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Béziers: Calculating position and tangent vector

* Position runs from =0 to =1, with * Tangent vector found by taking the
P(0)=P, first derivative of P(?)
P(1)=P; P'(0)=3(P—P,)
P(1)=3(P;-P,)

P(t) = (1 —-t)3P, + 3(1 — t)?tP,
+3(1 - t)t?P, + t3P,

%
R — ‘)_:\ >
T a0 i, s, /—\
+[6(1 — t)t — 3t2]P, + 3t?P
[6() 1P, : PO |

The tangent vector is a vector that shows the direction in which the
curve is moving at that point. If you drove a car along the curve, the

tangent vector would be the direction that the car is moving as it drives
along the curve.

©2019 Neil Dodgson 116

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Reminder: what does P represent?

* Position runs from =0 to =1, with ¢ P is short-hand for the point (x,y)
P(0)=P,
P(1)=P;

x(t) = (1 —t)3x, +3(1 —t)%tx,

, +3(1 - t)t?x, + t3x
P(t) = (1 —£)3P, + 3(1 — £)2tP, 2 3

+3(1 — t)t?P, + tPy y(@®) = (1-t)°yo +3(1 — t)*ty,
+3(1 —)t?y; + t3y;

Remember that we are using mathematical shorthand.The vector on the
left encapsulates, in a single equation, the two equations on the right.

©2019 Neil Dodgson 117

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Computing position and tangent in Processing

s1ze(400,300);
background(255);
strokeWeight(2);
noFill();

/ draw the curve in black
bezier (20, 250, 190, 280, 70, 80, 220, 90);
fill(255); //
for (float t = 0.0 ; t <= 1.0; t+=0.2) {
get the location of the point /

t x = bezjerPoint(20,190,70,220, t);
t y = bezierPoint(250,280,80,90, t);

get the tangent points

t tx = bezierTangent(20,190,70,220, t); "
't ty = bezierTangent(250,280,80,90, t); o3
draw the tangent line in orange

stroke(255, 102, 0); fasca 05 S

line(x, y, x+tx/3, y+ty/3);
draw the point as a circle

stroke(0);

ellipse(x, y, 7, 7);

The curve is shown in black.

We draw the tangent vector, in orange, at the locations of the little
circles on the curve. We have positioned the circles at a STEP size of

0.2.

There are similar functions for Catmull-Rom points and tangent vectors,
which are:

curvePoint()

curveTangent()

©2019 Neil Dodgson 118

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

2D transformations

* scale =yt
* it is extremely useful to be able to transform

predefined objects to an arbitrary location,
orientation, and size

* rotate

A
* translate —
* (shear)

every vertex must
be transformed

The top three translations are the ones that you will use regularly.

Rotate and translate do not change the size or aspect ratio of the object.
They are therefore called rigid-body transformations because the object
does not change, it just turns or moves.

Scale is not a rigid-body transformation because the object gets bigger.
However, it does not change its aspect ratio or the internal angles of the
object.

Shear is not a rigid-body transformation because the object is distorted:
its aspect ratio changes and all the internal angles change. Shear is not
used much in practice but, because it is easy to implement, you usually
find it implemented alongside the three more useful transformations.

©2019 Neil Dodgson 119

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

size

* it is extremely useful to be able to
transform predefined objects to an
arbitrary location, orientation, and

Transformations allow us to reuse objects

* for example, all typefaces are
defined with letters of a standard
height in a standard position

nslate
& tral

- O
)
¥

every vertex must
be transformed

We can specify an object once (such as the letter ‘€’ on this slide) and

then scale, rotate and translate it to place it in all the positions where it

is needed.

©2019 Neil Dodgson

120

Introduction to Computer Graphics

] I
W .} '“INIIII
i o~
!] iy
1 /!w ®.4 o

CGRA 151 — Trimester 2 — 2019

Where
would
we be
without

type!

The slide shows a webpage without any text on it. It has some nice

visuals but the text is what makes it useful.

©2019 Neil Dodgson

121

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Transformations in Processing

* scale(factor)

“rotatelonglel [L0 * Think of the transformation as
' moving the entire universe

* translate (tx,ty) p— /f

Getting Started with Processing Chapter 6 (pages 75—87) covers this in
detail. It will give you an alternative explanation of transformations.

