17 | VICTORIA UNIVERSITY OF

véa WELLINGTON

TE HERENGA WAKA

Lecture 11-12:

View, Projections, Instancing and
Introduction to Textures

CGRA 354 : Computer Graphic Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC;

Lecture Schedule

* Lighting continued and linear algebra recap

* Transformations

* Details of Mid-trimester test

* View, Projection and Instancing

* Introduction to Textures and Animation started

Mid-term test

- Released: online on Wednesday, 17th of

April (Nuku), 10am

- Duration: 1hr (must be taken within 24h)

- Format: mixed (multi-choice, true/false, short
answer)

- Covers: lecture and assignment material

- Structure: Core, Completion and Challenge parts

Recap: Graphics pipeline

Application Framebuffer

Vertices Vertices Fragments Pixels

| |

Vertex Fragment
Shader Shader

* Modern OpenGL programs essentially do the following steps:
* Create shader programs

* Create buffer objects and load data into them
e “Connect” data locations with shader variables | |
e Render ————

Phong Model in OpenGL

* Phong illumination model is combination of
* Ambient i, ,* Diffuse iy + Specular terms iy,
* Developed by Bui Tuong Phong at Univ. Utah 1973
. . . mS l
I=ki +k,imel)+ki(rev)"™

* k, kyk, are material properties having RGB components

N,

r

ambient

specular combined (Phong)

Projective Transformations

preserveslnes

Projective

Similitudes

Linear

Rigid / Euclidean

Scaling

Identity

Isotropic Scaling Reflection

Rotation
Shear

e | Perspective
Horecom Bl
el (_;‘s:m'., ’
i [
£ | Vi
LMY
& —

Rot(45) at (1,1)

T4,
—

Object Coordinates

* An origin and basis define a frame of reference

* Object is defined in its local coordinates to easy
control. Then, it is transferred to the world
coordinates using model matrix M, 4.

N4

Eyve(camera) coordinates

* Objects are transformed from object space to eye space using a
“model” matrix
* Combination of Model matrix M_,, 4. and View matrix M.,
* M, .4 : from object coordinates to world coordinates
* M, : from world coordinates to eye coordinates

* In eye coordinates, camera is located at (0,0,0)
facing —z axis

Camera direction \ /
— . i
- View transform ® U View frustum
O) EOX
> X . X
‘ N , ‘
Camera) J [Book: Real Time Rendering]

., . S
position z z

Move the mountains (world) or move the camera?

* Moving camera is reverse movement of objects

* Rotate/Move Camera R (theta) is same as rotate
object R (-theta)

Image credit: http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/

View Transformation

* The basis are all normalized and orthogonal

* We can make a world coordinates transformation matrix which can
move camera (position and orientation)

in world coordinates

* E.g. define a function LookAt(e,, e, e,, c,, C,, C,, Up,, Up,, up,), where

b; =-(c—e)
b, =upxb;
b, =b,xb,
_blx b2x b3x ex]
0c _ bly b2y b3y €, Ow
blz bZz b3z ez
000 1 |

Parameters
Position of the camera
Position where the camera is looking at
Normalized up vector, how the camera is oriented. Typically (0, 0, 1)

https://glm.g-truc.net/0.9.5/api/a00176.html

https://glm.g-truc.net/0.9.5/api/a00176.html

In the Code/Shaders

Application.cpp :

)); // TODO replace view matrix with the camera transform

// cacluate the modelview transform

modelview = view *

GLM'’s LookAt:

glm::mat4 CameraMatrix = glm::lookAt(
cameraPosition, // the position of your camera, in
cameraTarget, here you want to look at, in \

upVector // glm::vec3(0,1,0), but (0,-1,0) would make you looking upside-down

)i

(unsigned i = 0; 1 < nModels; i++)

DoSomePreparations(); // bind VAO, bind textures, set uniforms etc.
glDrawArrays(GL_TRIANGLES, @, amount_of_vertices);

* transformations allow you to
define an object at one location
and then place multiple
instances in your scene

Instancing hint: Code/GLSL

glDrawArraysinstanced Drawing

The function glDrawArraysInstanced draws multiple instances of the same object which
allows for much greater efficiency than drawing these objects individually using calls like
glDrawArrays. Via GLSL's built in g1 _InstanceID or instanced arraysit is then possible to
manipulate the vertices per instance.

