
Lecture 11-12:
View, Projections, Instancing and
Introduction to Textures
CGRA 354 : Computer Graphic Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC;

Lecture Schedule
• Lighting continued and linear algebra recap
• Transformations
• Details of Mid-trimester test
• View, Projection and Instancing
• Introduction to Textures and Animation started

- Released: online on Wednesday, 17th of
April (Nuku), 10am
- Duration: 1hr (must be taken within 24h)
- Format: mixed (multi-choice, true/false, short
answer)
- Covers: lecture and assignment material
- Structure: Core, Completion and Challenge parts

Mid-term test

Recap: Graphics pipeline

• Modern OpenGL programs essentially do the following steps:
• Create shader programs
• Create buffer objects and load data into them
• “Connect” data locations with shader variables
• Render

Vertex
Processing Rasterizer Fragment

Processing

Vertex
Shader

Fragment
Shader

GPU Data FlowApplication Framebuffer

Vertices Vertices Fragments Pixels

Phong Model in OpenGL
• Phong illumination model is combination of

• Ambient iamb+ Diffuse idiff + Specular terms isepc

• Developed by Bui Tuong Phong at Univ. Utah 1973

• ka kd ks are material properties having RGB components

v

n

l
r

I = kaia + kdid (n• l)+ ksis (r•v)
mshi

Projective Transformations

Rot(45) at (1,1)

T(-1,-1)

T(1,1)

R(45)

Object Coordinates

• An origin and basis define a frame of reference
• Object is defined in its local coordinates to easy

control. Then, it is transferred to the world
coordinates using model matrix Mmodel

O1

O2

X 2
Y 2

θ1

θ2

x

Y

x1

Y1 θc

Eye(camera) coordinates

• Objects are transformed from object space to eye space using a
“model” matrix
• Combination of Model matrix Mmodel and View matrix Mview

• Mmodel : from object coordinates to world coordinates
• Mview : from world coordinates to eye coordinates
• In eye coordinates, camera is located at (0,0,0)

facing –z axis

[Book: Real Time Rendering]

Move the mountains (world) or move the camera?

• Moving camera is reverse movement of objects
• Rotate/Move Camera Ry(theta) is same as rotate

object Ry(-theta)

Image credit: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

View Transformation

• The basis are all normalized and orthogonal
• We can make a world coordinates transformation matrix which can

move camera (position and orientation)
in world coordinates

• E.g. define a function LookAt(ex, ey, ez, cx, cy, cz, upx, upy, upz), where
b3 = -(c – e)
b1 = up x b3

b2 = b3 x b1

11

w
zzzz

yyyy

xxxx

c O
ebbb
ebbb
ebbb

O

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

=

1 0 0 0

3 21

3 21

321

b1

b2 b3

Oc (ex, ey, ez)

https://glm.g-truc.net/0.9.5/api/a00176.html

https://glm.g-truc.net/0.9.5/api/a00176.html

In the Code/Shaders
Application.cpp :

GLM’s LookAt:

Instancing (hint)

• transformations allow you to
define an object at one location
and then place multiple
instances in your scene

Instancing hint: Code/GLSL

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

Instancing: Code/GLSL

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

In the program:

In the shader:

Object interaction: Bounding box/volume

https://www.are.na/tetlie/boundingbox
https://en.wikibooks.org/wiki/OpenGL_Progra
mming/Bounding_box

Projection

• In eye coordinates, the objects are still
in 3D space
• The 3D scene in eye coordinates needs to be

transferred to the 2D image on screen
• The projection matrix transfer objects in eye

coordinates into clip coordinates.
• Then, perspective division (dividing with w component)

of the clip coordinates
transfer them to the normalized device
coordinates (NDC)

Projection Matrix

• The projection matrix defines a view frustum
determining objects to be drawn or clipped out
• Frustum culling (clipping) is performed in the clip

coordinates, before dividing points by wc

• Perspective Projection, Orthographic Projection

[Image from Song Ho Ahn] Orthographic ProjectionPerspective Projection

Perspective Projection

• 3D objects in eye coordinates are
mapped into a canonical view volume
• The view volume is specified by
 [left, right, bottom, top, near, far]
• The view volume is transformed into a canonical view

volume which is a cube from (-1,-1,-1) to (1,1,1)
• X: [l, r] à [-1, 1]
• Y: [b, t] à [-1, 1]
• Z: [n, f] à [-1, 1]

