
Welcome to CGRA 151 Introduction to Computer Graphics

The word “graphics” can be interpreted in several ways. Here we mean
anything visual drawn by the computer. The course covers practical
aspects of making computer graphics along with the background required
to understand how a computer generates visual information, how a
computer stores visual information and the structures that generate it,
and how the human perceptual system works to perceive it.

The Maori “whaka-iro-iro” is the closest translation to “graphics” and
adds useful shades of meaning. “whakairoiro” as a noun means simply
“carving”. As a verb it is closer to what we are about: “to carve, to
ornament with a pattern, decorate”. As a modifier, it conveys “carved,
ornamented, ornate, elaborate, decorative”*. This course will teach you
much about how we produce ornate, elaborate and decorative computer
output.

* Translations taken from the Māori Dictionary
http://maoridictionary.co.nz/

1

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

We ask that you have done a programming course before taking
CGRA151. This can be in Java (COMP102, COMP112) or in Processing
(DSDN 142)

We also ask that you have basic mathematics, either ENGR121, any of
the MATH 100-level courses, or 16 NCEA mathematics credits.

We use vectors and matrices in this course. To remind yourself about
these, please go check out the Mathematics Workbook on the course
Assignments web page. The workbook is designed to help you revise you
all the bits of mathematics that you will need. There is a mathematics
assignment due in Week 6 for you to demonstrate your mathematical
knowledge. The terms test and the exam will have mathematics
questions.

Introduc:on to Computer Graphics

2

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

The course has three parts, divided time-wise so that you get the
knowledge needed to complete the assignments early on.

Programming: to teach you how to use a Java-like graphics language,
Processing, to consolidate what you learnt in COMP102, COMP112 or
DSDN142, to teach you something about algorithm design, especially
about ways to optimise an algorithm.

Behind the scenes: so that you know what is going on when you tell a
computer to draw a line, render a triangle mesh, or run a game.

Fundamental concepts: so that you know the limitations of what we do
and why those limitations exist.

3

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

These dates are correct at the time of printing. They are subject to
change.

Please check the dates on the course web page:
https://ecs.victoria.ac.nz/Courses/CGRA151_2019T2/

To pass the course you must:
• score at least 50% overall;
• score at least 40% on all five assignments put together;
• score at least 40% on the exam.

4

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

16 August

nad
Line

nad
Oval

nad
Line

nad
Line

Project management

Plan early.

Get a basic version working early and then repeatedly refine it
into something better.

Always be willing to reassess, refine, rethink your plan in response to
what goes wrong, what goes right, what feedback you get from others,
what other work you need to complete, and what else is going on in
your life.

Your timetable for success
Weeks 1–6: Get inspiration, try some bits of experimental coding, think

up a plan for what you are going to do.
Mid-trimester break: Write your plan and get some code started.
Week 7: Submit plan.
Weeks 7 & 8: Get feedback from a tutor in the planning session.
Week 9: Submit assignment 3 and really get started on your project

programming.
Week 10: Have a basic version running. You could hand this in if you

absolutely had to.
Week 11: Have something working that you would be happy to hand in.
Week 12: Have something really good that you do hand in.

Introduc:on to Computer Graphics

5

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

These are screen shots from:
Frogger
A top-down racing game
Pong

Pong meets the absolute minimum specification for the project but it is
too simple to get an A grade mark. Some crazier version of Pong might
be interesting.

Introduc:on to Computer Graphics

6

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Laboratories are named after colours. You attend the same session each
week, whether it is for a tutorial, a marking session, a planning session or
a help desk. There are no laboratories in Week 6. Stream A has a
laboratory (a marking session) in the study week after lectures have
finished.

The cyan sessions are timetabled so that Design students (and others
who are not normally based on the Kelburn campus) can attend both a
Lecture and a Lab in a single two-hour visit to the Kelburn campus.

About the colours
• Red, Orange, Yellow, Green, Blue, Violet are the six main colours that we identify in the

spectrum or the rainbow.
• Red, Yellow, Blue are the primary colours used by artists. Orange Green and Purple are the

artist’s secondary colours, made by mixing two of the primaries. Purple (a mix of Red and Blue)
is not quite the same thing as Violet (a colour at the end of the spectrum).

• Red, Green, Blue are the three primary colours used in additive displays (such as LCD panels).
Mixing all three primaries produces white in an additive system.

• Yellow, Cyan, Magenta are the three primary colours used in subtractive displays (such as ink jet
printers). Mixing all three primaries produces black in a subtractive system.

We will discuss colour in detail in the final part of the course.

7

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

In Tutorial sessions you will have a worksheet to work through and
tutors available to help you. The worksheets help you prepare yourself
to attempt the assignments. You are encouraged to attempt the
worksheets before the Tutorial session so that you can bring your
problems to the tutors. People who complete the worksheet can work
on their assignments during the Tutorial and ask the tutor for help.

For Marking sessions you will have a 10 minute marking slot with a
marker. You can spend the rest of the session working towards your
next assignment or quietly discussing challenges with your classmates.

The Planning session is a 10 minute meeting with a tutor to discuss
your plan for your project.

Helpdesk sessions are times where a tutor will be on hand to help with
your project.

8

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Java-like: so that you can use the experience you already have from COMP102 and
COMP112

Quick to get things working: you do not need to remember a load of special steps
just to get a graphics window open on the screen. It is easy to get something to show
up and easy to get interaction with the user through the mouse.

Sketch-based: the idea is that you make small programs that are “sketches” like rough
ideas in an artist’s sketch book. These are later put together (or reworked) as a larger
program in Processing.

Processing is on the ECS machines and can be downloaded, free, for your own
machine from:
http://www.processing.org/

Get Processing running. Go to the Help menu and select Getting Started. Copy and
paste the simple drawing example (just below the image of white circles) and see
how easy it is to specify a window, interact with the mouse, and draw something
simple.

Processing has extensive help available, including a reference manual for every built-in
function with example code for each. The reference manual can be accessed from the
Help menu in Processing or at this web page:
http://www.processing.org/reference/

9

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Both books are provided by Victoria University of Wellington to all
students on the course as eBooks, which can be read online.

You can access them through the University’s Talis system (the Reading
List link on the course website).

In these notes I refer to them as “Fundamentals of Computer Graphics” and
“Getting Started with Processing”.

For information on the philosophy behind Processing, and what
Processing can do for you, see Getting Started with Processing, Chapter 1
(pages 1–5).

For an opinion on the very wide range of things that could be considered
within the remit of “computer graphics” see Fundamentals of Computer
Graphics, Sections 1.1 and 1.2 (pages 1–4)

10

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduc:on to Computer Graphics

Computer graphics is technically the process of taking a scene
description, that is some way of describing a set of graphical objects,
and converting this into a digital image. However, “computer graphics”
can be taken much more broadly to include any of the processes shown
in the diagram.

CGRA 151 — Trimester 2 — 2019

11©2019 Neil Dodgson

12

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The default window is 100x100 pixels.

The top left pixel is always (0,0), no matter what the window size is.

Notice that the pixel numbering starts at zero. This means that, in a
100x100 pixel window, the bottom right pixel will be (99,99).

13

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

line(10,10,90,90) — draw a line from point (10,10) to point (90,90)

line is a function name

10,10,90,90 are its four parameters

line(x1,y1,x2,y2) — draw a line from point (x1,y1) to point (x2,y2)

The textbook, Getting Started with Processing, Chapter 2 (pages 7–12) gives
more information on writing your first Processing program, including:
• where to download the software for your own computer

(www.processing.org)
• how to write a one-line program (they use an ellipse rather than a

line)
• some simple mouse interaction (we’ll be doing that in a few slides’

time)
• how to save your code (there’s the usual Save option on the usual

File menu)
• where to go to find example code and a reference manual

(www.processing.org)

14

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Here we see three lines:
• a long line running from (10,10) to (90,10). This long line is horizontal:

the second coordinates, known as the y-coordinates, of the two
points are the same.