The parameters of glDrawArraysInstanced (GLenum mode, GLint first, GLsizei
count, GLsizei primcount) are as follows:

¢ mode: specifies the kind of primitive to render. Can take the following values: GL_ POINTS,
GL LINE STRIP,GL LINE LOOP, GL LINES, GL TRIANGLE STRIP,
GL TRIANGLE FAN, GL TRIANGLES, GL QUAD STRIP,GL QUADS, and GL POLYGON.
e first: specifies the starting index in the enabled arrays.
e count: specifies the number of vertices required to render a single instance.
® primcount: specifies the number of instances to render.

Example usage

glBindVertexArray(quadVAO) ;

glDrawArraysInstanced(GL_TRIANGLES, 0, 6, 100);
glBindVertexArray(0);

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

Instancing: Code/GLSL

In the program:

glm:: translations[
index =
offset

glm:: translation;

translation.x = ()x / + offset;
translation.y = ()y / + offset;
translations[index++] = translation;

In the shader:
offsets[g

main()

offset = offsetsl I’;
= (aPos + offset, .);
fColor = aColor;

Credit: https://learnopengl.com/Advanced-OpenGL/Instancing

Object interaction: Bounding box/volume

https://www.are.na/tetlie/boundingbox
https://en.wikibooks.org/wiki/OpenGL_Progra
mming/Bounding box

* In eye coordinates, the objects are still
in 3D space

* The 3D scene in eye coordinates needs to be
transferred to the 2D image on screen

* The projection matrix transfer objects in eye
coordinates into clip coordinates.

* Then, perspective division (dividing with w component)
of the clip coordinates
transfer them to the normalized device
coordinates (NDC)

Projection Matrix

* The projection matrix defines a view frustum
determining objects to be drawn or clipped out
* Frustum culling (clipping) is performed in the clip
coordinates, before dividing points by w.
* Perspective Projection, Orthographic Projection

(-1,1, 1)
2) — — () 1.1, 1)
r—— =5 A e 1,1,1)
- ———,:;T _—\\ +Y .-i:-»- i
= | ‘\\\ A 7 51 o) (s = n— 7 l". ‘“’-\\\ Y
—_— ‘—c“\ p— ‘I \\» /
/ 4 \ ‘l +Y \ o= _-/_‘/ / l\y 4 +Z /
(htnl / \ A |\ (r4:n) &])
I\ 2 ,// / l. \ lll 2 /
\ Y \ / —— /
. (b M \('- 4 n) \ [+X /(1.-1.1) A/k: \ [+x /(1.-1.1)
+Y - ——— X / N
Ly N— -1.-1:-1) l +Z) 1 1 [/
(r, b, n) J /
x (r, b, n) I/
+X S / J
A J (1.-1.-1)
(1,-1,-1)
[Image from Song Ho Ahn] Orthographic Projection

Perspective Projection

Perspective Projection

* 3D objects in eye coordinates are
mapped into a canonical view volume

* The view volume is specified by

[left, right, bottom, top, near, far]
 The view volume is transformed into a canonical view

volume which is a cube from (-1,-1,-1) to (1,1,1)

e X:[l,r1=2>[-1,1]

* Y:[b,t] 2 [-1, 1] (1.1, 1)
- e [1,1, 1)

e Z:[n, f1>[-1,1] o - —

- R e /

it n T‘~ /__ ‘I-" 7 ‘.""
(0, b, M\ W‘" L) ,‘ ,. [+X ‘,,..-"‘(1 -1,1)