©2019 Neil Dodgson 122

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Translation

void setup(){

size(200,200);

void drawThing(){

rect(-30,-30,60,60);
ellipse(0,0,40,40);
1line(0,0,40,40);

void draw(){

drawThing();
translate(100,60);
drawThing();
translate(-10,70);
drawThing();

Three versions of the Thing are drawn.

The first is drawn in the default position, with the origin, (0,0), at the top
left corner of the screen.

The second is drawn with the origin translated to (100,60).

The third is drawn with the origin translated to
(100-10,60+70) = (90,130).

©2019 Neil Dodgson

123

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Rotation

void setup(){
size(200,200);

}
void drawThing(){
rect(-30,-30,60,60); ;fgL
ellipse(0,0,40,40);
1line(0,0,40,40);
}
void draw(){
drawThing();
translate(100,60);
drawThing() ;

translate(-10,70);
rotate(1.0); // one radian
drawThing() ;

The third version is now also rotated by 1.0 radian (57.3°).

©2019 Neil Dodgson 124

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Scale

void setup(){
size(200,200);

}

void drawThing(){

rect(-30,-30,60,60); X
ellipse(0,0,40,40);

line(0,0,40,40); (’\3

oid draw(){

drawThing();
translate(100,60);
drawThing();
translate(-10,70);

scale(2.0); ijouble size
drawThing() ;

The third version is now scaled up by a factor of 2.0. Notice that the
stroke thicknesses get scaled up along with everything else.

©2019 Neil Dodgson 125

Introduction to Computer Graphics

Transformations concatenate

void setup(){

s1ze(200,200);

void drawThing(){
rect(-30,-30,60,60); %
('J]]ip‘;tf'(0,6,40,40) H

line(0,0,40,40);

vid draw() {

drawThing();
translate(100,60) ;
drawThing();
translate(-10,70);

rotate(1.0) ; // one radian
scale(2.0); // double size
drawThing();

Finally, we combine all three types of transformation: translation, rotation
and scaling.

Processing stores an internal current transformation matrix.VWWhenever you
call a transformation function, it concatenates the new transformation
onto the stored transformation. In this case it does two translations, one
rotation, and one scaling, in that order.

Processing resets its internal current transformation matrix every time it
starts the draw() function.

©2019 Neil Dodgson

CGRA 151 — Trimester 2 — 2019

126

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Let’s look at this from a point’s point of view

void setup(){
size(200,200);

void drawThing(){

line(0,0,40,40);
void draw(){
translate(100,60); //

translate(-10,70);

rotate(1.0) ; // one radian
scale(2.0); // double size
drawThing();

We have removed everything except the single line from the Thing.We
have chosen to draw only one Thing (which was the third Thing on the
previous slide).

©2019 Neil Dodgson 127

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

From a point’s point of view |

* From your point of view: the g ’ translate(100,60) ’
universe is transformed in the —
specified order o (-10,70)

. Fr9m Fhe point’s poin.t of view: eth ! translate(-10,70)
point is transformed in the opposite

order > (0,0)

. line(0,0,40,40) ! rotate(1.0)
| T

Original line TR 3 v Sca|e(2.0)

sl L (0,0)

The point’s point of view is important for understanding the matrix
representation of transformations, coming up in a couple of slides.

From your (the programmer’s) point of view, you think of the universe as
being moved so that things get drawn where you want them.

But from Processing’s point of view, the pixels in the window have fixed
locations with (0,0) fixed at the top-left corner. It cannot move the
universe. Its universe is fixed. Processing therefore has to move the
points, by putting them through the transformations in the opposite
order to get them to where you want them to be.

These are two complementary ways of looking at how transformations
work.

In this case, the point (0,0) is not moved by either the scale or the

rotation, because both of those transformations are done with the origin
as a fixed point, so those two transformations leave (0,0) at (0,0).

©2019 Neil Dodgson 128

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

From a point’s point of view | | (66,240)
ve ‘ translate(100,60) ‘

* From your point of view: the
universe is transformed in the

specified order o (-34,180)

* From the point’s point of view: each
point is transformed in the opposite
order - | (-24,110)

__line(0,0,40,40) ! et (1)
h 3
/ —+— | (80,80)

Original line \\\\Transformed b Sca|3(2.0)
&)

v translate(-10,70)

e

—— [(40,40)

In this second example, the point (40,40) is first scaled about the origin
by a factor of 2, to (80,80), then rotated about the origin by 1.0 radians,
to reach point (-24,110) [rounded to the nearest integer]. The two
translations then move the point, so that it ends up at (66,240).