• two short lines running from (90,10) to either (80,5) or (80,15).
These two lines start and end at the same x-coordinate but the y-
coordinate is different for the second point of each, so one is above
the long line and the other is below the long line.

The symbol “//” introduces a comment. Processing ignores anything that
is written between the “//” and the end of the line.
Comments are important for making code understandable to a human:
while the code may be clear to you now, it will not be clear to someone
else and it will not be clear to you in six months’ time.

15

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

To make the vertical arrow we have switched the x and y coordinates of
all the points.

Notice that the y-axis goes down. This is consistent with Victoria
University of Wellington’s Java graphics environment (used in COMP102)
but it is upside down compared to what is normally used in mathematics,
where the y-axis goes up. You just have to get used to it.

16

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Draw 5 lines, all with the same y-coordinate (80) at their start point and
the same y-coordinate (40) at their end point.

The textbook, Getting Started with Processing, Chapter 3 (pages 13–31)
takes you through all the material that we are about to cover, including
drawing lines, rectangles, ellipses, triangles, polygons, in colour, in
greyscale. It will provide you with an alternative introduction to that
provided in these slides.

The “Processing book” referenced on the slide itself is yet another
introduction to Processing: Processing: a programming handbook visual
designers and artists, Casey Reas and Ben Fry, MIT Press, Second Edition,
2014. We do not have an eBook version of that, which is why we’re using
some of the examples from that book in the lecture slides.

17

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introducing some simple functions:

background(0) — set the background colour to be greyscale value 0,
which is black, and fill the window with that colour

stroke(255) — set the colour for drawing strokes (lines and edges) to
be greyscale value 255, which is white

strokeWeight(5) — set the weight of strokes to be 5. The weight is the
width of the drawn line and it is measured in pixels

A note on notation: at the top of the slide is written “background(),
stroke(), strokeWeight()” with the parenthesis “()” but without the
parameters inside the parenthesis. This is a shorthand to tell you that
background, stroke and strokeWeight are the names of functions.

In the Processing code window, the names of functions are written in
blue, automatically, so that you know that they are system-defined
functions. We will later see how Processing uses other colours to identify
system-defined variables and commands.

18

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The image on the right was drawn using Processing, showing a 100⨉100 gray
rectangle in a Processing window of size 300⨉200 .

The black boundary is exactly one pixel wide and is outside the Processing 100⨉100
drawing frame. The number “0” is drawn as 15 pixels wide and 22 pixels high. On my
desktop monitor it is 5mm high, which means my desktop monitor has about 4.4
pixels per millimeter.

Monitor resolutions are measured in pixels per inch (ppi). One inch is 25.4
millimeters. So my desktop monitor has a resolution of about 110 pixels per inch
(ppi).

My monitor is marketed as a 27 inch display with 2560⨉1440 pixels. The 27 inches is
measured diagonally from corner to corner. Pixels are usually as tall as they are wide,
so the 2560⨉1440 means that my monitor has an aspect ratio of 16:9. That is, its
width is 16/9 times its height. A 27 inch display therefore can be calculated as having a
width of 23.53 inches and a height of 13.24 inches. Thus its resolution is 108.8 pixels
per inch.

For many years, monitors had about 100 ppi, just like my current desktop monitor.
This is sufficiently coarse that you can see individual pixels if you look closely. Higher
resolutions became available from 2010, starting with the iPhone 4. Pixel densities are
now regularly over 300 ppi. At that fine resolution, it is hard or impossible for a
human eye to see the individual pixels. There is more on this later in the course.

19

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Notice that the bottom right hand pixel is (99,99). The function call
point(100,100) tries to draw a pixel outside the drawing area, so nothing
is drawn.

Later in the course we consider how the graphics system of a computer
ensures that each application is only drawing inside its own window,
rather than scribbling all over the screen.

20

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduc:on to Computer Graphics

The image that you see on the screen is not a digital image. It is a digital
image that has been converted to analogue (physical) form by the display
device, whether that device is a computer screen, a projector or a
printer.

See Fundamentals of Computer Graphics, Section 3.2 (pages 59–64). Also
useful to read through the earlier part of Chapter 3.

CGRA 151 — Trimester 2 — 2019

21©2019 Neil Dodgson

Introduction to Computer Graphics

intensity is also known as greyscale or, in the world of film and
photography, as black & white

colour is usually specified by three numbers. Here we are using
RGB, but there are many other useful three-dimensional colour
spaces. Why three dimensions? That is explained later in the course.

CGRA 151 — Trimester 2 — 2019

22©2019 Neil Dodgson

A representation of additive color mixing. Projection of primary
color lights on a white screen shows secondary colors where two
overlap; the combination of all three of red, green and blue in equal
intensities makes white.

Introduction to Computer Graphics

23

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

https://en.wikipedia.org/wiki/Primary_color

Introduction to Computer Graphics

a digital image is a rectangular array of intensity values

each value is called a pixel (“picture element”)

sampling resolution is normally measured in pixels per inch (ppi) or,
equivalently, dots per inch (dpi)

displays have a resolution between 100 and 400 dpi

printers have resolutions of between 600 and 3000 dpi

but printers display only two levels (ink or no ink) while displays show
many many gradations of colour

CGRA 151 — Trimester 2 — 2019

24©2019 Neil Dodgson

Introduction to Computer Graphics

each intensity value is a number

for digital storage the intensity values must be quantised
limits the number of different intensities that can be stored
limits the brightest intensity that can be stored

how many intensity levels are needed for human consumption?
8 bits often sufficient
some applications use 10 or 12 or 16 bits
more detail later in the course

colour is stored as a set of numbers
usually as 3 numbers of 5–16 bits each
more detail later in the course

printers can generally only show a mark or no mark in each pixel (one
bit per pixel)
how we get (apparent) gradations of grey and how we get (apparent)
colour are explained later in the course

CGRA 151 — Trimester 2 — 2019

25©2019 Neil Dodgson

The sample greys at right were generated by a simple Processing
program which filled each box with the appropriate grey value and wrote
the corresponding number next to it. The maximum grey value is 255.
The numbers in the examples go from 0 to 250 in steps of 25. The
background of the window is white, which is colour 255. You can just tell
that 250 is slightly darker than pure white.

See Getting Started with Processing, pages 23–27.

26

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Notice that the color() function is allowed to take either one parameter
(a grey value) or three parameters (colour represented by red, green and
blue components). Processing has several functions that have different
versions that depend on the number of parameters. This means you need
to read carefully the function definitions in the Processing reference
manual.

The reference manual is available from inside Processing, from the Help
menu choose “Reference”. Go have a look at it. In particular look at the
definition of background(), which is the first item in the third column.
Notice that there are several more possibilities for number and type of
parameter.

The (red, green, blue) triple used to represent colour is usually
abbreviated RGB.

Want an easy way to select colours and get their RGB values: try a utility
like http://www.colorpicker.com

See Fundamentals of Computer Graphics, Section 3.3 (pages 64–65).

We discuss representations of colour in detail later in the course.

27

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Some things to note about these RGB colours:

0,255,0 is a very bright green, brighter than you might expect compared
to red and yellow.

0,0,255 is vivid but dark blue, though it is clearly blue it’s quite hard to
distinguish from the black background.

255,0,255 is “magenta”, a shade of purplish-pink. Purples and pinks are
colours that are not found in the rainbow. Magenta (255,0,255) is one of
the standard inks used in colour printers along with cyan (0,255,255),
yellow (255,255,0) and black (0,0,0).

