
Lecture 6:

Introduction to lighting
CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, Mike Bailey, OSU, Ed Angel University of New Mexico

Office hours
- This Friday from 1:30-3pm at CO330, extended
- Additional hours by drop in or appointment

Next
• C++/OpenGL programming continued:
• 3D Geometry and GUI
• Shading and color
• Introduction to Lighting

Assignment 1: due on Monday
(3 late days)

Recap: Building CGRA251 Framework

• Integrated development environments (IDEs)
on Windows, Mac, Linux and CMake tools

Recap: Shader Program

• A	small	C/C++	style	(GLSL)	
program	to	control	parts	of	
the	graphics	pipeline

• Consists	of	2	(or	more)	
separate	parts:
• Vertex	shader	controls	
vertex	transformation.

• Fragment	shader	controls	
fragment	shading.

Why Do We Care About Lighting?

What is light ?

• Light is Electromagnetic Energy
• Light comes from many different

sources
• Some items produce light while

others reflect light

Light: introduction

By Hamamatsu at http://photonterrace.net/en/photon/history/

Light is both a wave and a particle:

http://photonterrace.net/en/photon/history/

The Nature of light
• Light is radiant energy.
• Travels very fast –
300,000 km/sec!
• Can be described either
as a wave or as a particle
traveling through space.

As a wave:
– A small disturbance in an electric field
creates a small magnetic field, which in
turn creates a small electric field, and so on
• Light propagates itself “by its bootstraps!”
– Light waves can interfere with other light
waves, canceling or amplifying them!
– The color of light is determined by its
wavelength

As a particle:
– Particles of light (photons) travel through space.
– These photons have very specific energies.
that is, light is quantized.
– Photons strike your eye (or other sensors)
like a very small bullet, and are detected.

Lighting
• Lighting or illumination is the deliberate use of

light to achieve a practical or aesthetic effect

• Illumination model
• Models deal with physical interactions between

• lights, geometry, materials, textures,
transparency,
interaction with (within) surface, etc

• Simulate light (photons) interacting through the
scene

http://graphics.stanford.edu/~henrik/images/cbox.html

Lighting Principles

• Lighting simulates how objects reflect light
• material composition of object
• light’s color and position
• global lighting parameters

• Usually implemented in
• vertex shader for faster speed
• fragment shader for nicer shading

The Normal

Recap: Points and Vectors
• The rendering pipeline transforms vertices, normals,

colors, texture coordinates
• Points (e.g. vertices) specify a location in

space
• Vector (e.g. normal) specify a direction
• Relations between points and vectors
• point – point =
• point + vector =
• vector + vector =
• point + point =
• p = P1 – P2, P1 = P2 + p

vector
point
vector

not defined

Homogeneous coordinates:
 if w == 1, then the vector (x,y,z,1) is a position in space.
 If w == 0, then the vector (x,y,z,0) is a direction.

Dot and Cross Product
• Dot product a�b:

a�b = 0, if v and w are perpendicular,
If both are normalized, it is directly the cosine of the angle
between them:

• Cross product axb

Results in a vector that is perpendicular to both of them

Vector Normalization

• To compute a new vector pointing in the same
direction but unit length
• Normalized vector = unit vector
• Divide each component of v by ||v||

13

GLSL examples: vec3

float i = length(a); // i = 3.742

vec3 a;

a.s = 1.0, a.t = 2.0; a.p = 3.0; // a = (1, 2, 3)

vec3 b = vec3(4.0, 5.0, 6.0);

float g = dot(a,b); // g = 32

vec3 h = cross(a,b); // h = (-3,6,-3)

a.x = 10.0; a.y = 20.0; a.z = 30.0; // a = (10, 20, 30)

a.r = 0.1; a.g = 0.2; a.b = 0.3; // a = (0.1, 0.2, 0.3)

vec3 c = a + b; // c = (5, 7, 9)

vec3 d = a - b; // d = (-3, -3, -3)

vec3 e = a * b; // e = (4, 10, 18)

vec3 f = a * 3; // e = (3, 6, 9)

Dot: angle between two lines

Cross: line perpendicular to two lines:

Length (magnitude):

Surface Normals

• Normals define how a surface reflects light
• Application usually provides normals as a vertex

atttribute
• Current normal is used to compute vertex’s color
• Use unit normals for proper lighting

• scaling affects a normal’s length

Surface Normal

• A surface normal of a triangle can be
calculated by taking the vector cross
product of two edges of that triangles

u = v2 – v1
v = v3 – v1
n = u x v

nx = uyvz – uzvy
ny = uzvx – uxvz
nz = uxvy - uyvx

v1

v2

v3

Counter clock wise

u

vn

Vertex Normal
• Normalized sum of surface normals at the vertex

……

n =
n f 1 +n f 2 +n f 3 +...+n fn

n

nf1

nf2
nf3

nfn

* Each surface normal should be unit vectors

n = n2x +ny
2 +nz

2

Shading Model
• Flat shading
• Evaluate lighting per vertex

using surface normal

• Gouraud shading
• Evaluate lighting per vertex

using vertex normal

• Phong shading
• Evaluate lighting per fragment

using interpolated normal

A typical Lighting configuration

Simple shading model: components
• Illumination model express the components of

light “reflected from” or
“transmitted through”
(refracted or scattered) a surface
• We will deal with three basic lit components
• Ambient
• Diffuse
• Specular