©2019 Neil Dodgson 129

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Basic 2D transformations

* scale '
* about origin %=1
* by factor m y'= my
* rotate

x' =xcos@ —ysinf
y' = xsinf + y cos 6

* about origin

* byangle ©
* translate X'=x+x, e i

* along vector (x,.,y,) Y=y+y, (8§ 7
* shear

* parallel to x axis x'=x+ay

* by factor a V=g

There are only four basic 2D transformations: scale, rotate, translate and
shear.The fourth (shear) is not particularly useful in practice. However,
the other three are needed for practically everything.

©2019 Neil Dodgson 130

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Matrix representation

. * rotate

Rotation... * about origin, angle 6
x' =xcosf —ysinfh [ic,'] _ [COSH —sine] [x]
y' =xsinf +y cos6 'l lsing cos@ Iy

The general case...

x' = ax + by B’]_[a b [x]
y' =cx+dy 1 le dlly

See Fundamentals of Computer Graphics, Chapter 6 (pages | | |-140), which
cover transformations in detail. At this stage, you can skip over Section
6.2 (3D transformations).

If you do not know, or cannot remember, how to handle matrix

multiplication, see Fundamentals of Computer Graphics, Section 5.2 (pages
93-98) and the CGRAI51 Mathematics Workbook.

©2019 Neil Dodgson 131

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Basic Matrix Operation
* Addition of Matrices * Scalar Multiplication of Matrices
If Aand B are both m X n matrices then the sum of A If Ais an m X n matrix and s is a scalar, then we let kKA
and B, denoted A + B, is a matrix obtained by adding denote the matrix obtained by multiplying every element
corresponding elements of A and B. of A by k. This procedure is called scalar multiplication.
1 -2 2] -3 0 4 1 -2 2
A= B= A=
0 -1 3] 2 1 -4 0 -1 3
dep-|72 2 6} 4 31) 3(-2) 3()]_[3 -6 6
2 0 -1 300) 3(-1) 33)] |0 -3 9

The CGRAI5| Mathematics Workbook covers this in detail.

There are links to useful online resources on the course website.

©2019 Neil Dodgson 132

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Basic Matrix Operation

* Multiplication of Matrices

The multiplication of matrices is easier shown than put into words. You multiply the rows
of the first matrix with the columns of the second adding products

| 4
3 1
3 AB =
: -1 11
3(2) + (._ ZX_ 1) + (1X_ 3) =5 Notice the sizes of Aand B and the size of the product AB.
mX Xp
t 1

size of product

One way to think of this is to think of the row of matrix A jumping and
diving into the column of matrix B. You multiply corresponding elements
and add up the results.

©2019 Neil Dodgson 133

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Matrix representation of transformations

* scale * rotate
* about origin, factor m * about origin, angle 6
| R T e |
* do nothing * shear
* identity * parallel to x axis, factor a
=16 1Ib) =16 5IG)

Compare with the equations four slides earlier to see how these
matrices are constructed.

For example, for the shear, we had:

X =x + ay
y =y

©2019 Neil Dodgson 134

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Homogeneous 2D co-ordinates

* But translations cannot be represented using simple 2X2 matrix
multiplication on 2D vectors
x'=x+x,
y'=y+5
* so we switch to homogeneous co-ordinates

(XY
(x;}’:W) - (W’W)
* an infinite number of homogeneous co-ordinates map to every 2D point
* w=0 represents a point at infinity
* we take the inverse transform to be: (x,y) = (x,y,1)

With a 2%2 matrix, you know (from the previous slide) that x’=ax+by.

You cannot pick two constants, @ and b, that will allow you to say
xX'=x+x,.

We fix this by moving to a 3X3 matrix, with a third dimension to our

vectors, and we set that dimension equal to |.We then have
x'=ax+by+ex1 and we can set a=1, b=0, e=x, to get x '=x+x,,.