The reasons for all of these observations are explained later in the
course, when we discuss human perception and colour representations.

28

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This is for a live demo. The example code is in file RotatingLine.

For the live demo, we first see what RotatingLine does. Then show how frameRate()
affects what can be seen. It is instructive to change the angle increment to 0.2 for
slow frame rates.

You need to be happy with the cosine and sine functions later in the course. If you
are a bit hazy on them, you should refresh your memory before we meet them again.
See Getting Started with Processing, pages 113–117, for a nice introduction and
Fundamentals of Computer Graphics, Section 2.3 (pages 18–20) for a summary of facts.

There are three variables in this program, one global variable (angle) that is available
from anywhere in the program, and two local variables (c and s) that are available only
in the draw() function. If you are a bit hazy on variables, then you need to read Getting
Started with Processing, Chapter 4, pages 35–40, which is a quick tutorial on defining
and using variables.

For more on the setup()/draw() approach see Getting Started with Processing, Chapter
5, pages 49–53, which gives a worked example for you to copy and learn from.

Now move to a simpler demo, drawing a line…

29

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

We can do this as a simple example, building up the various features to
the final version shown above. The most basic, but boring, version of the
draw function is just:

void draw(){
line(0, 50, 200, 50);

}

Add to this, one at a time, in the following order and see how each
changes the output:
background()
strokeWeight()
width
parameter y
the mod operator: y%height

30

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

You will meet all these in assignment 1.

If you have not already, have a look at Getting Started with Processing,
Chapter 3 (pages 13–31).

31

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This is partly “behind the scenes”, because we need to think about why Processing has
four different ways to specify rectangles.

An axis-aligned rectangle (that’s a rectangle with edges parallel to the horizontal and
vertical axes, rather than one that is rotated) can be specified by exactly four
numbers. You cannot specify one with fewer than four parameters and you do not
need more than four.

The different ways of thinking about how to place a rectangle reflect that different
people really do think about these things in different ways. They also reflect that some
methods are more useful in some circumstances than others.

For example, when drawing a rectangle using the mouse, you likely think about the
top-right approach. You click the mouse button, which specifies one corner, then drag
and release the mouse button at the other corner.

There is at least one more way you could sensibly specify a rectangle with four
numbers. Think about it.

You can probably understand why someone might want to use the top two methods
and maybe the bottom left one, but why the bottom right one? It is because of how
we think about ellipses.

32

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Ellipses have exactly the same four modes of specification.

For an ellipse the bottom two methods make more sense than the top
two.

33

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Processing draws using the “painter’s algorithm”. Whatever is drawn later
is drawn on top of what was drawn earlier.

34

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This is example code DrawSimpleRectangle

When the mouse is pressed, Processing calls the mousePressed()
function which, in this case, sets both corners of the rectangle to be at
the current mouse location.

So long as the mouse button is pressed down, Processing calls the
mouseDragged() function whenever the mouse moves from its current
location. In the example, this sets the second corner of the rectangle
(c,d) to the new mouse position. The other corner (a,b) stays where it is
because mouseDragged() does not update it.

You might like to switch to drawing ellipses to see how that feels; then go
back to rectangles.

Homework: Work out how to get each of the four types of rectMode()
to work: CORNERS, CORNER, RADIUS, CENTER

35

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

setup() is called exactly once, when the program starts

draw() is called repeatedly, after each time draw() runs, Processing goes
into a wait state until the right length of time has passed to get the frame
rate right.

The computer itself keeps a constant watch on the keyboard and the
mouse. If anything about them changes then a system interrupt occurs.
Processing watches out for these interrupts and stores them up. It runs
the appropriate callback functions, like keyPressed() or mouseDragged(),
but only during the wait phase. If a key or mouse event happens during
draw(), then Processing waits until draw() has finished before running the
appropriate callback function.

36

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

What is going on here? [Code: mousePressReleaseDragMove]

We have written code for all five of the mouse callback routines. In each callback, Processing
draws a different shape.

Moving the mouse
Small circles show mouseMoved() and mouseDragged() in pink and dark blue. mouseMoved()
is called for mouse movement when no mouse button is pressed, mouseDragged() is called
for movement when a mouse button is pressed.

Pressing and releasing mouse buttons
Large circles show mousePressed() and mouseReleased(), light blue for mousePressed() and
red for mouseReleased().

mouseClicked() causes a green square to be drawn.

mouseClicked() is an interesting case because a mouse click is defined as a mouse press
followed by a mouse release with no mouse movement in between (i.e., the mouseX and
mouseY values do not change). If this happens, Processing will first call mousePressed() then
mouseReleased() and finally mouseClicked(). If you run the program you will see a blue circle
drawn when you press the mouse. When you let go (having not moved the mouse) it will
draw a red circle immediately followed by a green square.

Notice that the draw() function contains no code. It is, however, needed: Processing draws
everything to an off-screen buffer, and copies this to the screen window at the end of the
draw() function. If you don’t have draw() then Processing will never draw anything on the
screen.

37

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

keyPressed() and keyReleased() are useful if you are doing control, like in
a game — there is a simple example in the program moveBallUsingKeys

keyTyped() is useful if you want textual input — all you care about then
is what key has been typed, not when it was pressed and released

But how much of this stuff about keyboard input do you actually need to
remember?

What you need to know is that these functions exist and that you can
look up the details in the Reference manual if you want to use keyboard
input.

Feeling confused by all of the different concepts that have been
introduced so far? Now would be a good time to go read Getting Started
with Processing, Chapters 3–5 (pages 13–74). This will give you a different
view of the Processing world, will consolidate what you have learnt, and
will fill in some bits that the lectures have not covered.

38

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Getting Started with Processing, Examples 3-7 and 3-8 (pages 18–20)
explain arcs and radians.

39

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

You need to get comfortable with radians because, although you can
always convert degrees to radians using the radians() function, you will
find many Processing examples written using radians.

See Fundamentals of Computer Graphics, Section 2.3.1 (page 18).

TWO_PI is a full circle
PI is half a circle
HALF_PI is quarter a circle

40

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

In this practical programming example, we will go over:

setup(), draw(), size(), frameRate(), background() — setting up the basics
fill(), stroke(), noStroke(), noFill() — setting drawing colours
ellipse() — drawing a ball
variables — storage locations for information
postion, velocity, acceleration — very basic physics
if() — conditional executing of code
conditions — use of greater than and less than, boolean results

Some of the parts of this example are also covered in Getting Started with Processing
pages 104–107.

Debugging Processing programs:
When you need to find out what is going on inside your Processing program you can
print information to the standard output window, which is that black area at the
bottom of the Processing sketch window. The functions for doing this are print() and
println(). The only difference is that println() adds a new line after it has printed.

Getting Started with Processing, Examples 5-1 and 5-2 (pages 49–50) show a couple of
simple examples of using the println() function. Example 5-8 (page 54) has an example
of a debugging use of println(), where the printed ouptut allows you to check that the
program is behaving in the way that you want it to.

41

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Velocity is change in position per unit time. To work out the position
after a unit time, simply add the velocity.

To be more general, multiply the velocity by the change in time to get the
new position.

42

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

It is painful to have to write out two almost identical equations: one for x
and one for y.

We bundle these equations together using vectors.

Convention is that a vector is represented by a boldface upright
character, while scalars are represented by italic characters.

A scalar value is a single number. A vector is made up of two or more
scalars.

See Fundamentals of Computer Graphics, Sections 2.4, 2.4.1, 2.4.2 (pages
21–23).

43

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

These vectors allow us to write two equations as one.

