CGRA 352 C++ Setup Guide 2021
Joshua Scott, Ben Allen and Fanglue Zhang

1 Introduction

This guide is provided to assist you with setting up the CGRA 352 assignments on ECS
and Windows computers.

The base code for the CGRA C++ assignments and projects uses a CMake build system for
simplicity and cross-platform development. We would prefer you didn’t change this, but
you can if you must. If you do significantly alter the build process, please submit a
README.txt must make it abundantly clear how to build and run your project on the ECS
Linux systems.

2 Directory Structure

Figure 3 is an example of the directory structure for a CGRA C++ assignment. This
structure has been designed for ease of use and platform independence.

L_cgra352
Ti?ld
work
| _src
invert.cpp
invert.hpp
main.cpp
CMakeLists.txt
| CMakeLists.txt

Figure 1: Assignment directory structure

build This is where you’ll run CMake and build your executable.

work The working directory for the project. This is the one to submit
for each assignment.

CMake This folder holds CMake magic, no need to modify.
src Source files (.hpp and .cpp).
CMakeLists.txt This file holds CMake magic. You will not need to modify the one

in the work/ directory, but you may need to modify one or more in
work/src/ if you want to add files to the project.

3 CMake

3.1 ECS

You will need at least CMake 3.1 installed on your system and on your PATH. For the ECS
systems there is no need to install CMake, it is already on the system for you. For other
systems you can get the latest version from http://www.cmake.org/. The CMake installer
should have an option to add itself to PATH for you.

4 ECS Setup

4.1 Text Editor

Completingtheassignmentswithatexteditorhasaneasiersetupwithlesspotentialdisasters
but often takes longer to debug programs. If pursuing this route we recommend acquiring a
more powerful text editor like ‘Sublime Text 3’ (x64-bit tarball for Linux) to work with. To
build your project, first navigate to the assignment directory from a terminal. If the build
directory is missing, create it with:

mkdir build

Then execute:

cd build
cmake ../work

make
cd ..

If the project builds without errors the executable should be located in the build/bin/
directory and can be run with:

./build/bin/cgra352

Or if you need to add additional arguments, such as the provided vgc-logo.png:

./build/bin/cgra352 work/res/vgc-logo.png

All of your changes should be made in work/src/ in the base directory, NOT the build/
src/ directory. For most changes you’ll simply need to run make in the build/ directory
to compile your changes. If you add additional source files make sure you list them in work
/src/CMakelLists.txt; when you run make CMake will detect the change, regenerate the
Makefile and re-run make for you.

4.2 Eclipse

EclipseisanIDEinstalled onthe ECS machines and although the setup is more complicated,
but once it has been setup it offers benefits like error checking ahead of compiling. Eclipse
wasn’t built with CMake in mind so it does have some issues and if you encounter any you
can’t resolve, please contact the tutors.

Running CMake is very similar, but with the additional argument (-G <tool>) specifying
how the project should be built.

cd build
cmake -G "Eclipse CDT4 - Unix Makefiles" ../work

Start Eclipse and go to File > Import > Existing Projectsinto Workspace, browse to and select
the build/ directory as the project. Make sure the box Copy Projects into Workspace is
unchecked.

Once you've imported the project, you should be able to run it straight away. If you can’t
run it, do the following;:

« Go to Run > Run Configurations. On the left side, select C/C++ Application, then in
the Main tab, make sure your C/C++ Application field contains ./bin/cgra352 and
Enable auto build is checked.

= On your project, right click > Run As > C/C++ Application. This should setup the
default way to start the program, so you can simply run the project anytime after that.

If you need to run with arguments (and you will with some projects) go to Run > Run
Configurations > Arguments and enter your arguments there. For example:

work/res/vgc-logo.png

If you add additional files to the source code, create them manually, NOT with Eclipse. You
must also update the CMakelLists.txt in the work/src/ directory to include (or exclude)
the files, and re-run the cmake command to update the Eclipse project.

If you have problems, you can always try not using Eclipse.

5 Windows (Visual Studio) Setup

We recommend using Visual Studio 2019. The free ‘Community’ edition is
also suitable or you can obtain a free academic licence for the ‘Enterprise’ edi-
tion from Microsoft through DreamSpark courtesy of your ECS enrolment; see
http://ecs.victoria.ac.nz/Support/TechNoteMsdnaaSoftware for details. Visual Studio is li-
censed on a per-user basis, so you will be able to install it on several computers with the
same key.

The installer for Visual Studio 2019 does not install the C++ toolkit by default; you must
manually select the “Desktop devlopment with C++” workload for installation.

Older versions of Visual Studio may be unable to build the assignments, as the provided
assignment code may make use of previously unsupported C++11/14/17 features. We will
endeavour to ensure the provided code builds in Visual Studio 2019.

5.1 OpenCV

To install OpenCV on Windows, download the latest OpenCV Windows release from
https://opencv.org/releases.html and extract it to your local drive. Add the bin\directory

of the appropriate binaries to your PATH, like this: C:\opencv\build\x64\vc16\bin.

=

1 5 Control Panel > System and Security > System

View basic information about your computer

Computer Name Hardware Advanced ' System Protection Remote

Ci\Ruby, v C:\Ruby25-x64\bin o..
5)) Youmust be logged on as an Administator to make most of these changes. PATHEXT .COM; EXE; BAT; CMD;.VBS;.VBE; JS;.JSE;. WSF; WSH; MSC;.RB;.RBW: ...
Pefomance TEMP

™

Visual effects. processor scheduling, memory usage and vitual memory

Settings.

