
Lecture 14-15:
Boids continued

CGRA 354 : Computer Graphics Programming

Instructor: Alex Doronin
Cotton Level 3, Office 330
alex.doronin@vuw.ac.nz

With slides from: Holly Rushmeier, Yale; Steve Marschner, Cornell; Taehyun Rhee, CMIC; Zohar Levi, Marc Gluyas, ECS;

Our inspiration
2

https://bio.kuleuven.be/ento/ferrante/images/Flock-of-Starlings.jpg

• National Geographic flight of the starlings
https://www.youtube.com/watch?v=V4f_1_r80RY

• A murmuration of starlings
https://www.youtube.com/watch?v=eakKfY5aHmY&t=75s

https://www.youtube.com/watch?v=V4f_1_r80RY
https://www.youtube.com/watch?v=eakKfY5aHmY&t=75s

Position, Velocity, Acceleration

Simulation is a major subfield of Computer Graphics. For most of you,
this will be your first time programming a 3D simulation.

Boids is not a physics simulation - it’s much simpler. But it uses notions
of position, velocity, and acceleration, which you will need to be familiar
with.

n Position tells us where the Boid is in the scene.
n Velocity tells us how far the position will move in 1 second.
n Acceleration (aka Force) tells us how much the velocity will change in

1 second.

We can update an object in the simulation by adding Velocity to Position,
and adding Acceleration to Velocity. This will simulate 1 second of real-
world time.

3

Vector and Scalar Quantities

For implementing spatial or physical algorithms such as Boids, we’re often
interested in quantities in both vector (3 components) and scalar (a single
number) forms. It’s important to have a strong grasp on the terminology.

Displacement is a vector quantity, which measures a difference in position.
In other words, the displacement from A to B is B-A. Distance is a scalar,
and is the magnitude of the displacement.

Velocity is a vector quantity, which measures a difference in position over
time (displacement over time). Speed is a scalar, and is the magnitude of
the velocity.

Direction is a non-specific term, but may be used for the normalized form
of a vector quantity. The direction from A to B is (B-A) / |B-A|; its
normalized displacement.

4

Timestep

Computers are much faster than 1 frame per second, so we want to
simulate a much shorter time interval than 1 entire second.

The Timestep tells us how many fractions of a second we want to
simulate. The precise value of this will depend on the speed of your
computer, but we need to account for it when we update our simulation.
We can easily do this by multiplying the Boid’s changes in position and
velocity by it:

position = position + timestep*velocity
velocity = velocity + timestep*acceleration

This is more or less what your Boid::update implementation will look like.

5

Structure of a Physics Simulation

Physics simulations generally follow a similar structure.

initialize_simulation()
loop {
 foreach object in scene: object.calculate_forces()
 foreach object in scene: object.apply_forces()
 render()
}

This code structure is provided for you by the Assignment 3 Framework. You only need to
implement parts of each step.

Implementing Boids

Assignment 3 Framework

Framework Overview

For Assignment 3 (at least Core and Completion), you do not need to
implement any rendering yourself. Two classes are given (Boid and Scene)
which provide this functionality for you.

Almost all of your code will be implemented in the following two files:

● boid.cpp (where we implement the boids behaviour)
● scene.cpp (where we populate the scene with boids and draw additional

GUI elements)

boid.cpp

● Boid::calculateForces(Scene* scene)
○ This is where the boids rules are implemented.
○ You’ll iterate through every other Boid instance contained in the Scene object (scene->m_boids),

and calculate their contribution to the force on this Boid by applying the 3 original Boids rules.
○ The 4th and 5th Boid rules only take into account the speed and velocity of the current Boid.
○ Store the result by updating the value of this->m_acceleration (do not modify m_position or

m_velocity in this function)
● Boid::update(float timestep)

○ This is where we apply our physics simulation step
○ Update position based on velocity
○ Update velocity based on acceleration
○ Remember to take the timestep into account

scene.cpp

● Scene::loadCore()
○ This is where you initialize the simulation
○ You’ll need to create some number of Boids with random positions and velocities (about 15

should be good to start with, 100-300 once you’ve got it working) and add them to this-
>m_boids.

○ Make sure they’re within the scene bounds.
● Scene::loadCompletion()

○ Same as above, but add predators.
● Scene::loadChallenge()

○ Same as above, but add obstacles.
○ Spheres are the simplest obstacle to implement.

Overview

The original Boids algorithm features 3 basic rules. For Core, you need to implement these 3 and 2 additional
rules which improve the overall quality of the simulation.

For Completion and Challenge you will need to add additional rules and extend the existing ones.