Notice that we have used the standard convention that position (x,y) is
represented by a vector called x. You need to get used to the idea that
we might use the same letter to mean two different things. Of course,
you can tell them apart (one is italic, the other is bold), and the context
generally lets you know which is meant.

44

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Velocity is change in position per unit time. To add velocity to position,
we need to know what the difference in time is between the two
positions. Here we show the standard notation that is used for difference,
the delta symbol.

Δt = t2 – t1

45

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Processing has an object type, PVector, that allows you to store and
manipulate vectors.

For example:

Pvector pos, vel ;
pos = new PVector(x, y) ;
vel = new PVector(vx, vy) ;
pos.add(vel) ; /* this updates pos by adding vel
to pos, similar to saying p += v */

PVector pos2 = PVector.add(pos, vel) ; /* this
creates a new vector, the sum of pos and vel,
leaving those two vectors unaltered */

46

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This is simply a reminder of one of the important ways to control the
flow of code.

You will remember that condition is something that returns a boolean:
either true or false.

The else part is optional.

47

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The while loop keeps running so long as the condition is true.

Therefore there should be something inside the while loop that might
cause condition to become false, otherwise we run forever

48

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

A for loop is a neat way to format more neatly a particular type of while
loop.

Some early programming languages had for loops that could only handle
integers.

For example, in BASIC:

FOR i = 0 TO 9 DO
…
END

this would do the same as is shown in the Processing code. The Java and
Processing version of for is much more powerful, because you can put
(almost) anything you want as the initialisation, condition and increment
statements.

For loops are so useful that you can find a whole tutorial on ways to use
them in Getting Started with Processing, Chapter 4, starting halfway down
page 40 and going to the end of the chapter (page 48).

49

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

You will use the polygon in assignment 1.

triangle(), quad() and rect() all draw particular types of polygon
(respectively, 3 sides, 4 sides, and 4 sides aligned with the axes).

The example shows how you can create a polygon with an arbitrary
number of sides. The same idea is used in various ways throughout
computer graphics. We will meet it later when we look at drawing
curves.

50

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Notice that, unlike the previous slide, we do not need to have an explicit
list of vertex() commands between the beginShape() and endShape()
commands. Processing is quite happy to keep track of all vertices given to
it between the beginShape() and endShape() commands, and will draw the
appropriate polygon when endShape() is called.

Look at that use of cosine and sine. We are saying that x=cos(theta) and
y=sin(theta) for some theta. As we increase theta from 0 to TWO_PI, the
value of (x,y) goes round a circle. We multiply by width/2 and height/2 to
make the circle fit exactly in the window. The “+1” in the brackets is
because otherwise the circle (and hence the polygon) would be centred
on point (0,0), the top left corner of the window. We will come back to
how to move the point (0,0) to somewhere more convenient later in the
course.

Now consider how to change the number of sides using the x-coordinate
of the mouse.

Try this:
numSides = 12 * mouseX / width + 3 ; /* the +3
ensures that we have at least a triangle */

51

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This example can be expanded on in several ways to demonstrate a
range of effects.

For example, what if you wanted the squares to fill the window?

First of all, you have decide what you mean by having the squares fill the
window.
Do you want 12 x 12 squares?
If so, what size do you want them and with what spacing?
Or do you want a bunch of squares of size 10x10, spaced 5 units apart
(so the squares are placed on a grid spacing of 15x15)?

See Getting Started with Processing, Examples 4-10 to 4-13 (pages 44–46).

52

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Parameters help improve the readability of your code and make it easier
to modify.

Now let us say that we want numSquares across the window, and we
want squareSize to stay at 10.

We can calculate squareSpacing as:

int squareSpacing = width / numSquares ;

If we want to be able to cope with numSquares not exactly dividing into
width then:

float squareSpacing = 1.0 * width
/ numSquares ;

Alternatively, we could set squareSpacing to be a constant and calculate
numSquares instead.

53

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

In this practical programming example, we will go over:

1. Storing the coordinates in arrays.
2. Using mouseMoved() to update the array.

Making the code more complex in stages:

3. Simply draw each of the 100 circles in the default fill and stroke.
4. Change to draw from back to front.
5. Change to have noStroke and fade out of colour as we go from front

to back.

54

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

We now move to considering one of the core algorithms in computer
graphics: drawing a straight line. We will look at two line drawing
algorithms, as worked examples of how to do good algorithm design. The
algorithms are a digital differential analyser (DDA) algorithm based on
the explicit line equation y=mx+c and the Midpoint algorithm based on
the implicit line equation ax+by+c=0.

Line drawing is implemented on all graphics cards. Its main use there is as
part of the polygon filling algorithm — more on that later.

55

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

See the two similar triangles.

y1-y0 is to x1-x0 as m is to 1, which means m=(y1–y0)/(x1–x0)

Once you have m you can work out c by substituting into the formula,
with one of the given points: y0 = m x0 + c, so c = y0 – m x0

56

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Without peeking at the next slide (which has the answer!), think about
which pixels you would turn on to represent this line.

57

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The left hand version produces lines that look “lumpy”. The right hand
version produces lines that are the best that you can achieve with pixels,
if you are only allowed to have them “on” or “off”.

58

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

Two warnings:

1. I have used the convention that pixel (x, y) runs from (x–½, y–½) to
(x+½, y+½), which is also the convention used in Fundamentals of
Computer Graphics. Others may make the assumption that pixel (x, y)
runs from (x, y) to (x+1, y+1).

2. You will notice that, in the lecture notes and in Fundamentals of
Computer Graphics, the y-axis runs upwards, while in Processing the
y-axis runs downwards. You just have to get used to the
inconsistency. All mathematics texts will have the y-axis pointing up.
Some graphics systems have it pointing down.

CGRA 151 — Trimester 2 — 2019

59©2019 Neil Dodgson

Introduction to Computer Graphics

We can get x0 ≤ x1 by exchanging the end points if necessary.

There are then four cases that need variations on the same algorithm:
m < –1 one pixel in each row

–1 ≤ m < 0 one pixel in each column
0 ≤ m ≤ 1 one pixel in each column
1 < m one pixel in each row

We’ll develop an algorithm for the case 0 ≤ m ≤ 1 where there is one
pixel turned on in each column and where the line slopes upwards from
left to right.

CGRA 151 — Trimester 2 — 2019

60©2019 Neil Dodgson

Introduction to Computer Graphics

yi is a floating point variable
y is an integer variable

For this naïve algorithm, we could dispense with y entirely, and just use
the command DRAW(x,ROUND(yi)), but it is useful for the algorithm’s
development in the next slides to include yi at this stage.

ROUND() is a function that rounds a floating point number to the
nearest integer

DRAW() is a function that turns on a single pixel. It is equivalent to
Processing’s point() function.

CGRA 151 — Trimester 2 — 2019

61©2019 Neil Dodgson

Introduction to Computer Graphics

We have replaced
yi = m * x + c

with
yi = yi + m

This gives an immediate performance gain because, on each time round
the loop, we have replaced a multiplication and an addition by a single
addition.

Over a very long line, this might mean that we accumulate some small
error because of doing thousands of additions, but no line in computer
graphics is going to be more than a few thousand pixels long, so the
errors will be irrelevant.

CGRA 151 — Trimester 2 — 2019

62©2019 Neil Dodgson

Introduction to Computer Graphics

The only difference is in the initialization.

Today’s machines have floating point multiplication that is (almost) as fast
as floating point addition. It is still worth using the DDA algorithm
because it replaces two floating point operations in the loop with one.