©2019 Neil Dodgson

135

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Matrices in homogeneous co-ordinates

* scale * rotate
* about origin, factor m * about origin, angle 0
x' m 0 0 cosf@ —sinf 0
y1=10 m 0 [] = [sme cosB 0 [y]
w' 0 0 1 11w
* do nothing * shear
* identity * parallel to x axis, factor a
x' 1 0 0]rx x' 1 a 0]fx
y’=010[y] [y'=[010[y]
w' 0 0 1iw w' 0 0 1itw

These are the 2x2 matrices from three slides ago, with an extra row and
column added.You can see that the extra rows and columns have the
values 0,0, 1.

©2019 Neil Dodgson 136

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Translation by matrix algebra

x' 1 0 x,]rx
w' w

0 0 1
In homogeneous coordinates

X'=x+wx, Y=y+wy, w=w

Wl

—

(>0, ¥0)

In conventional coordinates

2 5

1
W' w 0 w| w 0

This demonstrates that the w coordinate divides out so that it does not
matter what value w has, the translation is always by (x,,y,)

©2019 Neil Dodgson 137

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Concatenating transformations

* it is often necessary to perform multiple transformations on the same object
* concatenating transformations can be done by multiplying their matrices
* we can then apply the matrix product to the points, rather than the individual matrices

e.g. a shear followed by a scaling:

scale shear
X" m 0 0 x' 1 a 0]fx
b lo m 0 [y’ y’]= 010 [y‘
w'! 0 0 1l w' 0 0 11w

scale shear both

m 0 O]l a O]rx m ma 0]rx

R e e

1110 0 11w 0 0 11w

The great advantage of using matrices is that we can multiply together as
many transformations as we like and the resulting single matrix applies all
of those transformations to any point in a single matrix multiplication
operation.

Matrix multiplication is covered in the CGRAI5] Mathematics
Workbook.

©2019 Neil Dodgson 138

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Concatenation is not commutative

scale

* be careful of the order in which you 2 0 017071 -071 0
concatenate transformations 010 0.71 0.71 0
0 0 1 0 0 1
otate then scale
142 —-142 0
F % % 0. 71 0. 71 0
rotate by 45° scale by 2 1
along x axis
scale then

1 42 —-0.71 0
1 42 071 0
scale by 2 rotate by 45° 0 1

along x axis

Matrices are not like normal numbers: order matters when doing
multiplication of matrices.

The examples at left show you intuitively that the order matters.The
matrices in the centre show the actual mathematical result of multiplying
the two matrices in different orders, so that you can see that they are
different.

©2019 Neil Dodgson 139

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Scaling about an arbitrary point

* scale by a factor m about point (x,,y,)
Qtranslate point (x,,p,) to the origin
@scale by a factor m about the origin
©translate the origin to (x,,y,)

(1 Y ES 1 0 —x, e m 0 0 e T 0 =] x"
y|l=10 1 —yo 0 m 0 0 1 y,||y"
w' 0 0 H 0 0 11Llw"”
x™ 1 0 x]J[m 0 O0][1 0 —x,]%

778 . _ " .
ym =% 4 %([3 m 06 1 Yo [y] | Exercise: show how to
W 0 0 1 0 0 1llo 0 1 w perform rotation about

e e 0 | an arbitrary point

The star is defined by ten points.We multiply the three matrices together,
to get a single matrix M.We then multiply M by each of the ten points,
so using ten matrix multiplications to do the transformation, rather than
the thirty we would need if we did each transformation separately.

So, what does the final matrix, M, look like? We don’t particularly care,
because the computer does all the manipulation internally and stores that
single matrix. If you are interested you can multiply it out for yourself:

m 0 x,(1—m)

M=10 m y,(1-m)
0 0 1

©2019 Neil Dodgson 140

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Processing’s current transformation matrix

void setup(){
s1ze(200,200);

}

void drawThing(){

rect(-30,-30,60,60); EELL
ellipse(0,0,40,40);
1line(0,0,40,40);

}

void draw(){
drawThing() ;
translate(100,60);
drawThing() ;
translate(-10,70);
rotate(1.0) ; // one radian
scale(2.0); // double size
drawThing();

