Image-Based Graphics

Computer
Graphics

Computational Photography

Camera models and light fileds

Light Fields

Light field imaging enable the capture of richer high-dimensional scene information

Light Fields

In this part:

- What is the light field
- Architecture of a light field camera
- How to get synthetic images using light fields

How do we capture the world

Just put a piece of film in front of an object

Object in real world
Film

Do we get a reasonable image?

Pinhole Model

What is the problem of this model?

Pinhole Model

Pinhole Model

Homemade pinhole camera and the generated photo

Shrinking the aperture

Why not make the aperture as small as possible?

The smaller the aperture is, less light gets through

When it is too small, diffraction effects will be obvious

How our eyes work?

Pinhole camera model:

How our eyes work?

Using lenses

Traditional Camera Model

Imaging

There is a specific distance at which objects are "in focus"

Aperture

Can we have more?

How to capture all light rays

Scene focal plane (st)
Camera plane (uv)

Light filed is the collection of all the light rays in the scene

Light-field Parameterization

Light field is a 4D function (represents light in free space: no occlusion [Levoy and Hanrahan 96])
It has the advantage of relating closely to the analytic geometry of perspective imaging Levoy/Hanrahan refer to this representation as "light slab"

Light-field Parameterization

Every position in UV, we can collect all the pixel value at different (s, t), it is an image of the object from this perspective.

Then we can get a UV Array of ST images

u
Plenoptic Light Field Field Radiance Map

Light-field Parameterization

Every position in ST, we can collect all the pixel value at different (u, v), it is actually the appearance of one surface point when watching from different direction.

Then we can get a ST Array of UV images
t

Surface Light Field

Surface Radiance Map

Can we make a micro camera array?

In a hand-held camera, there are also a bundle of light rays received by a sensor element. Can we make a micro camera at each element to receive all the rays?

Light Field Camera Based on Micro Lenses

Check your understanding

- What will the raw data look like with different aperture sizes?

Analysis in Ray Space

Scene focal
plane

Analysis in Ray Space

Ray space plot

Analysis in Ray Space

Scene focal plane

Ray space plot

Analysis in Ray Space

Use Light Field to Get a Synthetic Image

Irradiance image value on the virtual film plane $s^{\prime}-t^{\prime}$ (Stroebel et al. [1986])

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) A(u, v) \cos ^{4} \theta d u d v
$$

Color value of a ray in the virtual light field

Angle between the incident ray and the normal of the sensor plane

Ray space plot

Use Light Field to Get a Synthetic Image

Make a paraxial approximation to eliminate $\cos ^{4} \theta$

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) A(u, v) d u d v
$$

Ray space plot

Use Light Field to Get a Synthetic Image

Just consider a full aperture at first.
It means that $A(u, v)=1$ for every (u, v)

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) A(u, v) d u d v
$$

Ray space plot

Use Light Field to Get a Synthetic Image

Now just use the simplified formula:

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) d u d v
$$

Ray space plot

Use Light Field to Get a Synthetic Image

Now just use the simplified formula:

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) d u d v
$$

What is the relationship between a ray in L^{\prime} and L ?

Ray space plot

Use Light Field to Get a Synthetic Image

Get the light ray value from the original light field

$$
\begin{aligned}
& \frac{s-u}{s^{\prime}-u}=\frac{F}{\alpha F} \\
& \left\{\begin{array}{lll}
\frac{s^{\prime}-u}{\alpha F} \\
\mathrm{~s}=u+\frac{s^{\prime}-u}{\alpha} \\
t=v+\frac{t^{\prime}-v}{\alpha}
\end{array} ~ \measuredangle \begin{array}{l}
L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right)= \\
\end{array} \quad \begin{array}{l}
L\left(u, v, u+\frac{s^{\prime}-u}{\alpha}, v+\frac{t^{\prime}-v}{\alpha}\right)
\end{array}\right.
\end{aligned}
$$

Ray space plot

Use Light Field to Get a Synthetic Image

$$
\begin{aligned}
& E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) d u d v \\
& \quad=\iint L\left(u, v, u+\frac{s^{\prime}-u}{\alpha}, v+\frac{t^{\prime}-v}{\alpha}\right) d u d v \\
& \\
& { }^{\prime}{ }^{\prime} \text { and } \mathrm{t}^{\prime} \text { are constant when integrating }
\end{aligned}
$$

Ray space plot

Use Light Field to Get a Synthetic Image

$$
\begin{aligned}
& E\left(s^{\prime}, t^{\prime}\right)=\iint L^{\prime}\left(u, v, s^{\prime}, t^{\prime}\right) d u d v \\
& =\iint L\left(u, v, u+\frac{s^{\prime}-u}{\alpha}, v+\frac{t^{\prime}-v}{\alpha}\right) d u d v \\
& s^{\prime} \text { and } \mathrm{t}^{\prime} \text { are constant when integrating }
\end{aligned}
$$

Ray space plot

A pixel value for (s^{\prime}, t^{\prime}) is computed by integration of the color in this region

Each region for a pixel

Slope of the integral region corresponds to the distance with the real sensor plane

Full Aperture

Use Light Field to Get a Synthetic Image

Changing Focal Length

Generated images with different virtual focal length

image
plane

Ray space plot

教

Changing Focal Length

Generated images with different virtual focal length

An example on real sensor data

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) d u d v
$$

When $\alpha=1$, the focal plane doesn't change, then

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, s^{\prime}, t^{\prime}\right) d u d v
$$

E.g.:

To get the value for $s^{\prime}=0$ and $t^{\prime}=0$, for all different u, V, use the value in the $(0,0)$ element in s-t plane

In real sensor, we have discrete (s, t) elements. Their coordinates are the centers of the circles.