You could ask why we do not simply round the end points to the nearest
integer and then use an integer version of the algorithm. Rounding end
points is not good because it would mean (1) that animation would
become jerky as the endpoints of the line move and (2) that dividing any
line in two could lead to the two halves drawing (slightly) different sets of
pixels to the un-split line.

CGRA 151 — Trimester 2 — 2019

63©2019 Neil Dodgson

Introduction to Computer Graphics

Replacing ROUND: Here we split y into integer and fractional parts and
replace the ROUND operation with an IF statement.

CGRA 151 — Trimester 2 — 2019

64©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

65©2019 Neil Dodgson

Explicit and implicit representation: see Fundamentals of Computer
Graphics, Section 2.5.2 starting halfway down page 33 (pages 33–35).

Parametric representation: see Fundamentals of Computer Graphics, Section
2.5.6 (pages 39–40).

66

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

The values of a, b, and c are those in Equation 2.18 of Fundamentals of
Computer Graphics (page 34).

Note that this version of c is different from the c in y=mx+c.

CGRA 151 — Trimester 2 — 2019

67©2019 Neil Dodgson

Introduction to Computer Graphics

The midpoint algorithm is covered in Fundamentals of Computer Graphics,
Section 8.1.1 (pages 163–165). It would help to read also the earlier
parts of Chapter 8 (pages 161–163).

The code letters “E” and “NE” stand for “East” and “North-East”, as if
the pixel grid was a map with North at the top.

CGRA 151 — Trimester 2 — 2019

68©2019 Neil Dodgson

Introduction to Computer Graphics

The decision variable is calculated from the formula k=ax+by+c at the
location (x,y)=(xp+1,yp+½).

When you decide which way to move, the decision variable moves one
unit to the right and either zero or one unit up. You can then calculate
the new decision variable at the new point. The beauty of this method is
that the new decision variable is easy to compute from the previous one
and the computation does not require multiplication: it is just adding
either a or a+b to the current value of k.

CGRA 151 — Trimester 2 — 2019

69©2019 Neil Dodgson

Introduction to Computer Graphics

As with many graphics algorithms, the initialization is more complicated
than the iterative loop.

CGRA 151 — Trimester 2 — 2019

70©2019 Neil Dodgson

71

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

72

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Processing has two modes, which it calls “active” and “static” modes.

“static” mode has no functions at all, with all the code executed in order,
once. It creates a static picture, because there is no update loop.

“active” mode uses setup() and draw() to make that update loop.

The challenge is that you cannot mix “active” and “static” modes. This
means that you can define your own functions only in “active” mode. If
you try to define your own functions in “static” mode you will get either
a strange error message (such as “unexpected token”, which doesn’t
make sense unless you realise that in active mode you cannot put
statements outside functions) or the more helpful message ‘It looks like
you’re mixing “active” and “static” modes.’ Remember: if you want to
define any of your own functions, you must also use setup() and draw().
You cannot mix the two modes.

73

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

74©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

75©2019 Neil Dodgson

Introduction to Computer Graphics

This detail is for the second octant.

This slide only covers the increment part of the algorithm. It assumes that
we already know the location of the previous pixel and the current value
of k.

Homework: How would you initialise the algorithm? At which pixel
would you start?

CGRA 151 — Trimester 2 — 2019

76©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

77©2019 Neil Dodgson

Introduction to Computer Graphics

Homework: Implement this algorithm in Processing. Compare it against
Processing’s own circle drawing (using the ellipse() function with
equal width and height parameters).

CGRA 151 — Trimester 2 — 2019

78©2019 Neil Dodgson

Introduction to Computer Graphics

This idea of drawing only one pixel in each column (or row) does not
extend well as the shapes get more complicated. We need to consider a
different way of drawing more complex curves. We will get to that later
in the course.

CGRA 151 — Trimester 2 — 2019

79©2019 Neil Dodgson

Introduction to Computer Graphics

Why is it naïve? Because we would really want a pixel to be shaded in
proportion to the fraction of the pixel that is covered by the polygon
rather than just being a binary choice: fully on or fully off.

There is also a subtlety: what about pixels whose centres lies exactly on
an edge. If two polygons share that edge, we don’t want the pixel to
belong to both polygons. In this case we can say, for example, that pixels
on an edge at the left side of the polygon belong to that polygon, while
pixels on edges at the right do not.

CGRA 151 — Trimester 2 — 2019

80©2019 Neil Dodgson

Introduction to Computer Graphics

The top fragment of code is a loop to draw every pixel in the polygon.

The bottom fragment of code is the equivalent Processing function call of
rect(), which internally does just what happens in the top fragment.

A note on APIs. Processing is a graphical API (Application Programming
Interface) that has a whole bunch of function to do things so that you
don’t have to write them. In this course we are learning both about how
to use that API and about what is going on behind the scenes. When
writing computer graphics code, you will always be using APIs, some of
which have many more features than Processing.

CGRA 151 — Trimester 2 — 2019

81©2019 Neil Dodgson

Triangles are the default primitive for graphics cards to draw because:
• Guaranteed to be convex (so no nasty cases to consider).
• Guaranteed to have only three vertices and three edges (so can

explicitely have hardware optimised for the number, rather than
having to cope with an arbitrary number of vertices and edges)

• In 3D, guaranteed to be planar.

We get to 3D drawing later in the course...

82

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

The triangle drawing algorithm presented in these notes is based on
using a modified version of the line drawing algorithm to scan up the
edges of the triangle, and to fill between those edges.

The textbook presents an alternative algorithm that uses barycentric
coordinates. This can be found in of Fundamentals of Computer Graphics
Section 8.1.2 (pages 166–169). You’ll also need to read up on barycentric
coordinates in Section 2.7 (pages 44–48).

CGRA 151 — Trimester 2 — 2019

83©2019 Neil Dodgson

Introduction to Computer Graphics

Here we are using Processing’s convention that the y-axis points
downwards, so increasing y moves you down.

Notice that here we are assuming that the vertices of the triangle are at
integer coordinates. What changes would be needed to allow floating
point coordinates?

CGRA 151 — Trimester 2 — 2019

84©2019 Neil Dodgson

Introduc:on to Computer Graphics

This is an extension of our line drawing algorithm.

With two edges, we have to keep track of two lines and therefore two
intercepts, one for each edge.

In the diagram, the current horizontal scan line, y, has two intercepts, xAB
and xAC. When we increment y to y’, we need to increment these two
intercepts also, by the appropriate values, mAB and mAC.

CGRA 151 — Trimester 2 — 2019

85©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

86©2019 Neil Dodgson

Introduction to Computer Graphics

This is the algorithm for an arbitrary number of vertices and edges.

CGRA 151 — Trimester 2 — 2019

87©2019 Neil Dodgson

Introduc)on to Computer Graphics

Homework: try this yourself. Get a piece of squared paper and draw an
arbitrary polygon on it, with five or six edges. Then run the scanline
polygon fill algorithm by hand, keeping track of which edges are in the
edge list, which are in the active edge list, and which have been
discarded.

CGRA 151 — Trimester 2 — 2019

88©2019 Neil Dodgson

Introduc:on to Computer Graphics

How do we handle edge points that exactly intersect?

In the left hand case, the point needs to be included twice: once fro each
edge

In the right hand case, the point needs to be included once: once for one
of the edges and not for the other

This requires that you are careful in how you code your conditions in
the algorithm for when an edge is added to or removed from the AEL.

Do we really throw away horizontal edges?

Rather than explicitly testing for horizontal edges, it is neater and simpler
to code so that a horizontal edge gets added to the AEL and then
removed from the AEL. This requires that, on each scanline you check for
new lines to add to the AEL before you check for lines to remove from
the AEL and do both before you draw anything.