— (-1, -1, 1) [/

+Y
<[
(r, b, n)
+X ~ I/
[Image from Song Ho Ahn] ~J/
(1,-1,-1)

Perspective Projection in OpenGL

e The perspective Projection matrix of a frustum [|
,rb,t,n,f]is:

(Lr. Lt f)

2n 0 r+1 0 .
r—1 1
2n t+b

’ 0
t_b t_b (/.l.u)ll\(/‘./.,,‘{)
f+n —-2fn ‘ o
L N (I.b.n ,
L O O - 1 O | (r.b.n) (,%l %h. ,

[Image from Song Ho Ahn]

// calculate the projection and view matrix

mat4 proj = perspective(, (width) / height,

Orthographic Projection

e Constructing a projection matrix for orthographic projection
is much simpler

* Linear mapping from (x,, Yo Ze) to (X,, Y, Z,)

Orthographic Projection Matrix

* The Orthographic Projection matrix of

[Lr,b,t,n,f]is

2
r—I1
o 2
t—b
0 0 — 2
f—n
0 0 0

 Since W-component is not necessary, the 4t row of

the matrix is remains as (0,0,0,1)

- Try it at Home !

); // In world coordinates

Normalized Device Coordinates (NDC)

(-1, 1, 1)

(1,1, 1)
1, 1, -1) -

(1,-1,1)

(1,-1,-1) 14 %
& :

(-11 _1/ -1)

Y
X

7

Left hand Right hand

OpenGL: right-handed; others (e.g. DirectX: left-handed)

Normalized Device Coordinates (NDC)

* 3D Homogeneous coordinates

L X
can be represented as Y
~ /
w
where X Y Z
X =— . y = —, zZ = —
w w w

* Normalized device coordinates (NDC) is generated by
perspective division with w

Clipping

* Canonical view volume clips primitives
* Primitives inside of the view volume are passed

to the next stage

* Primitives outside of the view volume are clipped
* Clipping may generate new vertices

unit-cube

2

/

Y
/Wl»

Clipping

new ﬁertices

/.' :‘/

> -./‘

- -

new vertex -
[Book: Real Time Rendering]

/

,'

/

e
r

> X

Viewport Transform

* Clipped primitives of NDC (x,,, y,,, z,) are
transferred to screen coordinates (x,, y.)

e Screen coordinates with depth value are window
coordinates (X, Y Zy)

A
unit=cube

L‘\E‘ : ’ Screen mapping

[Book: Real Time Rendering]

Viewport Transform

* (x,, Yn) in NDC are [-1 1], the value is translated and scaled
to the pixel position of screen (x., y;)

* Screen coordinates (x., y,) represent the pixel
position of a fragment

* 2, in NDCis [-1 1], the value is translated and
scaled on [0 1] for z,

* z,,is the depth value of the pixel position (x;, y.) used for

depth test using z-buffering (11 1)
o~ (1,1, 1)
(-1, 1, -1)

(1I _11 1)
(-1,-1,-1)

(1,-1,-1)

-
RS,
+

(O

N
-

Q
+—

V)]

qV)
a'el

e Convert primitives into fragment

* Interpolates triangle vertices into fragments
* Fragments are mapped into frame buffer

Hidden Surface Removal

* Eliminate parts that are occluded by others
* Depth buffer (z-buffer) contains the nearest depth values of each

fragment

* If (current depth < depth buffer),
update frame buffer and depth buffer
using the current values (color/depth)

glEnable(GL_DEPTH_TEST);

while (1)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

draw_3d_object_A();
draw_3d_object_B();
}

.

d
clippe

W0000000000000“0“0“0“0“0“

0000“0000000“0“0“0“0“0”0

5%0%0%0%0%0%0%0%0%0%0 —
p.
L ZeZoZozegele2e2020208

.
.