An example on real sensor data

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) d u d v
$$

If $\alpha=2$, when performing integration on $s^{\prime}=0, t^{\prime}=0$

$$
E(0,0)=\iint L\left(u, v, \frac{1}{2} u, \frac{1}{2} v\right) d u d v
$$

When $u=0, v=0$, use the value of $L(0,0,0,0)$

In real sensor, we have discrete (s, t) elements. Their coordinates are the centers of the circles.

An example on real sensor data

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) d u d v
$$

If $\alpha=2$, when performing integration on $s^{\prime}=0, t^{\prime}=0$

$$
E(0,0)=\iint L\left(u, v, \frac{1}{2} u, \frac{1}{2} v\right) d u d v
$$

When $u=0, v=0$, use the value of $L(0,0,0,0)$
When $u=1, v=2$, use the value of $L(1,2,0.5,1)$

In real sensor, we have discrete (s, t) elements. Their coordinates are the centers of the circles.

An example on real sensor data

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) d u d v
$$

If $\alpha=2$, when performing integration on $s^{\prime}=0, t^{\prime}=0$

$$
E(0,0)=\iint L\left(u, v, \frac{1}{2} u, \frac{1}{2} v\right) d u d v
$$

When $u=0, v=0$, use the value of $L(0,0,0,0)$
When $u=1, v=2$, use the value of $L(1,2,0.5,1)$
When $u=2, v=4$, use the value of $L(2,4,1,2)$

In real sensor, we have discrete (s, t) elements. Their coordinates are the centers of the circles.

An example on real sensor data

$$
E\left(s^{\prime}, t^{\prime}\right)=\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) d u d v
$$

If $\alpha=2$, when performing integration on $s^{\prime}=0, t^{\prime}=0$

$$
E(0,0)=\iint L\left(u, v, \frac{1}{2} u, \frac{1}{2} v\right) d u d v
$$

When $u=0, v=0$, use the value of $L(0,0,0,0)$
When $u=1, v=2$, use the value of $L(1,2,0.5,1)$
When $u=2, v=4$, use the value of $L(2,4,1,2)$

For all the u and v, find the corresponding element in s-t plane, and get its value for the position (u, v).

This is a sharp pixel for this point
t on the wall in the background

In real sensor, we have discrete (s, t) elements. Their coordinates are the centers of the circles.

Refocusing Results

Lego Knights from Stanford Light Field Archieve 289 views on a 17×17 grid
image resolution 1024×1024

Virtual Aperture

Virtual aperture is a mask when picking (u, v) values in each sub-lens picture

$$
E\left(s^{\prime}, t^{\prime}\right)=
$$

$$
\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) A^{\prime}(u, v) d u d v
$$

Ray space plot

Virtual Aperture

Virtual aperture is a mask when picking (u, v) values in each sub-lens picture

$$
E\left(s^{\prime}, t^{\prime}\right)=
$$

$$
\iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) A^{\prime}(u, v) d u d v
$$

Ray space plot

Virtual Aperture

Virtual aperture is a mask when picking (u, v) values in each sub-lens picture

$$
\begin{aligned}
& E\left(s^{\prime}, t^{\prime}\right)= \\
& \iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) A^{\prime}(u, v) d u d v
\end{aligned}
$$

Ray space plot

Virtual Aperture

Virtual aperture is a mask when picking (u, v) values in each sub-lens picture

$$
\begin{aligned}
& E\left(s^{\prime}, t^{\prime}\right)= \\
& \iint L\left(u, v, u+\frac{\alpha s^{\prime}-u}{\alpha}, v+\frac{\alpha t^{\prime}-v}{\alpha}\right) A^{\prime}(u, v) d u d v
\end{aligned}
$$

Ray space plot

Synthetic Aperture

Virtual Aperture

Synthetic Aperture

Virtual Aperture

Advantages of the Light Field Camera

Single shot to generate many different photographs

- Digital (post shot) refocusing
- Parallax (computational change of viewpoint)
- Extended depth of field (put entire image in focus)
- Stereo images

Better camera performance:

- Reduced shutter lag: in the limit, no need for autofocus
- Potential for better low-light performance
- misfocus due to shallow depth-of-field can be corrected after the shot
- Correction of lens aberrations

Applications of Light Fields

- Example 1: Better Near-Eye Display:

Applications of Light Fields

- Example 2: Image-based Rendering