System variables

Variable Value

ComSpec C\Windows\system32\cmd.exe
NUMBER_OF PROCESSORS _4

Startup and Recovery

System startup. system faiure aWgebugging information

C:\Python27\;C:\Python2/\Scripts; C:\Windows\system32,C:\Windo...
QML EXE. BAT. CMD; VBS, VBE.JS, m

Security and Maintenance

Figure 2: Setting an environment variable using windows.

If you are using your own windows 10 machine and visual studio as your C++ environment,
please refer to the following online tutorial to set up an OpenCV project with the IDE of VS
2019: https://towardsdatascience.com/install-and-configure-opencv-4-2-0-in-windows-
10-ve-d132c52063a1

Alternatively, you could read the following sub-sections to setup your project using CMake.

5.2 Running CMake

Open cmd.exe and cd to the assignment root directory, the structure of which will look
something like figure 3.

L_cgra352

build
L ...
work

| src
invert.cpp
invert.hpp
main.cpp
CMakeLists.txt
| CMakeLists.txt

Figure 3: Assignment directory structure

If the build\ directory doesn’t exist, make it with mkdir build. Then cd build to enter it
and use one of the commands below to generate the Visual Studio solution. XX is your
Visual Studio version, as in this table:

Product Version
Visual Studio 2015 14
Visual Studio 2017 15
Visual Studio 2019 16

5.2.1 Building for x64

> cmake -G "Visual Studio XX Win64" -
DOpenCV_DIR="C:/opencv/build/x64/vc16/lib" .\work

You will only be able to run an assignment built this way on a x64 system. The extra
argument (-DOpenCV_DIR) allows your project to find and use the OpenCV library on
your machine. If your path to the file differs make sure you change it appropriately.

5.2.2 Building for x86

> cmake -G "Visual Studio XX" ..\work

5.3 Solution Preparation

Before you can run the assignment, there are a couple of changes you need to make.

5.3.1 Opening the Solution
In the build\ directory there will be a .sIn file, which is a Visual Studio solution. This

serves as a container for projects. Double-click on this file to open it in Visual Studio, or
open it from an already running Visual Studio instance.

5.3.2 StartUp Project

Set which project to run when you start debugging.
= Solution Explorer > a1 > right click > Set as StartUp Project

D COMP308 a1 - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Architecture Test Analyze Windo
O-o B -2 Wl - | Release - 64 - B Local Windows

Solution Explorer B main.cpp = X comp308.hpp
D o-sam@|F=2 Blat

Search Solution Explorer (Ctrl+ Pl >

s3] Solution 'COMP308_al’ (4 projects)

4] CMakePredefinedTargets

b o] ZERO_CHECK
COMP308

T e AT

// Copyright (c) 2015 Taehy
// This software is provide
// Victoria University of |
// In no event will the aul
& Build ftware

09100 sa10]dx3 52A135

& External Dependencies

4 5| Header Files Rebuild -
b aB comp308.hpp Clean ermi:
b aB geometryhpp View 5
b =m References PR R
4] Source Files &
Ry e Project Only »
b &+ main.cpp Scope to This
3B CMakelists.ct B New Solution Explorer View
b GLEW 2 o S
b o) ALL_BUILD ow,on;tode Vep
Profile Guided Optimization » P
Build Dependencies »
Add » b8;
g* Class Wizard... Ctrl+Shift+X
8 Manage NuGet Packages...
£ Set as StartUp Project
Debug »
Source Control »
¥ Ccut Ctrl+X
Paste Ctrls
X Remove Del
Rename

Unload Project

Rescan Solution
pmera

@ Open Folder in File Explorer
K Properties Alt+Enter Lse;

W - i S B AR

Figure 4: Setting the StartUp project

5.3.3 Working Directory and Command Arguments

Set the initial working directory and the command-line arguments for your program.

= Solution Explorer > cgra352 > right click > Properties > Configuration Properties >
Debugging

= Select All Configurations from the configuration drop-down

« Set Working Directory to $(SolutionDir)..

6

» Set Command Arguments to whatever is required by your program

al Property Pag
Configuration: ({All Configurations <) Platform: [Active(64) ~| [Configuration Manager... |
4 Configuration Properties Debugger to launch:
Genenl [Local Windows Debugger v]
Debugging
\C/(;g + Directories Comman 4 S(TargetPath)
++
E Lljnker Command Arguments Jwork/res/assets/bunny.obj
b Manifest Tool Working Ditectory, $(SolutionDir).. =l
b XML Documen t Generator Attach No
b Browse Information Deb.ugger Type Auto
b Build Events Environment
b Custom Build Step Merge Environment Yes
b Custom Build Tool SQL Debugging No
b Code Analysis Amp Default Accelerator
Working Directory
The application's working directory. By default, the directory containing the project file.
»

Figure 5: Setting the Working Directory

5.4 Running

Pressing the toolbar button with the green arrow (or just F5) will launch the StartUp project
with Visual Studio attached as debugger.

5.4.1 Solution Configurations

CMake prepares several solution configurations for you, which can be selected from the
dropdown on the toolbar.

Debug Unoptimized with debug symbols, best for debugging
RelWithDebInfo Optimized with debug symbols, fast but still debuggable
Release Optimized for speed with no debug symbols, undebuggable
MinSizeRel Optimzed for size with no debug symbols, undebuggable

5.4.2 Adding Files

If you need to add additional source files, add them manually to the work\src\ directory
and list them in work\src\CMakeLists.txt. The next time you build or run through Visual
Studio, CMake will detect the change and regenerate the solution, after which you will be
prompted to reload it. If you have problems, you can try cleaning the solution (Build >
Clean Solution) or re-running cmake from the command line.