©2019 Neil Dodgson 141

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Processing’s current transformation matrix

e * Processing internally stores a current
void setup(){

size(200,200); transformation matrix

} ; 3

void drawthing(){ * Every point on every drawn object
rect(-30,-30,60,60) ; goes through the current
ellipse(0,0,40,40); transformation matrix
line(0,0,40,40);

} * When you call translate(),

vo ‘i" drFW()E scale () or rotate (), the matrix
drawThing(); Z . < il
transiateli66:68); for that transformation is rpultlplleq
drawThing () ; into the current transformation matrix
translate(-10,70);
rotate(1.0) ; // one radian
scale(2.0); // double size
drawThing();

1

Processing resets the current transformation matrix every time it starts the
draw () function. So, when the draw () function starts, the initial value

of current transformation matrix is an identify matrix.

©2019 Neil Dodgson 142

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

translate(100,60)

translate(-10,70)

rotate(1.0)

scale(2.0)

Matrices for our example transformations

1 0
0 1
0 0
1 0
0 1
0 0

[0.54
0.84
L 0

co N
oNn O

60

100‘
1

—-10
7]
1

—-0.84 0
054 0
0 1

|

= =]

|

This slide is the start of a worked example showing you how each matrix
is multiplied into the current transformation matrix.

©2019 Neil Dodgson

143

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Updating the current transformation matrix

1.0 0 1 0 100
M = [0 1 0] translate(100,60) T7; = (0 1 60‘
00 1 L
1. 0 =10
r 0 100] translate(-10,70) | T, =|0 1 70]
MeMXT,=|0 1 60 0 0 1
0 0 1

rotate(1.0) R=1084 054 0
L 0 0 1

] 144

[0.54 —0.84 O]

scale(2.0) S =

co N
oNn O
N =

©2019 Neil Dodgson 144

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Updating the current transformation matrix

1 0 100
M=[O 1 60

00 1
1
M « MXT, = |0
0

|

0
1
0

90
130
1

|

translate(100,60)

translate(-10,70)

rotate(1.0)

scale(2.0)

OO R OOR
oOR O OrR O

[0.54
0.84
L 0

co N
oNn O

60
1

-10
70]

1

100‘

054 0
0 1

—0.84 O]

_= O O

©2019 Neil Dodgson

145

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

Updating the current transformation matrix

1 0 90
M=[O 1 130

0 0 1

0.54

M « MXR = |0.84
0

|

-0.84 90
0.54 130
0 1

|

translate(100,60)

translate(-10,70)

rotate(1.0)

scale(2.0)

OO R OOR
oOR O OrR O

[0.54
0.84
L 0

co N
oNn O

60
1

-10
70]

1

100‘

054 0
0 1

—0.84 O]

_= O O

©2019 Neil Dodgson

146

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Updating the current transformation matrix

054 —0.84 90 1 0 100‘
M= [0.84 0.54 130‘ translate(100,60) 7; =0 1 60
0 0 1 0 0 1
1 0 -10
[1.08 —1.68 90] translate(-10,70) | ., = (0 1 70]
M« MxS=|168 1.08 130 0 O 1
0 0 1

rotate(1.0) R=1084 054 0
L 0 0 1

|

[0.54 —0.84 O]

scale(2.0) S =

co N
oNn O
N =

©2019 Neil Dodgson 147

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

.

—-1.68 90
1.08 130
0 1

|

translate(100,60)

translate(-10,70)

rotate(1.0)

scale(2.0)

Updating the current transformation matrix

OO R OOR
oOR O OrR O

[0.54
0.84
L 0

co N
oNn O

60
1

-10
70]

1

100‘

—-0.84 0
054 0
0 1

|

_= O O

|

©2019 Neil Dodgson

148

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

1.68 1.08 130

1.08 -1.68 90
M =
0 0 y |

x X
|l
! 1

w

line(0,0,40,40)
.