https://learnopengl.com/Lighting/Basic-Lighting

https://learnopengl.com/Lighting/Basic-Lighting

Diffuse reflection

• Diffuse
• Incident light is reflected into all directions

• Photons are scattered equally in all directions
• Diffusely reflected light is typically for dull,

matte surface such a paper, chalk or
chalkboard

Diffuse reflection

* Spreading out the same amount of light energy across more surface area

Diffuse reflection
• Component of diffuse reflection is based

on Lambert’s law
• radiant intensity reflected from a fully

diffuse
surface is proportional to the angle
between
light direction l and surface normal n

idiff = n ⋅ l = cosθ

[Image from wikipedia][Image from real time rendering book]

In the CGRA251 Framework

In the CGRA251 Framework

idiff = n ⋅ l = cosθ

Specular highlights

• Specular
• Deals with reflection into a dominant

direction causing highlights effect
on the surface
• Produce shiny spot on the surface

such as billiard ball

[Image from real time rendering book]http://www.joshenreborn.com/2013/04/against-all-odds-create.html

Simple Light Source Models

• Simple mathematical models:
• Point Light
• Directional Light
• Spot Light

• Two other light properties
• Ambient Light
• Emission

Point Light
• A light source originating from a

zero-volume point in the scene
• Emit light in all direction from a point

Directional Light
• A light infinitely far away from the

scene only having direction
• Often for emulating sunlight

Spot Light
• A light source originating from a zero

volume point and direct to the scene
• Direction : the light is focused on
• Cutoff : angle that defines light cone
• Exponent : Concentration of the light

 (Brightest around the center)

30

http://www.thuro.co.uk/?tag=opengl

Illumination Model in OpenGL
• Illumination model expresses the components of light

“reflected from” or
“transmitted through”
(refracted or scattered) a surface
• We will deal with three basic lit components
• Ambient
• Diffuse
• Specular

https://learnopengl.com/Lighting/Basic-Lighting

https://learnopengl.com/Lighting/Basic-Lighting

Phong Illumination Model
• Phong illumination model is combination of

• Ambient iamb+ Diffuse idiff + Specular terms isepc

• Developed by Bui Tuong Phong at Univ. Utah 1973

• ka kd ks are material properties having RGB components

v

n

l
r

I = kaia + kdid (n• l)+ ksis (r•v)
mshi

Ambient Lighting
• Light incident to surface is not only along direct path from

light sources. Many inter-reflections
are modeled as a lumped omnidirectional source

 à Indirect lighting (global illumination)
• Ambient light approximate indirect illumination

using a constant intensity from all directions
• Ambient lights in OpenGL

iamb =mamb ⊗ samb

mamb is the color of the object
samb is the color of the light source

Ambient Lighting

iamb =mamb ⊗ samb
mamb is the color of the object
samb is the color of the light source

Result:

Fragment shader:

Diffuse
• Diffuse
• Incident light is reflected into all directions

• Photons are scattered equally in all directions
• Diffusely reflected light is typically for dull,

matte surface such a paper, chalk or chalkboard

[Image from real time rendering book]

Diffuse reflection
• Component of diffuse reflection is based

on Lambert’s law
• radiant intensity reflected from a fully diffuse

surface is proportional to the angle between
light direction l and surface normal n

idiff = n ⋅ l = cosθ

[Image from wikipedia][Image from real time rendering book]

Diffuse Lighting
Fragment shader: Result:

idiff = n ⋅ l = cosθ

Specular reflection
• Make a surface look shiny by creating highlights

• Highlight visualize surface curvature
• Highlight is determined by location of light and view
àShape from shading (computer vision)

• Diffuse vs Specular
• Deals with reflection into a dominant

direction causing highlights effect
on the surface

• Produce shiny spot on the surface
such as billiard ball

[Image from real time rendering book]http://www.joshenreborn.com/2013/04/against-all-odds-create.html

Phong Model: Specular reflection
• For shiny surface, incident photons tend to

bounce off in the reflection direction r

• If r is closer to v, specularity gets stronger à view dep.

• r needs to be computed
• , n and l is normalized
• If , surface faces away from light à no effect

shishi mm
speci)(cos)(r=×= vr

[Image from real time rendering book]

n

lr

-l

(n ⋅ l)n ln ×

r = 2(n ⋅ l)n− l
(n ⋅ l)< 0

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-
shading/reflection-refraction-fresnel

https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel
https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel

Shininess control
• mshi controls shininess

• If mshi is 1, cosine curve is produced between two vectors (r, v) or (n, h)
• When mshi gets larger, small but strong highlight
• Look reasonable but may not accurate

angles

[Image from real time rendering book]

Sp
ec

ul
ar

 In
te

ns
ity

Specular Lighting
Fragment shader: Result:

shishi mm
speci)(cos)(r=×= vr