[Image from Song Ho Ahn]

Perspective Projection in OpenGL

● The perspective Projection matrix of a frustum [l
,r,b,t,n,f] is:

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

-
-

-
-
+

-

-
+

-

-
+

-

0100

200

020

0
1

02

nf
fn

nf
nf
bt
bt

bt
n

r
lr

lr
n

[Image from Song Ho Ahn]

Orthographic Projection

• Constructing a projection matrix for orthographic projection
is much simpler
• Linear mapping from (xe, ye, ze) to (xn, yn, zn)

Orthographic Projection Matrix

• The Orthographic Projection matrix of
[l,r,b,t,n,f] is

• Since W-component is not necessary, the 4th row of
the matrix is remains as (0,0,0,1)

à Try it at Home !

ú
ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê
ê

ë

é

-
+

-
-

-

-
+

-
-

-
+

-
-

1000

200

020
1

002

nf
nf

nf

bt
bt

bt
n

r
lr

lr

Normalized Device Coordinates (NDC)

OpenGL: right-handed; others (e.g. DirectX: left-handed)

Normalized Device Coordinates (NDC)

• 3D Homogeneous coordinates

• Normalized device coordinates (NDC) is generated by
perspective division with w

ú
ú
ú

û

ù

ê
ê
ê

ë

é

z
y
x

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

w
Z
Y
X

can be represented as

where

w
Zz

w
Yy

w
Xx === ,,

Clipping

• Canonical view volume clips primitives
• Primitives inside of the view volume are passed

to the next stage
• Primitives outside of the view volume are clipped
• Clipping may generate new vertices

[Book: Real Time Rendering]

Viewport Transform

• Clipped primitives of NDC (xn, yn, zn) are
transferred to screen coordinates (xs, ys)
• Screen coordinates with depth value are window

coordinates (xw, yw, zw)

[Book: Real Time Rendering]

Viewport Transform

• (xn, yn) in NDC are [-1 1], the value is translated and scaled
to the pixel position of screen (xs, ys)
• Screen coordinates (xs, ys) represent the pixel

position of a fragment
• zn in NDC is [-1 1], the value is translated and

scaled on [0 1] for zw

• zw is the depth value of the pixel position (xs, ys) used for
depth test using z-buffering

Rasterization

• Convert primitives into fragment
• Interpolates triangle vertices into fragments
• Fragments are mapped into frame buffer

V3

V2

V1

V3

V2

V1

L R

Hidden Surface Removal

• Eliminate parts that are occluded by others
• Depth buffer (z-buffer) contains the nearest depth values of each

fragment
• If (current depth < depth buffer),

 update frame buffer and depth buffer
 using the current values (color/depth)

glEnable(GL_DEPTH_TEST);
 ...
while (1)
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
 draw_3d_object_A();
 draw_3d_object_B();
}

Stages of Vertex Transformations

X
Y
Z
w

Modelview
Matrix

Projection
Matrix

Viewport
Transformation

Perspective
Division

eye coordinates

normalized device coordinates

clipped
coordinates

window coordinates

Viewing Transformation

object space

model camera projection viewport

canonical
view volumeworld space

camera space screen space

Surface Details

Digital Representation of Objects

The triangles are
defined to connect
a set of points

Digital Representation of Objects

The points are
connected by
edges.

Digital Representation of Objects

The shape is
defined by the set,
or mesh, of
triangles that are
defined by the
edges.

Digital Representation of Objects

Digital Representation of Objects

Why images, and not data/vertex?

Triangles: need to
store coordinates and
connectivity

In an image
coordinates and
connectivity are
implied by order

Photo-textures

Textures

Texture Mapping

• Texture mapping is a method for adding detail
using surface texture (a bitmap or raster image),
or color to a computer-generated graphic or
3D model [wikipedia]

• Developed by Dr. Edwin Catmull (Ph.D. thesis ’74)

http://davidevans3d.wordpress.com/2013/03/29/teapot-texture-2/ http://www.siggraph.org/education/materials/HyperGraph/mapping/texture2.htm

Why Texture mapping ?

• Add more details and realisms without
increasing geometric complexity

[Virtual fighter 1993 SEGA] [Street fighter X Tekken 2010 Capcom]

Why Texture mapping ?