\

From a point’s point of view

(66,240)

i

translate(100,60)

(-34,180)

translate(-10,70)

(-24,110)

rotate(1.0)

(80,80)

i

—— [, (40,40)

scale(2.0)
[

©2019 Neil Dodgson

149

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

1.68 1.08 130
0 0 i

T T

x" 1.08 -—-1.68 90
y'[=]168 1.08 130
WI

1.08 —-1.68 90
M =

|
——

line(0,0,40,40)

TESC

\

From a point’s point of view

translate(100,60)

translate(-10,70)

rotate(1.0)

40
[40] ‘-—\\\\
0 0 1 Jl1 J
///—\

[, (40,40)

scale(2.0)
[

©2019 Neil Dodgson

150

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

1.68 1.08 130

1.08 -1.68 90
M =
0 0 y |

N

0 0 1
/
4

|
——

line(0,0,40,40)

TESC

\

From a point’s point of view

(66,240)

i

translate(100,60)

(-34,180)

translate(-10,70)

66 1.08 —-1.68 9017401
[240] = [1.68 1.08 130] [40]
1 1

(-24,110)

rotate(1.0)

s

(80,80)

i

—— [, (40,40)

scale(2.0)
[

©2019 Neil Dodgson

151

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

1.08 -—1.68
M= [1.68 1.08
0 0

!

WI

!

X
’

Y

w'

- T1 TzRS

X X
y’] =M [y
1

From a point’s point of view

90
130]

1

_;]

(66,240)

i

translate(100,60)

(-34,180)

translate(-10,70)

(-24,110)

rotate(1.0)

(80,80)

i

scale(2.0)
[

(40,40)

©2019 Neil Dodgson

152

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

From a point’s point of view

1.08 —-1.68 90
M=[1.68 1.08 130‘

0 0 1
x' X
y’] =M [y
w’ 1

x i

y’ == T1 TZ RS y]

w' 11

(66,240)

current
transformation
matrix

3

(40,40)

If you have not done so already, now would be a good time to skim
through Getting Started with Processing, Chapter 6 (pages 75-87).

©2019 Neil Dodgson

153

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

pushMatrix() and popMatrix()

PushMatrixPopMatrix

* Used to store the current matrix

float =0.0: . .
Bat ‘angle=e. 05 and retrieve it later

void setup() {
size (300, 200);
}
void draw() {
angle += mouseX/1000.0;

translate(100, 100); :
£ 5 . Stores the current matrix
pushMatrix();

rotate(angle);

rect(-20, -20, 40, 40);
popMatrix();
translate(100, 0);
pushMatrix();

rotate(angle);

rect(-20, -20, 40, 40);
popMatrix() ;

Retrieves the stored matrix

pushMatrix() stores the current transformation matrix on a stack

popMatrix() removes the matrix that is at the top of the stack and makes
it the current transformation matrix

Think of a stack like a stack of plates on a spring-loaded platform. Push

pushes a plate onto the top of the stack (pushing all the other plates
down). Pop pops the top plate off the stack.

©2019 Neil Dodgson 154

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

PushMatrixPopMatrix

angle=0.0;
void setup() {
size(300, 200);

oid draw() {

rotate(angle);

rotate(angle);

pushMatrix() and popMatrix()

angle += mouseX/1000.0;
translate(100, 100);

rect(-20, -20, 40, 40);

translate(100, 0);

rect(-20, -20, 40, 40);

The top screen-shot is of the program running with the

pushMatrix () and popMatrix ()

commands.

The bottom screen-shot is of the program running without them.

See how the pushMatrix () /popMatrix () isolates the first rotation
command in the top screen-shot, so that the second rectangle is not

affected by the first rotation.

In the bottom screen-shot the first rotation is also applied to the second
rectangle, meaning that the second rectangle orbits around the first,

rather than rotating independently of it.

©2019 Neil Dodgson

155

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Where are those matrices stored?

* pushMatrix() pushes the current

transformation matrix on to the top

of a stack of matrices ciM
* popMatrix() pops the top matrix off

that stack and makes it the new
current transformation matrix

The stack allows you to store up multiple matrices, as necessary.
Processing has a stack that can handle up to 32 matrices. Any more than
that will cause an error, but anything close to that and you really need to
think about whether you could write your program more efficiently.

You should always have a popMatrix () to match every
pushMatrix ().

Errors that can happen:

Calling popMatrix () when there are no matrices on the stack —
Processing halts with the error message “missing a
pushMatrix () to go with that popMatrix()
Calling pushMatrix () when there are already 32 matrices on the
stack — Processing halts with the error message “pushMatrix ()
cannot use push more than 32 times”

”»

Unlike current transformation matrix, the stack does not get cleared ever
time you call draw () .This means that, if you forget to match every
pushMatrix () witha popMatrix () you will quickly (in 32 cycles)
reach the limit of what can be pushed on the stack.