Boids Parameters

Every rule has several parameters, which you should make controllable with an ImGui
interface. Most parameters fall into one of two categories:

● Radius: The farthest distance away that another Boid can have to affect this one.
○ For example, avoidance will have no effect if all other Boids are outside of the avoidance radius.

● Weight: How strong the force of this rule is in comparison to the other forces.
○ When you calculate the final force on each Boid, use a weighted sum:

total_acceleration = avoidance_force * avoidance_weight
 + cohesion_force * cohesion_weight
 + alignment_force * alignment_weight

○ In Zohar’s lecture slides these weights are factored into each force calculation as k.

You’ll need to have at both a radius and weight parameter for all of the first 3 rules. That’s a
lot of parameters though, so it’s fine to have a single “neighbourhood radius” that we use for
the first 3 rules.

Avoidance

Avoidance is the force which stops Boids from being too close to each other.

Each Boid within the avoidance radius contributes to the avoidance force. Boids outside the radius have no effect.

The strength of the force should be inversely proportional to the distance - the closer the boids, the stronger the repulsion. We can
do this by dividing the displacement direction by the distance. Equivalently: the displacement divided by its squared magnitude.

avoidance = vec3(0)
foreach other_boid in boids:
 if boid is other_boid: continue // be careful not to copy value when comparing ptrs in C++

 displacement = boid.position - other_boid.position
 distance = length(displacement)

 if distance > avoidance_radius: continue

 avoidance += displacement / (distance * distance)

Cohesion

Cohesion is the force which helps Boids stay together in flocks

We can implement cohesion by first calculating the average position of other Boids within the cohesion radius.
Then, apply the force away from that. The strength cohesion of should be proportional to the distance - the
opposite of avoidance. For this, we can simply use the displacement from the centroid.

average_position = vec3(0)
neighbours = 1

// inside foreach:
 average_position += other_boid.position
 neighbours += 1

average_position /= neighbours

cohesion = average_neighbour_position - boid.position

Alignment

Alignment is the force that keeps the flocks of Boids heading in a similar direction.

The easiest way to implement alignment is exactly the same as cohesion, but using velocity instead of position.

average_velocity = 0

// inside foreach:
 average_velocity += other_boid.velocity

average_velocity /= neighbours

cohesion = average_neighbour_position - boid.position

Containment

Containment can be implemented either as a force or constraint. The simplest implementation is to wrap
the boids’ positions to the other side of their bounding box.
We can concisely implement wrapping using the modulo operator if we temporarily map the points to a
range with the origin as the lower bound. For an AABB, you can think of this as shifting the box’s lower
corner to the origin (with all the boids contained in it), performing the modulo, then shifting everything
back to its original position.
The size (in each dimension) of the AABB is given by the difference of its two bounds, which we use as
the interval size.
boid.position = aabb.min + mod(boid.position - aabb.min, aabb.max-aabb.min)
This is an element-wise operator: the position’s x is wrapped by the interval’s x, y wrapped by y, etc..
In the assignment, the bounds are represented by a single vec3 m_bound_hsize. This represents half
the bounding box in each direction. So, the AABB is given by the range from -m_bound_hsize to
+m_bound_hsize.

http://docs.gl/sl4/mod

Boids 2

They’re back…

…and this time something
 is chasing them

18

n Goal seeking
n Goal avoidance
n Predator behaviour
n Collision detection

19

Autonomous agents

n Behaviour levels

20

Action selection
• Strategy, goals, planning

Steering
• Path determination

Locomotion
• Animation, articulation

http://www.red3d.com/cwr/steer/gdc99/

http://www.red3d.com/cwr/steer/gdc99/

n Action selection: Keep near the flock, don’t hit
flockmates, align, hunt

n Locomotion: A bird flipping its wings.
n Our boids algorithm is all about the steering

part (determine the speed vector).
n Example: A cowboy retrieving a wondering cow

21

Boids of a feather flock together

n Can have multiple flocks
n Avoid all boids
n Cohere and align only

with flock mates

22

Target seeking & target avoidance

n We can add a force that steers boids towards or
away from a target

23

n Adding desired velocity instead of the seek
velocity would result in orbital movement

n Apply force only if the target is within range
n Slow down desired velocity close to the target

24

Predators

n Predator is a type of boid
n Does not flock
n Seeks its prey boid
n Other boids flee from the predator
n Flocking behavior confuses the predator
n Focuses on a single boid
n Must be faster

25

https://www.youtube.com/watch?v=V-mCuFYfJdI

https://www.youtube.com/watch?v=V-mCuFYfJdI

Predictive pursuit

n Predict where the prey will be in the future
n Seek that predicted position

26

How do I make a prediction?

n Prey position x, prey velocity v
n Predicted position, xpred = x + (v×T)

27

x

xpred

v

How to choose T

n Ideally: The time it would take to catch the prey
n Assumed to be constant (better than nothing)
n Bigger when further away, smaller when close.