• Add more details and realisms without
increasing geometric complexity
• Save efforts, memory, and computation cost

for creating geometry and rendering
• Add details per fragment

• Color
• Material
• Geometry (normal)

• Add visual effects for
real-time rendering
• Shadow, light, reflection

Texture Mapping Issues

Parameterization

Vary the Projection

• Generate texture coordinates using
surface parameterization

Spherical
Projection

Cylindrical
Projection

Planar
Projection

Overview of Texture mapping

• Textures are represented as 2D/3D images
• It can store a various properties such as colors, normals,

environment, lighting, etc
• The basic element of the texture is ‘texel’

• Textures are mapped with the geometry
using the texture coordinates (u, v)
• Texture coordinates are assigned to a vertex

• Multiple texture coordinates for multi-texturing
• Mapping from object space to texture space
• Some times need 3D or 4D (s, t, r, q)

Texture mapping process

• Texture mapping is applied per fragment
• Rasterization determines fragment positions

and interpolates texture coordinates from
adjacent vertices
• Texture lookup is performed per fragment

using interpolated texture coordinates

http://www.opengl-tutorial.org/Image credit:

http://www.opengl-tutorial.org/

Texture mapping pipeline

• Compute object space location
• Texture coordinates are defined in the object

space to move texture along with the object

• Projector function
• Mapping 3D space to 2D parameter space
• (x,y,z) à (u,v,(w)), u, v are [0 to 1]

• Corresponder function
• Mapping from 2D parameter space to texture space
• (u, v) à (i, j); 256x256 image, i, j are [0 to 255]

• Value Transfer (Blending) function
• Transfer texture values into the fragment

Texture filtering

• The resolution of texture and the fragment is not 1:1
mapping
• Magnification à 1 texel : m fragment
• Minification à n texel : 1 fragment

[http://fly.cc.fer.hr/~unreal/theredbook/chapter09.html]

Texture filtering

• Nearest neighbor: pick the nearest value
• Fast but shows blocky artifacts (pixelation)

• Interpolate texel : bilinear, bicubic interpolation

Nearest neighbor Bilinear interpolation Bicubic interpolation

[Image by Real-time Rendering Book]

Mip Maps

multim im parvo (latin) - many things in a small space

Specifying a Texture in OpenGL

glGenTextures(): takes as input how many textures we want to generate and
stores them in a unsigned int array given as its second argument
glBindTexture(): Lets you create or use a named texture

glTexParameteri() sets the texture wrapping/filtering options (on the currently
bound texture object

glTexImage2D() generates a texture using the previously loaded image data

Specifying a Texture
• void glTexImage2D (GLenum target, GLint level, GLint internalFormat,

 GLsizei width, GLsizei height, GLint border,
 GLenum format, GLenum type, const GLvoid *texels);
• Specify 2D Texture
• Target: GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
• Level: multiple level of resolution (MIPMAP)
• Internal format: texel component (e.g. GL_RGBA)
• Border: width of border
• Texel: pointer storing texture image
• Refer the details for OpenGL Programming Guide

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml

Filtering

• Texture need to be magnified or minified

• glTexParameter*()
• Mag Filter: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
• GL_NEAREST or GL_LINEAR

• Min Filter: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST)
• GL_NEAREST, GL_LINEAR
• GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR
• GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_LINEAR

http://www.glprogramming.com/red/chapter09.html

Texture Object

• Creating new texture is slow.
• Binding existing texture object is faster
• Generate texture names
• Initially bind texture objects to texture data
• Bind and rebind texture objects to render object models
• If your system cannot support many textures,

establish priorities for the texture object

Applying textures

Accepts texture UV coordinates

GLSL has a built-in data-type for texture objects called a sampler (in order
to know which texture to access). Can have multiple samplers!

Sampling of the colour using GLSL's built-in texture() function using the
texture parameters we set earlier

Diffuse

Diffuse + specular

Difficulties with textures

• Tedious to specify texture coordinates for every triangle
• Textures are attached to the geometry
• Easier to model variations in reflectance than illumination
• Can't use just any image as a texture
• Projective distortions

http://www.2loop.com/3drooms.html

Square with four circles by Felice Varini

http://artsitesnewhaven.com/square-with-four-circles/

Adding Texture Mapping to Illumination

Next
• Intro to Animations

(topic of Assignment #3)

Perception
of Motion

• How is it even possible to make it look things
look like they are moving, or even alive with
the computer?

Image credit: https://giphy.com/gifs/animated-loop-walking-XGnWMiVXL87Xa

Freeze frame

https://americanhistory.si.edu/muybridge