-
O
©
S
=
-
(©
| -
_I
>
Q
ju
Q
=
IS
d
Qo
©
v

Viewing Transformation

object space camera space screen space

R\

canonical

world space .
view volume

Surface Details

@(‘\ Model
g5 i Model + Shading

L

Model + Shading
+ Textures
At what point
do things start

looking real?

nputer artwork

e
HCRCOTV/ JINTT) fols

of Jeremy Bim

.l'l

Digital Representation of Objects

The triangles are
defined to connect
a set of points

Digital Representation of Objects

The points are
connected by
edges.

Digital Representation of Objects

The shape is
defined by the set,
or mesh, of
triangles that are
defined by the
edges.

Digital Representation of Objects

Color is represented as an
image mapped on the
geometry

v

Digital Representation of Objects

Different versions
of the model may
have different
numbers of points
and triangles,
many images may
be mapped to the
surface.

Why images, and not data/vertex?

In an image
coordinates and
connectivity are
implied by order

Triangles: need to
store coordinates and
connectivity

Photo-textures

The concept is very simple!

For each triangle in the model
establish 3 corresponding region
in the phototexture

(238,170

(._'Ht_l“.u) x>

JFor -

During rasterization intetpolate the
coordinate indices into the texture map

Textures

Describe color variationin interior of 3D polygon

O When scan converting a polygon, vary pixel Coprs according to
A\ values fetched from a texture

lexture 2
' Image

Texture Mapping

e Texture mapping is a method for adding detail
using surface texture (a bitmap or raster image),
or color to a computer-generated graphic or
3D model [wikipedia]

* Developed by Dr. Edwin Catmull (Ph.D. thesis '74)

http://davidevans3d.wordpress.com/2013/03/29/teapot-texture-2/ http://www.siggraph.org/education/materials/HyperGraph/mapping/texture2.htm

Why Texture mapping ?

* Add more details and realisms without
increasing geometric complexity

[Virtual fighter 1993 SEGA | [Street fighter X Tekken 2010 Capcom]

Why Texture mapping ?

* Add more details and realisms without
increasing geometric complexity

* Save efforts, memory, and computation cost
for creating geometry and rendering

* Add details per fragment

* Color
* Material
* Geometry (normal)
* Add visual effects for
real-time rendering
* Shadow, light, reflection

Texture Mapping Issues

Texture mapping methads

Parameterization
Mapping
Filtering

Texture mapping applications

Basic textures

Modulation textures
lllumination mapping
Bump mapping
Displacement mapping

Parameterization

N

geometry image texture map

* Q: How do we decide where on the geometry
each color from the image should go?

Vary the Projection

* Generate texture coordinates using

surface parameterization
\\
R
R
‘R

QR
N

™

Spherical Cylindrical Planar
Projection Projection Projection

Overview of Texture mapping

» Textures are represented as 2D/3D images

* It can store a various properties such as colors, normals,
environment, lighting, etc

 The basic element of the texture is ‘texel’

e Textures are mapped with the geometry
using the texture coordinates (u, v)
» Texture coordinates are assigned to a vertex
* Multiple texture coordinates for multi-texturing
* Mapping from object space to texture space
 Some times need3Dor4D (s, t, 1, q)

Texture mapping process

e Texture mapping is applied per fragment
* Rasterization determines fragment positions
and interpolates texture coordinates from
adjacent vertices

e Texture lookup is performed per fragment
using interpolated texture coordinates

Image credit: http://www.opengl-tutorial.org/

http://www.opengl-tutorial.org/

Texture mapping pipeline

 Compute object space location
* Texture coordinates are defined in the object
space to move texture along with the object
* Projector function
* Mapping 3D space to 2D parameter space
* (x,y,2) 2 (u,v,(w)), u, vare[0to 1]

* Corresponder function

* Mapping from 2D parameter space to texture space
e (u,v) =2 (i, j); 256x256 image, i, j are [0 to 255]

 Value Transfer (Blending) function
* Transfer texture values into the fragment

Texture filtering

* The resolution of texture and the fragmentis not 1:1
mapping
* Magnification = 1 texel : m fragment
* Minification = n texel : 1 fragment