CGRA 151 — Trimester 2 — 2019

89©2019 Neil Dodgson

Curves are covered in Fundamentals of Computer Graphics, Chapter 15
(page 339–384). That chapter goes deeper into the material than is
necessary for this course. In this course we will cover particularly Bézier
curves (Section 15.6.1, pages 365–372). Understanding the material in
Section 15.6.1 requires you to have at least read Sections 15.2 and 15.3,
even if you are not totally confident of that earlier material.

90

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The spline here is created by a flexible piece of wood held in place by
five lead “ducks”. The wood naturally bends to a shape that is piecewise
cubic: that is, between each pair of ducks the curve is a cubic function.

91

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Splines were originally used in boat building. Boats would be planned out
in a process call lofting, where the designers would go up into the very
large loft of the factory or boat house, lay out enormous pieces of paper,
and draw the cross-sections of the boat at real-life scale, using the
flexible wood and ducks to get the lines right. The lofting process dates
back at least 200 years.

92

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The Bezier curve has four control points. In this case they are at (30,30),
(90,270), (210,60), (270,240).

The Bezier curve starts at the first point, heading in the direction of the
second.

It ends at the fourth point, coming in from the direction of the third.

The first and fourth points define the ends of the curve. The second and
third points define the tangent vectors at the ends.

The Processing sketch, BezierInteraction, allows you to play with a Bézier
curve.

93

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduc:on to Computer Graphics

Bézier cubics: Fundamentals of Computer Graphics Section 15.6.1 (pages
365–372).

Work out what happens at t=0 and t=1.

CGRA 151 — Trimester 2 — 2019

94©2019 Neil Dodgson

Introduction to Computer Graphics

Tangent vectors are the direction that the curve leaves the start point
and the direction that it arrives at the end point.

Look at the form of the Bernstein polynomials. For cubics they are:
bm = km (1-t)m t(3-m)

where km is a constant. For cubics the constants are {1,3,3,1}, which is
one of the rows of Pascal’s triangle. There is a general form for these
polynomials for arbitrary degree, n

bn
m= kn

m(1-t)m t(n-m)

For any degree, the weighting functions always sum to one. This is vital
for ensuring that the cubic curve is invariant to translation. That is, if you
move all the control points by the same distance in the same direction,
the entire curve moves the same distance in the same direction.

The convex hull property is important when we are doing bounding box
calculations (see later) because it means that we know that if the control
points all lie on one side of any given line, the entire Bezier cubic curve
does too.

CGRA 151 — Trimester 2 — 2019

95©2019 Neil Dodgson

Introduction to Computer Graphics

The basic idea is that we know how to draw straight lines quickly, so it is
straightforward to approximate the Bézier as a sequence of straight lines.
In this example, we use 20 straight lines (it is 20 because the STEP is
0.05, t ranges from 0 to 1, and 20✖0.05=1).

The iterative method fixes the number of line segments that should be
used. The adaptive method (see two slides ahead) adapts the number of
line segments to suit the Bézier curve and the pixel resolution of the
display.

CGRA 151 — Trimester 2 — 2019

96©2019 Neil Dodgson

The top example shows, at left, tick marks spaced evenly in parameter
space at a STEP spacing of 0.05, superimposed on the actual curve.
At right are three approximations drawn with different STEP values:
0.2 approximates the curve using 5 lines,
0.1 approximates it with 10 lines, and
0.05 approximates it with 20 lines.
Notice that the right hand example appears visually to be curved over
most of its length but that you can make out the individual line segments
at the place where the curve turns the tightest. This means that a STEP
size of 0.05 is good enough for parts of this curve but not good enough
for other parts.

At the bottom are three examples of actual curves with tick marks
superimposed at a STEP size of 0.05. The tick marks are equally spaced in
parameter space but notice how they are not equally spaced in real
space.

97

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

The illustrations on the right show you examples of three different
Bézier curves and the straight line approximation to them.
The bottom curve is clearly almost a straight line already so you could
just draw the straight line and you are done.
The middle curve is nearly a straight line, but it would depend on how
big the pixels are as to whether it is close enough to a straight line for
the straight line to be a good approximation.
The top curve is clearly not a straight line but, if the two end points
were both in the same pixel, the straight line (i.e., one pixel!) would be a
good approximation.

CGRA 151 — Trimester 2 — 2019

98©2019 Neil Dodgson

Introduction to Computer Graphics

This is a recursive function.

If the curve is sufficiently flat then we draw a line and we are finished.

Otherwise we split the curve into two parts and recurse on each of the
two parts.

We already know how to draw a line.

We need to work out how to test for flatness and how to subdivide a
Bézier curve into two new Bézier curves that, between them, exactly
match the original Bézier curve.

CGRA 151 — Trimester 2 — 2019

99©2019 Neil Dodgson

P(s) is the closest point on the line to point C.

Either of the “solve this” equations relies on the dot product. See the
Mathematics Workbook or Fundamentals of Computer Graphics, Sections
2.4.3 (pages 23–24).

The dot product of two vectors, V=(x1, y1) and W=(x2, y2) is calculated as
V·W=x1x2+y1y2

The dot product is also V· W = |V| |W| cosθ which, amongst other things,
allows you a way to find cosθ where θ is the angle between V and W.

For the first version, we say that the line connecting point P(s) to C
must be at right angles to line AB. Therefore cosθ=0.

For the second version, we know that |AP| = |AC| cosθ from
trigonometry.
We also know that the dot product, AB.AC = |AB||AC|cosθ.
So to get |AP| we need to divide AB.AC by |AB|.
Then s is the fraction along AB that P lies, so: s=|AP| / |AB|.
These two divisions by |AB| appear in the denominator of the final
equation as the square of the length of AB.

100

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The subtlety here is that the maths on the previous slide related to the
closest point, P(s), to point C, that lies on the infinite line through A and B.

However, we actually want to know the closest point to the line segment
that runs just between points A and B. This means that, if s lies between 0
and 1 then the maths on the previous slide is what we need, but if s is
less than 0 or greater than 1, then the closest point to C is one of the
two end points: A if s<0 and B if s>1.

101

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

102

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

There is a Processing program to demonstrate the algorithm: BezierSplitting.

Notice that the points can all be made by repeated averaging:

Define the following simple averages:
P01=(P0+P1)/2
P12=(P1+P2)/2
P23=(P2+P3)/2
P012=(P01+P12)/2
P123=(P12+P23)/2
P0123=(P012+P123)/2

Q0 = P0 R0=P0123
Q1 = P01 R1=P123
Q2 = P012 R2=P23
Q3 = P0123 R3=P3

You can do splits at arbitrary values of t by defining:
P01(t)=(1–t)P0+(t)P1
P012(t)=(1–t)P01+(t)P12
etc.

Use the same t value for every split, then you get two smaller Beziers that together
exactly match the bigger Bezier.

CGRA 151 — Trimester 2 — 2019

103©2019 Neil Dodgson

104

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

In this case study, we have six letter defined by Bézier curves.

We want the visual effect to be that we have overlapped these curves
and, where they overlap, they appear semi-transparent. A graphics
designer will expect the software to allow them to do this. As software
designers we need to work out how to achieve that visual effect.

How we actually achieve this, in this example, is to split the Bézier curves
at the points where they overlap and to colour each individual section so
that it achieves the desired look.

There are other ways to get the same look, which involve how we do
colour shading with semi-transparent effects.

105

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

We split the shapes into overlapping and non-overlapping shapes. Each
shape has a series of Bézier curves as its boundary. We colour each
shape so that the pieces appear translucent.

On the left: the top row shows the letters overlapping. The middle row
shows the overlapping regions coloured in black, after the shapes have
been split. The bottom row shows the desired colouring.

On the right, notice that Adobe Illustrator has code that allows it to split
the Bézier curves at arbitrary positions, creating new Bézier curves that
exactly match the originals.

106

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Types of continuity: Fundamentals of Computer Graphics Section 15.2.1
(pages 346–348).

Each Bézier curve is defined by its own four points. To make Bézier
curves join up we make the end point of one curve match the start point
of the next. To make them join up smoothly, we also need to worry
about the positions of the control points adjacent to the shared end
point.

107

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

What does this mean in practice?

For C0 we make the end points in the same location.

For G1 the end point and the control points either side must all be in a
straight line.

For C1 the end point and the control points either side must all be in a
straight line and the distance from the end point to the two control
points must be the same.

CGRA 151 — Trimester 2 — 2019

108©2019 Neil Dodgson

Introduction to Computer Graphics

Outline definitions are rendered to the screen by combining two
algorithms that we already know: first the Bézier outline is converted to
a series of straight lines (a polygon!) then we call the polygon filling
algorithm on that polygonal outline.

CGRA 151 — Trimester 2 — 2019

109©2019 Neil Dodgson

These typefaces need few control points to define their curves, because
the designers are happy to use what a Bézier curve can deliver.

110

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Compared to the previous slide, these letters need a lot more control
points to get the shapes to exactly match the original, non-computerised,
versions.

111

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

Now we come to the case where we want to have a curve that passes
through all of the points.

A cubic spline curve is defined by four control points. Two of those
points are the two ends of the curve. We need two further points and
we use the next point in each direction.

As we the curve passes through a control point, the four points that
define the curve change over so only three control points control what
happens as the curve passes through that point: the point itself and the
points either side. The curve position is determined by the point (that is,
the curve goes through the point) and the tangent vector at that point is
determined by the control points on either side.

CGRA 151 — Trimester 2 — 2019

112©2019 Neil Dodgson

Introduction to Computer Graphics

The formulas for P0 and P3 are obvious: the Bézier end points are the
same as the Catmull-Rom end points.

The formulas for P1 and P2 need a bit of explanation:

A Bézier curve’s tangent vector at P0 is: 3(P1–P0).
A Catmull-Rom’s tangent vector at P0 is: (C–A)/2 (see previous slide)
Remember that P0=B, so:

3(P1–P0)=(C–A)/2
⇒ 3(P1–B)=(C–A)/2
⇒ P1–B=(C–A)/6
⇒ P1=B+(C–A)/6

CGRA 151 — Trimester 2 — 2019

113©2019 Neil Dodgson

The Catmull-Rom curve and the Bézier curve in this example are
identical. What this slide demonstrates is how to generate a Bézier curve
equivalent to the Catmull-Rom curve. Notice how far away the outer
Catmull-Rom control points are compared to how close to the curve the
Bézier inner control points are.

114

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The image and code are from the example code CatmullRomMultiple.
The orange boxes are the points that define the curve. The orange lines
are connected in the order in which the points are used.

115

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The tangent vector is a vector that shows the direction in which the
curve is moving at that point. If you drove a car along the curve, the
tangent vector would be the direction that the car is moving as it drives
along the curve.

116

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Remember that we are using mathematical shorthand. The vector on the
left encapsulates, in a single equation, the two equations on the right.

117

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

The curve is shown in black.

We draw the tangent vector, in orange, at the locations of the little
circles on the curve. We have positioned the circles at a STEP size of
0.2.

There are similar functions for Catmull-Rom points and tangent vectors,
which are:

curvePoint()
curveTangent()

118

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Introduc:on to Computer Graphics

The top three translations are the ones that you will use regularly.

Rotate and translate do not change the size or aspect ratio of the object.
They are therefore called rigid-body transformations because the object
does not change, it just turns or moves.

Scale is not a rigid-body transformation because the object gets bigger.
However, it does not change its aspect ratio or the internal angles of the
object.

Shear is not a rigid-body transformation because the object is distorted:
its aspect ratio changes and all the internal angles change. Shear is not
used much in practice but, because it is easy to implement, you usually
find it implemented alongside the three more useful transformations.

CGRA 151 — Trimester 2 — 2019

119©2019 Neil Dodgson

We can specify an object once (such as the letter ‘e’ on this slide) and
then scale, rotate and translate it to place it in all the positions where it
is needed.

120

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The slide shows a webpage without any text on it. It has some nice
visuals but the text is what makes it useful.

121

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Getting Started with Processing Chapter 6 (pages 75–87) covers this in
detail. It will give you an alternative explanation of transformations.

122

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Three versions of the Thing are drawn.

The first is drawn in the default position, with the origin, (0,0), at the top
left corner of the screen.

The second is drawn with the origin translated to (100,60).

The third is drawn with the origin translated to
(100–10,60+70) = (90,130).

123

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The third version is now also rotated by 1.0 radian (57.3°).

124

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The third version is now scaled up by a factor of 2.0. Notice that the
stroke thicknesses get scaled up along with everything else.

125

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Finally, we combine all three types of transformation: translation, rotation
and scaling.

Processing stores an internal current transformation matrix. Whenever you
call a transformation function, it concatenates the new transformation
onto the stored transformation. In this case it does two translations, one
rotation, and one scaling, in that order.

Processing resets its internal current transformation matrix every time it
starts the draw() function.

126

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

We have removed everything except the single line from the Thing. We
have chosen to draw only one Thing (which was the third Thing on the
previous slide).

127

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

The point’s point of view is important for understanding the matrix
representation of transformations, coming up in a couple of slides.

From your (the programmer’s) point of view, you think of the universe as
being moved so that things get drawn where you want them.

But from Processing’s point of view, the pixels in the window have fixed
locations with (0,0) fixed at the top-left corner. It cannot move the
universe. Its universe is fixed. Processing therefore has to move the
points, by putting them through the transformations in the opposite
order to get them to where you want them to be.

These are two complementary ways of looking at how transformations
work.

In this case, the point (0,0) is not moved by either the scale or the
rotation, because both of those transformations are done with the origin
as a fixed point, so those two transformations leave (0,0) at (0,0).

128

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

In this second example, the point (40,40) is first scaled about the origin
by a factor of 2, to (80,80), then rotated about the origin by 1.0 radians,
to reach point (-24,110) [rounded to the nearest integer]. The two
translations then move the point, so that it ends up at (66,240).

129

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduc:on to Computer Graphics

There are only four basic 2D transformations: scale, rotate, translate and
shear. The fourth (shear) is not particularly useful in practice. However,
the other three are needed for practically everything.

CGRA 151 — Trimester 2 — 2019

130©2019 Neil Dodgson

Introduction to Computer Graphics

See Fundamentals of Computer Graphics, Chapter 6 (pages 111–140), which
cover transformations in detail. At this stage, you can skip over Section
6.2 (3D transformations).

If you do not know, or cannot remember, how to handle matrix
multiplication, see Fundamentals of Computer Graphics, Section 5.2 (pages
93–98) and the CGRA151 Mathematics Workbook.

CGRA 151 — Trimester 2 — 2019

131©2019 Neil Dodgson

The CGRA151 Mathematics Workbook covers this in detail.

There are links to useful online resources on the course website.

Introduc:on to Computer Graphics

132

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

One way to think of this is to think of the row of matrix A jumping and
diving into the column of matrix B. You multiply corresponding elements
and add up the results.

Introduction to Computer Graphics

133

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduction to Computer Graphics

Compare with the equations four slides earlier to see how these
matrices are constructed.

For example, for the shear, we had:

x’ = x + ay
y’ = y

CGRA 151 — Trimester 2 — 2019

134©2019 Neil Dodgson

Introduc:on to Computer Graphics

With a 2×2 matrix, you know (from the previous slide) that x’=ax+by.
You cannot pick two constants, a and b, that will allow you to say
x’=x+xo.