©2019 Neil Dodgson 156

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping

* what do we do about stuff that is drawn outside the window?

* we need to clip so that we only draw what is actually in the window
* clipping points against a rectangle

5 | need to check against four edges:
y=yr [xX=x
5
y=Ys | o Y=g
¥ =¥

©2019 Neil Dodgson 157

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping
* it is very expensive to check every pixel that is drawn against the window

* Why? Consider the two commonest cases:
* Everything fits in the window: so clipping each pixel is an unnecessary waste of time
* Almost everything is outside the window: so drawing every pixel is a waste of time

The most extreme case is that of a world map. Consider Google Maps,
zoomed in to your street in your home town. Google Maps knows about
the entire world, but it must only draw the tiny portion of the world that
is visible in the window.

©2019 Neil Dodgson 158

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Bounding boxes

* bounding boxes can be used to speed up some operations by combining a whole
bunch of objects into a single box

* the box is defined by the maximum and minimum x and y values

This is a block
of text to drawi
on the screen !

[y e e

5-
;
5
x

©2019 Neil Dodgson 159

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Object inclusion with bounding boxes

* including one object inside another can be easily done if bounding boxes are known

and used
P, Py
BBj—m === == SR i § Py
! ! Compass
i ! real estate * £
I ! |
I ! B
w E
1 I
! : use the eight values to
| : translate and scale the original
BBy=f=====- B ommimme : to the appropriate position in
= o © ememes=| the destination document

©2019 Neil Dodgson 160

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping with bounding boxes

* do a quick accept/reject/unsure test to the bounding box then apply clipping to only
the unsure objects

BBL > xR \ BBR < xL V BBT> yB VvV BBB< yT = RE}ECT
BBL = Xy, A BBR < XR A BBTZ Yr A BBBS Y = ACCEPT

otherwise = clip at next higher level of detail

Here we are assuming that the y-axis points down, that is, the bottom has
a higher y-value than the top.

We have used the standard notation for AND (an A shape) and OR (a V
shape).

©2019 Neil Dodgson 161

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping Bézier curves

If flat = draw using a clipped line drawing algorithm

Else consider the Bézier’s bounding box
accept = draw using normal (unclipped) Bézier algorithm
reject = do not draw at all

unsure => split into two Béziers, recurse

©2019 Neil Dodgson 162

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping lines against a rectangle

I —_—
X =x *=Xg

* you can naively check every line against each of the four edges
* this works but is inefficient

* adding a little cleverness improves efficiency enormously
* Cohen-Sutherland clipping algorithm

The naive check means that you check a line against all four edges. Then,
if you find an intersection that lies between the two end points you need
to make a decision as to which are the end points of the piece of the line
that goes through the rectangle.

An intersection calculation needs three subtractions, one addition, a
multiplication and a division: it is computationally expensive (see three
slides later for details).

The diagram shows a range of examples that demonstrate why this is

inefficient:

* No line has more than two intersections with the box, so doing four
intersection calculations is wasteful.

* Many lines are entirely above, below, to the left or to the right of the
bounding box so, for these lines, doing any intersection calculations
is wasteful.

* Some lines are entirely inside the box so, for these lines, doing any
intersection calculations is wasteful.

We instead can do some simple and fast tests to see whether we need
to do the calculations and to determine which calculations to do.

©2019 Neil Dodgson 163

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping a line against a rectangle — naively

Py to P, = (x1,¥1) to (x2,¥2) to intersect with x = x;,
P(t) = (1—)P, + tP, if (x; = x,) then no intersection
else
x(t) = (1 —t)x, +tx, ¢ = X%
y(t) =1 -t)y, +ty, L™ xp—x,

if (0<t, <1)then
line segment intersects x = x; at

(x(tL):y(tL))

else line segment does not intersect

Need to do this for each of the four edges.

It is naive because a lot of unnecessary operations will
be done for most lines.

Where does the equation for #; come from?

