17 | VICTORIA UNIVERSITY OF

véa WELLINGTON

TE HERENGA WAKA

Lecture 6:

Introduction to lighting

CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, Mike Bailey, OSU, Ed Angel University of New Mexico

Recap: Building CGRA251 Framework

* Integrated development environments (IDEs)
on Windows, Mac, Linux and CMake tools

CMake

Cross-platform Make

ACE Graphics Command Processor ACE Y
Global Data Share
Shader Engine Shader Engine Shader Engine
(o try SSOr Seometry Procaess)

Goomelry Processor

Recap: Shader Program

L2 Cache

- A small C/C++ style (GLSL)
program to control parts of

Tessellation Tesse. L] L] L]
‘ o Frtuc the graphics pipeline
« Consists of 2 (or more)
separate parts:

- Vertex shader controls
-_-—. vertex transformation.
- Fragment shader controls
fragment shading.

Fragment
Shader /|

Why Do We Care About Lighting?

Without lighting

With lighting

Lighting “dis-ambiguates” 3D scenes

What is light ?

* Lightis Electromagnetic Energy

* Light comes from many different
sources

e Some items produce light while
others reflect light

Light: introduction

Light is both a wave and a particle:

Era of Ancient Greece _ 1600

4
Socrates

469-399 B.C.

Plato
427-347 B.C.

= @
=
-

T

Aristotle
384-322 B.C.

e
L

Euclid

3307-275? B.C.

Go
« >
Ibn al-Haytham
965-1040?
——o

1700

Newton
1643-1727

Huygens

1629-1695
G—0

1773-1829
*—

1800 1900 2000

2

o S
Maxwell
1831-1879
&0

T ".‘ &\ S
(H «»
Young Einstein
1879-1955

By Hamamatsu at http://photonterrace.net/en/photon/history/

http://photonterrace.net/en/photon/history/

The Nature of light

Electric energy

Z

\

Magnetic energy

As a wave:

— A small disturbance in an electric field
creates a small magnetic field, which in
turn creates a small electric field, and so on
e Light propagates itself “by its bootstraps!”
— Light waves can interfere with other light
waves, canceling or amplifying them!

— The color of light is determined by its
wavelength

e Light is radiant energy.

e Travels very fast —
300,000 km/sec!

e Can be described either
as a wave or as a particle
traveling through space.

As a particle:

— Particles of light (photons) travel through space.
— These photons have very specific energies.

that is, light is quantized.

— Photons strike your eye (or other sensors)

like a very small bullet, and are detected.

Lighting

* Lighting or illumination is the deliberate use of
light to achieve a practical or aesthetic effect
* lllumination model
* Models deal with physical interactions between

 lights, geometry, materials, textures,
transparency,
interaction with (within) surface, etc

e Simulate light (photons) interacting through the
scene

http://graphics.stanford.edu/~henrik/i mages/cl

Lighting Principles

* Lighting simulates how objects reflect light
* material composition of object

* light’s color and position

* global lighting parameters .
e Usually implemented in

e vertex shader for faster speed

* fragment shader for nicer shading .

A

The Normal

A surface normal is a vector perpendicular to the surface.

Sometimes surface normals are defined or computed per-face.

Sometimes they are defined per-vertex to best approximate
the underlying surface that the face is representing.

Recap: Points and Vectors

* The rendering pipeline transforms vertices, normals,
colors, texture coordinates

* Points (e.g. vertices) specify a location in
space

 VVector (e.g. normal) specify a direction

* Relations between points and vectors
* point — point = Vector
* point + vector = point
e vector + vector = vector
* point + point = not defined
*p=P1-P2,P1=P2+p

Homogeneous coordinates:
if w == 1, then the vector (x,y,z,1) is a position in space.
If w == 0, then the vector (x,y,z,0) is a direction.

Dot and Cross Product
* Dot product a*b:

ax bx
a,|*lb, |=a.b +ab, +alb,
aZ bZ

a*b =0, if vand w are perpendicular,

If both are normalized, it is directly the cosine of the angle
between them: a.b = [|a|| ||b|| cosd

* Cross product axb

a | (b] [ab,—ba,
a, |x|b, |=|ab, —b,a,
a,) \b,) \ab,—ba,

Results in a vector that is perpendicular to both of them

Vector Normalization

* To compute a new vector pointing in the same
direction but unit length

* Normalized vector = unit vector

 Divide each component of vby | |v]| |

13

GLSL examples: vec3

vec3 a;

a.x = 10.0, a.y = 20.0;, a.z = 30.0;
a.r = 0.1, a.g=0.2; b =20.3;
a.s = 1.0, a.t=2.0; = 3.0,
vec3 b = vec3(4.0, 5.0, 6.0);

vec3 ¢ =a + b; // ¢c= (5 17, 9)

vec3 d =a - b; // d= (-3, -3, =-3)
vecl e = a * b; // e = (4, 10, 18)
vec3d £ =a * 3; // e = (3, 6, 9)
float g = dot(a,b); // g 32

vec3 h = cross(a,b); // h = (-3,6,-3)
float 1 = length(a); // i = 3.742

// a =
// a =
// a =

(10,
(0.1,

20,
0.2,
3)