We fix this by moving to a 3×3 matrix, with a third dimension to our
vectors, and we set that dimension equal to 1. We then have
x’=ax+by+e×1 and we can set a=1, b=0, e=xo to get x’=x+xo.

CGRA 151 — Trimester 2 — 2019

135©2019 Neil Dodgson

Introduc:on to Computer Graphics

These are the 2×2 matrices from three slides ago, with an extra row and
column added. You can see that the extra rows and columns have the
values 0,0,1.

CGRA 151 — Trimester 2 — 2019

136©2019 Neil Dodgson

Introduction to Computer Graphics

This demonstrates that the w coordinate divides out so that it does not
matter what value w has, the translation is always by (xo,yo)

CGRA 151 — Trimester 2 — 2019

137©2019 Neil Dodgson

Introduction to Computer Graphics

The great advantage of using matrices is that we can multiply together as
many transformations as we like and the resulting single matrix applies all
of those transformations to any point in a single matrix multiplication
operation.

Matrix multiplication is covered in the CGRA151 Mathematics
Workbook.

CGRA 151 — Trimester 2 — 2019

138©2019 Neil Dodgson

Introduction to Computer Graphics

Matrices are not like normal numbers: order matters when doing
multiplication of matrices.

The examples at left show you intuitively that the order matters. The
matrices in the centre show the actual mathematical result of multiplying
the two matrices in different orders, so that you can see that they are
different.

CGRA 151 — Trimester 2 — 2019

139©2019 Neil Dodgson

Introduc:on to Computer Graphics

The star is defined by ten points. We multiply the three matrices together,
to get a single matrix M. We then multiply M by each of the ten points,
so using ten matrix multiplications to do the transformation, rather than
the thirty we would need if we did each transformation separately.

So, what does the final matrix, M, look like? We don’t particularly care,
because the computer does all the manipulation internally and stores that
single matrix. If you are interested you can multiply it out for yourself:

M =
% 0 '((1 −%)
0 % -((1 −%)
0 0 1

CGRA 151 — Trimester 2 — 2019

140©2019 Neil Dodgson

141

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Processing resets the current transformation matrix every time it starts the
draw() function. So, when the draw() function starts, the initial value
of current transformation matrix is an identify matrix.

142

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

This slide is the start of a worked example showing you how each matrix
is multiplied into the current transformation matrix.

143

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

144

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

145

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

146

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

147

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

148

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

149

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

150

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

151

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

152

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

If you have not done so already, now would be a good time to skim
through Getting Started with Processing, Chapter 6 (pages 75–87).

153

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

pushMatrix() stores the current transformation matrix on a stack

popMatrix() removes the matrix that is at the top of the stack and makes
it the current transformation matrix

Think of a stack like a stack of plates on a spring-loaded platform. Push
pushes a plate onto the top of the stack (pushing all the other plates
down). Pop pops the top plate off the stack.

154

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

The top screen-shot is of the program running with the
pushMatrix() and popMatrix() commands.

The bottom screen-shot is of the program running without them.

See how the pushMatrix()/popMatrix() isolates the first rotation
command in the top screen-shot, so that the second rectangle is not
affected by the first rotation.

In the bottom screen-shot the first rotation is also applied to the second
rectangle, meaning that the second rectangle orbits around the first,
rather than rotating independently of it.

155

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

The stack allows you to store up multiple matrices, as necessary.
Processing has a stack that can handle up to 32 matrices. Any more than
that will cause an error, but anything close to that and you really need to
think about whether you could write your program more efficiently.

You should always have a popMatrix() to match every
pushMatrix().

Errors that can happen:
Calling popMatrix() when there are no matrices on the stack —
Processing halts with the error message “missing a
pushMatrix() to go with that popMatrix()”
Calling pushMatrix() when there are already 32 matrices on the
stack — Processing halts with the error message “pushMatrix()
cannot use push more than 32 times”

Unlike current transformation matrix, the stack does not get cleared ever
time you call draw(). This means that, if you forget to match every
pushMatrix() with a popMatrix() you will quickly (in 32 cycles)
reach the limit of what can be pushed on the stack.

156

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

157©2019 Neil Dodgson

Introduc:on to Computer Graphics

The most extreme case is that of a world map. Consider Google Maps,
zoomed in to your street in your home town. Google Maps knows about
the entire world, but it must only draw the tiny portion of the world that
is visible in the window.

CGRA 151 — Trimester 2 — 2019

158©2019 Neil Dodgson

Introduc:on to Computer Graphics CGRA 151 — Trimester 2 — 2019

159©2019 Neil Dodgson

Introduc:on to Computer Graphics CGRA 151 — Trimester 2 — 2019

160©2019 Neil Dodgson

Introduc:on to Computer Graphics

Here we are assuming that the y-axis points down, that is, the bottom has
a higher y-value than the top.

We have used the standard notation for AND (an ∧ shape) and OR (a ∨
shape).

CGRA 151 — Trimester 2 — 2019

161©2019 Neil Dodgson

162

CGRA 151 — Trimester 2 — 2019Introduction to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

The naïve check means that you check a line against all four edges. Then,
if you find an intersection that lies between the two end points you need
to make a decision as to which are the end points of the piece of the line
that goes through the rectangle.

An intersection calculation needs three subtractions, one addition, a
multiplication and a division: it is computationally expensive (see three
slides later for details).

The diagram shows a range of examples that demonstrate why this is
inefficient:
• No line has more than two intersections with the box, so doing four

intersection calculations is wasteful.
• Many lines are entirely above, below, to the left or to the right of the

bounding box so, for these lines, doing any intersection calculations
is wasteful.

• Some lines are entirely inside the box so, for these lines, doing any
intersection calculations is wasteful.

We instead can do some simple and fast tests to see whether we need
to do the calculations and to determine which calculations to do.

CGRA 151 — Trimester 2 — 2019

163©2019 Neil Dodgson

Where does the equation for tL come from?

From the equation for x(t), which can be written for xL as:

xL = (1–tL) x1 + tL x2

Try this algorithm for the left edge for all of the examples from the
previous slide. Of those 12 lines, one has x1=x2, so has no intersection.
The other 11 all have intersections of the infinite line with the left edge.
Of those, only 3 have an intersection that occurs between the two end
points, that is, for 0≤tL≤1. So only 3 of the 12 lines needed these
calculations to be done, and 2 of those lines are actually entirely outside
the rectangle entirely, so there must be a more efficient way to do this.

164

CGRA 151 — Trimester 2 — 2019Introduc:on to Computer Graphics

©2019 Neil Dodgson

Introduction to Computer Graphics

It is very fast to do an inequality test. An inequality test is essentially a
single subtraction followed by a test for negative or positive.

CGRA 151 — Trimester 2 — 2019

165©2019 Neil Dodgson

Introduc:on to Computer Graphics

166

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

167©2019 Neil Dodgson

Introduction to Computer Graphics CGRA 151 — Trimester 2 — 2019

168©2019 Neil Dodgson

Introduction to Computer Graphics

This is no longer about just line clipping. If we clip just the lines, using the
algorithm that we just learnt, then we end up with a shape that is not
closed and therefore we cannot fill it. We somehow need to retain a
closed polygon, which means that the clipped polygon may end up having
bits of the enclosing rectangle as its edges.

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduc:on to Computer Graphics

Clipping against an infinitely long edge is relatively easy (see next slides).

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduc:on to Computer Graphics CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

Introduction to Computer Graphics

172

CGRA 151 — Trimester 2 — 2019

©2019 Neil Dodgson