From the equation for x(f), which can be written for x; as:
xp=(1-)x T x,

Try this algorithm for the left edge for all of the examples from the
previous slide. Of those 12 lines, one has x;=x,, so has no intersection.
The other |1 all have intersections of the infinite line with the left edge.
Of those, only 3 have an intersection that occurs between the two end
points, that is, for 0<#;<1. So only 3 of the 12 lines needed these
calculations to be done, and 2 of those lines are actually entirely outside
the rectangle entirely, so there must be a more efficient way to do this.

©2019 Neil Dodgson 164

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Cohen-Sutherland clipper |

* make a four bit code, one bit for each inequality

A=x<x; Bsx>x, Csy<y; DsEy>y,

1001 | 0001 | 0101
Y = Yr U iiiikikieaRRRERER
1000 0100
— B T ! \====mmmm—e
1010 { 0010 | 0110
x=x, X=X,

* evaluate this for both endpoints of the line
0 =4BCD, Q,=4,8CD,

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems

A hardware version of this: “A clipping divider”, R.F. Sproull & |.E. Sutherland, Fall Joint Computer Conference, 1968 165

It is very fast to do an inequality test. An inequality test is essentially a
single subtraction followed by a test for negative or positive.

©2019 Neil Dodgson 165

Introduction to Computer Graphics

CGRA 151 — Trimester 2 — 2019

1000 1010
|
______ Yy=Xr
0000 P4 0010
0 &
- T T Y=D)s

P, 0100 P, 0110

X=X

©2019 Neil Dodgson

166

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Cohen-Sutherland clipper 2

*0=0A0,=0

* both ends in rectangle ACCEPT
*OND,#0

* both ends outside and in same half-plane REJECT
* otherwise

* need to intersect line with one of the edges and start again
* you must always re-evaluate Q and recheck the above tests after doing a single clip
* the | bits tell you which edge to clip against

Example
V=DVs P, 0000 _
B r_ ro_ XL~ X1
. Xy =X Vi=+0:—y)——
1010 X2 —Xq
S,

©2019 Neil Dodgson 167

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Cohen-Sutherland clipper 3

* if code has more than a single | then you cannot tell which is the best: why not?
simply select one and loop again

* horizontal and vertical lines are not a problem Why?
* need a line drawing algorithm that can cope with floating-point endpoint co-ordinates
Why?

Exercise: what happens in each of
the cases at left?

[Assume that, where there is a
choice, the algorithm always tries to
intersect with x; or x; before y; or yr.]

Try some other cases of your own
devising.

©2019 Neil Dodgson 168

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Clipping polygons

(N

u»nl
4 M L

This is no longer about just line clipping. If we clip just the lines, using the
algorithm that we just learnt, then we end up with a shape that is not
closed and therefore we cannot fill it. We somehow need to retain a
closed polygon, which means that the clipped polygon may end up having
bits of the enclosing rectangle as its edges.

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Sutherland-Hodgman polygon clipping |

* clips an arbitrary polygon against an arbitrary convex polygon
* basic algorithm clips an arbitrary polygon against a single infinite clip edge
* so we reduce a complex algorithm to a simpler one which we call recursively
* the polygon is clipped against one edge at a time, passing the result on to the next stage

‘
S e

Sutherland & Hodgman, “Reentrant Polygon Clipping,” Comm. ACM, 17(1), 1974

Clipping against an infinitely long edge is relatively easy (see next slides).

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Sutherland-Hodgman polygon clipping 2

* the algorithm progresses around the polygon checking if each edge crosses the
clipping line and outputting the appropriate points

inside | outside inside | outside inside y outside inside joutside
= S
P
o -
> i - ZoReN S
e S L=
/ nothin
e output p output g p'and.e output
output

Exercise: the Sutherland-Hodgman algorithm may introduce new edges along the
edge of the clipping polygon — when does this happen and why?

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

Sutherland-Hodgman polygon clipping 3

* line segment defined by (x,.y,) and (x..y.) inside | outside
* line segment is: p(f) = (1-f)s + te,0 <t < 1
* clipping edge defined by ax + by + ¢=0

* test to see which side of edge s and e are on:

* k=ax+tbytc e
* k negative: inside, k positive: outside, k=0: on edge s p

* if k, and £, differ in sign then intersection point can be found by solving:

al[(1—t)xs+tx.] +b[(A—t)ys +ty.] +c =0

B axs+ by +¢
a(xs - xe) + bO’s - ye)

=t

©2019 Neil Dodgson 172