30)
0.3)

(L, 2,

Dot: angle between two lines

b

°| b, |=a.b +a,b,+ab,
b

ax
ay
az z

Cross: line perpendicular to two lines:

: b, qj&—@pz
a, |x|b, |=|ab, —b,a,
) \b,) \ab,—ba,

Length (magnitude): ¢ = +/(cx°+ ¢,°+)

Surface Normals

* Normals define how a surface reflects light

* Application usually provides normals as a vertex
atttribute

e Current normal is used to compute vertex’s color

* Use unit normals for proper lighting
 scaling affects a normal’s length

Surface Normal

* A surface normal of a triangle can be
calculated by taking the vector cross
product of two edges of that triangles

u=v,—v,;
V=V;—V;
N=UxXyV

n, = U\, — UV, Counter clock wise
n,=u,v,—u,\Vv, Vi

n, = UV, - UV,

Vertex Normal

* Normalized sum of surface normals at the vertex

n,+n,+N,+.+0,

o]

* Each surface normal should be unit vectors

2 2 2
Hn” = \/nx +0; 41

n=

Shading Model

* Flat shading

* Evaluate lighting per vertex
using surface normal

* Gouraud shading

* Evaluate lighting per vertex
using vertex normal

* Phong shading

e Evaluate lighting per fragment
using interpolated normal

A typical Lighting configuration

mM”AOS & H O

Point being illuminated

Light intensity

Unit vector from point to light
Unit vector surface normal
Perfect reflection unit vector
Unit vector to eye position

Simple shading model: components

* |llumination model express the components of
light “reflected from” or
“transmitted through”
(refracted or scattered) a surface
* We will deal with three basic lit components
 Ambient
* Diffuse

e Specular

ambient diffuse specular combined (Phong)

https://learnopengl.com/Lighting/Basic-Lighting

https://learnopengl.com/Lighting/Basic-Lighting

Diffuse reflection

e Diffuse

* Incident light is reflected into all directions
* Photons are scattered equally in all directions
* Diffusely reflected light is typically for dull,

matte surface such a paper, chalk or
chalkboard

Diffuse reflection

* Spreading out the same amount of light energy across more surface area

Diffuse reflection

 Component of diffuse reflection is based
on Lambert’s law

* radiant intensity reflected from a fully
diffuse i,, =n-l1=cosf
surface is proportional to the angle
between
light direction | and surface normal n

O light source

Icos(B)dQdA

1

[Image from real time rendering book] [Image fro(:“r?wikipedia]

In the CGRA251 Framework

. default_vert.glsl
B default_vert.gisl) No Selection

#version core

uniform data
uProjectionMatrix;
uModelViewMatrix;

mesh data

(location aPosition;
(location aNormal;

’ model data (this must match the input of the vertex
VertexData {
position;
normal;
} v_out;

main() {

/ transform vertex data to viewspace
v_out.position = (uModelViewMatrix (aPosition, 1)).xyz;
v_out.normal = ((uModelViewMatrix (aNormal, 9)).xyz);

or converting to fragment data)

(aPosition, 1);

In the CGRA251 Framework

R default_frag.glsl

. default_frag.glsl > No Selection

#version core :
O light source
/ uniform data ldiﬁ” =1N- l = COSH
uProjectionMatrix;] n
uModelViewMatrix;

viewspace data S must n the output of the fragment
VertexData {
position;
normal;
Y f_in;

framebuffer output

fb_color;
main() {

surfaceColor = (' ')i

eye = (=f_1n.position); // direction towards the eye

light = (((f_in.normal), eye)); // difference between
ana direction towards the eye

finalColor = (surfaceColor / 4, surfaceColor, light);

 output to the frambuffer

fb_color = (finalColor, 1);

Specular highlights

e Specular

e Deals with reflection into a dominant
direction causing highlights effect
on the surface

* Produce shiny spot on the surface
such as billiard ball

[Image from real time rendering book]

Simple Light Source Models

* Simple mathematical models:
* Point Light
* Directional Light
* Spot Light

* Two other light properties
 Ambient Light
* Emission

Point Light

* A light source originating from a
zero-volume point in the scene

* Emit light in all direction from a point

Directional Light

* A light infinitely far away from the
scene only having direction

e Often for emulating sunlight

Spot Light

* A light source originating from a zero
volume point and direct to the scene
* Direction : the light is focused on
e Cutoff : angle that defines light cone
* Exponent : Concentration of the light