Proportional to the distance: T=cD

28

Interception strategy

n The interception strategy used by several real
predators and professional sportspeople

29

Interception strategy

n Keeping a constant angle
n Examples:

n Intercepting a ball-carrier in football
https://www.youtube.com/watch?v=yE2_opbWmTA

n Catching a ball in baseball or cricket
n Dragonfly catching small insects

n Same as making a perfect prediction of T as time
of interception

30

https://www.youtube.com/watch?v=yE2_opbWmTA

Obstacle Avoidance
31

Avoiding large spheres

n Spheres are easy. Approximate a shape with
spheres.

n Project a cylinder forward from the boid
n If it intersects a sphere steer to avoid

32

Intersect a cylinder and a sphere?

n You want to intersect a cylinder of radius r with
a sphere of radius s

n Equivalent to intersecting a line with a sphere of
radius R=s+r

33

r s+rs

Intersect a line and a sphere?

n Equation of a line

n Equation of a sphere

34

O
DP(t) =O+ tD

P−C = R RC

Intersect a line and a sphere

n Equation of sphere

n Substitute with line equation

n Expand out line equation

35

P−C = R

P(t)−C = R

O+ tD−C = R

R
O

CD

We know R, O, D, and C

Solve this equation to find t

Intersect a line and a sphere
36

O+ tD−C = R

O+ tD−C()• O+ tD−C() = R
O+ tD−C()• O+ tD−C() = R2

tD+ O−C[]()• tD+ O−C[]() = R2

R
O

CD

Intersect a line and a sphere
37

tD+ O−C[]()• tD+ O−C[]() = R2

t2 D•D()+ 2t O−C[]•D()+ O−C[]• O−C[]() = R2

R
O

CD

P(t0)

P(t1)
That is a quadratic equation in t:
so there are two solutions

Solve that quadratic equation
38

t2 D•D()+ 2t O−C[]•D()+ O−C[]• O−C[]() = R2

t2 D•D()+ t 2 O−C[]•D()+ O−C[]• O−C[]− R2() = 0
at2 + bt + c = 0

R
O

CD

P(t0)

P(t1)

Solve that quadratic equation
39

R
O

CD

P(t0)

P(t1)

a =D•D
b = 2 O−C[]•D
c = O−C[]• O−C[]− R2

at2 + bt + c = 0

Solve that quadratic equation
40

R
O

CD

P(t0)

P(t1)

t = −b± b2 − 4ac
2a

at2 + bt + c = 0

b2–4ac is the discriminant

b2–4ac < 0 : no real solutions

Does the line intersect the sphere?
41

b2–4ac ≥ 0

two real solutions

b2–4ac < 0

no real solutions

no intersection intersection

But wait, there’s more to consider…

n Boid is going to hit sphere
n Boid is going to just skim sphere
n Boid is inside sphere
n Boid is going to miss sphere
n Sphere is behind boid

42

Position of boid

Which sphere will we hit first?

n We find the smallest positive value of t
n Which tells us which sphere is first in our path

43

The dot product is very useful

n Definitions

44

a
b

θa • b = xaxb + yayb + zazb

a • b = a b cosθ

Dot product gives vector length
45

aa • a = a a cos0!

= a 2

= xa
2 + y2a + z

2
a

Dot product gives projection length
46

a
b

θ
l = b cosθ

a • b = a b cosθ

so l = a • b
a

l

l is the length of the projection
of vector b onto vector a

Dot product gives angle
47

a
b

θ

a • b = a b cosθ

so cosθ = a • b
a b

so θ = cos−1 a • b
a b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Are vectors at right angles?

n If the vectors are at right angles then

48

a
b

a • b = a b cos90o

= 0

Closest point on a line
n P(s) is the point on line AB that is closest to point C

49

l = AC cosθ = AC•AB
AB

s = l
AB

P(s) = (1− s)A+ sB
θ

l

P(s)

C

B

A

How do we calculate that force?

n The force must push us away from the sphere
that we are going to hit

50

What do we know?

n We know O, D, C, t, P(t)
n We want f

51

O
C

D

P(t)

f

Getting a vector at right angles to D

n Our force f is a vector that points in the same
direction as CE

52

O
C

Df

E
OE = OC cosθ = OC•D

D

E =O+ OE D
D

f = CE
CE

θ

Prioritizing forces

n Some forces take priority over others, e.g.
avoiding a sphere vs responding to flockmates.

n Have a “force budget”
n You only apply lower priority forces if there is

budget left over from higher priority forces

53