/ portion of a texel

B
= .~ texel
Bl |« pixel é—b

Texture Polygon Texture Polygon

Magnification Minification

[http://fly.cc.fer.hr/~unreal/theredbook/chapter09.html]

Texture filtering

* Nearest neighbor: pick the nearest value
* Fast but shows blocky artifacts (pixelation)

* Interpolate texel : bilinear, bicubic interpolation

A

Nearest neighbor Bilinear interpolation Bicubic interpolation

[Image by Real-time Rendering Book]

Mip Maps

Keep textures prefitered at multiple resolutions

O For each pixel, linearly interpolate between
two closest levels

O Fast, easy for hardware

| Invented by
Lance
lmg, Ve

multim im parvo (latin) - many things in a small space

Specifying a Texture in OpenGL

texture;
glGenTextures(1, &texture);
glBindTexture(, texture);

glTexParameteri(
glTexParameteri(
glTexParameteri(
glTexParameteri(

>

width, height, nrChannels;
*data = load_ texture data("Texture.png”. &width. &height. &nrChannels. 0):

glTexImage2D(, 9, , width, height, o, s , data);

_, glGenTextures(): takes as input how many textures we want to generate and
stores them in a unsigned int array given as its second argument

—» glBindTexture(): Lets you create or use a named texture

., glTexParameteri() sets the texture wrapping/filtering options (on the currently
bound texture object

— glTexImage2D() generates a texture using the previously loaded image data

Specifying a Texture

* void glTeximage2D (GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *texels);

* Specify 2D Texture

e Target: GL_TEXTURE_2D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
* Level: multiple level of resolution (MIPMAP)

* Internal format: texel component (e.g. GL_RGBA)

* Border: width of border

* Texel: pointer storing texture image

» Refer the details for OpenGL Programming Guide

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTeximage2D.xhtml

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml

Filtering

e Texture need to be magnified or minified

rii f a texel
L~ ﬂ-_—“—h__i
E—’ - pb(e]é"’

_—
texel

Texture Polygon Texture Polygon

Magnification Minification
9 http://www.glprogramming.com/red/chapter09.html

» glTexParameter*()

* Mag Filter: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);
 GL_NEAREST or GL_LINEAR

* Min Filter: glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST)
 GL_NEAREST, GL_LINEAR
¢ GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR
 GL_LINEAR_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_LINEAR

Texture Object

* Creating new texture is slow.

* Binding existing texture object is faster
* Generate texture names
* Initially bind texture objects to texture data
* Bind and rebind texture objects to render object models

* If your system cannot support many textures,
establish priorities for the texture object

Applying textures

#version 330 core

Diffuse

) myTextureSampler; Diffuse + SpeCUIar

main(){

color = texture(myTextureSampler, UV).rgb;

v

Accepts texture UV coordinates

~ GLSL has a built-in data-type for texture objects called a sampler (in order

~ to know which texture to access). Can have multiple samplers!

~ Sampling of the colour using GLSL's built-in texture() function using the

~ texture parameters we set earlier

Difficulties with textures

* Tedious to specify texture coordinates for every triangle

* Textures are attached to the geometry

e Easier to model variations in reflectance than illumination
* Can't use just any image as a texture

* Projective distortions

http://www.2loop.com/3drooms.html

http://artsitesnewhaven.com/square-with-fc

Adding Texture Mapping to lllumination

Texture mapping can be used to alter some or all of the constants in the
llumination equation.

I= kaLa + ded(N | Z) T kSLS(17 ' ﬁ)n

Phong's llluminaton Model

Constant Diffuse Color Diffuse Texture Color Texture used as Label Texture used as Diffuse Color

~*Intro to Animations
E (topic of Assignment #3)

 How is it even possible to make it look things
look like they are moving, or even alive with
the computer?

Perception
of Motion

Image credit: https://giphy.com/gifs/animated-loop-walking-XGnWMIiVXL87Xa

Freeze frame

https://americanhistory.si.edu/muybridge