(Brightest around the center) \. g

cutOffangle

e

— —
= ;_-——““;_:-—f -)
' e | beam Width
location e | 1
.-JI -
| direction

radius

o
~ —
—_ —
tm——

= ——
—

http://www.thuro.co.uk/?tag=opengl

g
full intensity 0.0

[1lumination Model in OpenGL

* [llumination model expresses the components of light
“reflected from” or
“transmitted through”
(refracted or scattered) a surface

* We will deal with three basic lit components
 Ambient
* Diffuse
e Specular

ambient specular combined (Phong)

https://learnopengl.com/Lighting/Basic-Lighting

https://learnopengl.com/Lighting/Basic-Lighting

Phong Illumination Model

* Phong illumination model is combination of
* Ambient i, ,+ Diffuse iy + Specular terms g,
* Developed by Bui Tuong Phong at Univ. Utah 1973

. . . mS l
I=ki +kjimel)+ki(rev)™
* k, kyk, are material properties having RGB components

n
4 r

Ambient Lighting

* Light incident to surface is not only along direct path from
light sources. Many inter-reflections
are modeled as a lumped omnidirectional source

-2 Indirect lighting (global illumination)

 Ambient light approximate indirect illumination
using a constant intensity from all directions

 Ambient lights in OpenGL

1 b mamb @ Samb

am

m,,,,;, is the color of the object
S.mp IS the color of the light source

Ambient Lighting

Fragment shader:

#version 330 core
1 color;

lightColor (1, 1, 1);
objectColor = vec3(1, 0, 0);

main() {
ambientStrength = 0.8;
ambient = ambientStrength * lightColor;

result = ambient * objectColor;
color cA(result, 1.0);

1 = Illand7(:> Scunb

amb

M, iS the color of the object
S.mb 1S the color of the light source

Result:

Diffuse

e Diffuse

* Incident light is reflected into all directions

* Photons are scattered equally in all directions

* Diffusely reflected light is typically for dull,
matte surface such a paper, chalk or chalkboard

[Image from real time rendering book]

Ditfuse reflection

* Component of diffuse reflection is based
on Lambert’s law ldlﬁ[=n-l=cosf
* radiant intensity reflected from a fully diffuse

surface is proportional to the angle between
light direction | and surface normal n

IdQdA

O light source

Icos(B)dQdA

I An

< >

[Image from real time rendering book] [Image frogiqwikipedia]

Diffuse Lighting

Fragment shader:

#version 330 core
1 color;
fraghNormal ;
lightDir c3(0.25, 0.25, -1);
lightColor (il il ibe

objectColor = vec3(1, 0, 0);

main() {
ambientStrength 0.1;

ambient = ambientStrength * lightColor;

norm (fragNormal);
lightDir (-lightDir);

diff (dot(norm, lightDir), 0.0);
diffuse = diff * lightColor;

result (ambient + diffuse) objectColor;

A(result, 1.0);

Result:

O light source

Ly =M 1=cos6

Specular reflection

* Make a surface look shiny by creating highlights
* Highlight visualize surface curvature
* Highlight is determined by location of light and view
—Shape from shading (computer vision)

* Diffuse vs Specular

e Deals with reflection into a dominant
direction causing highlights effect
on the surface

* Produce shiny spot on the surface
such as billiard ball

http://www.joshenreborn.com/2013/04/against-all-odds-create.html [lmage from real tlme renderlng book]

Phong Model: Specular reflection

* For shiny surface, incident photons tend to
bounce off in the reflection direction r

; — Mgy M p;
lspec o (r) V) T (COS 10)
 Ifris closer to v, specularity gets stronger = view dep.

* r needs to be computed

‘T =2(n-1)n -1, nandlis normalized
* If (n-1) <0, surface faces away from light 2 no effect

[Image from real time rendering book]

https://www.scratchapixel.cor:n/lessons/Bd-basic-rendering/introductlon-to-

shading/reflection-refraction-fresnel

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel

Shininess control

* mg,; controls shininess
e If mg,;is 1, cosine curve is produced between two vectors (r, v) or (n, h)
* When my,, gets larger, small but strong highlight
* Look reasonable but may not accurate

o
o0
|

0.6 -

0.4

Specular Intensity

b ‘
-7t/2 -7t/4 0 /4 7/2 angles
exponent: [l 1 2 4 3 32 1256

[Image from real time rendering book]

Specular Lighting

Fragment shader:

#version

fragPosition;
fraghormal;

lightDir (0.25, ©.25, -1);
lightColor (1, 1, 1);
objectColor (1, o, ©);

main() {
ambientStrength 0.1;
ambient = ambientStrength * lightColor;

norm (fraghNormal);

lightDir (-lightDir);

diff (dot(norm, lightDir), ©.8);
diffuse = diff * lightColor;

specularStrength = 8.5;
reflectDir (-lightDir, norm);

viewDir (-fragPosition);

spec pou(((viewDir, reflectDir), ©.8), 32);
specular specularStrength * spec * lightColor;

result (ambient + diffuse + specular) * objectColor;

(result, 1.9);

spec

Result:

