
© Karsten Lundqvist Peter Andreae

Design methods with parameters
COMP 102.

Victoria University of Wellington

© Karsten Lundqvist, Peter Andreae

COMP102: 2

Designing with methods that call other methods

• Design a Java program to measure reaction time of users responding to true and

false "facts".

• Ask the user about a fact: e.g. "Is it true that the BE is a 4 Year degree?"

• Measure the time they took

• Print out how much time.

• Need a class

• what name?

• Need a method

• what name?

• what parameters?

• what actions?

© Karsten Lundqvist, Peter Andreae

COMP102: 3

ReactionTimeMeasurer

/** Measures reaction times for responding to true-false statements */

public class ReactionTimeMeasurer {

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

// find out the current time and remember it

// ask the question and wait for answer

// find out (and remember) the current time

// print the difference between the two times

}

}

Write the method body in comments first,

(to plan the method without worrying about syntax)

Work out what information needs to be stored (ie, variables)

© Karsten Lundqvist, Peter Andreae

COMP102: 4

ReactionTimeMeasurer

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that the sky is blue?");

long endTime = System.currentTimeMillis();

UI.printf("Reaction time = %d milliseconds \n", (endTime - startTime));

}

}

Just asking one question is not enough for an experiment.

➔ need to ask a sequence of questions.

Returns a very big integer

⇒ long

(milliseconds since 1/1/1970

© Karsten Lundqvist, Peter Andreae

COMP102: 5

Multiple questions, the bad way

/** Measure and report the time taken to react to a question */

public void measureReactionTime(){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that John Quay was the Prime Minister");

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that 6 x 4 = 23");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that summer is warmer than winter");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that Wellington’s population > 1,000,000");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

Lots of repetition.

But not exact repetition.

How can we improve it?

© Karsten Lundqvist, Peter Andreae

COMP102: 6

Good design with methods

• Key design principle:

• Wrap up repeated sections of code into a separate method,

• Call the method several times:

public void measureReactionTime () {

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

}

public void measureQuestion (……) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " ………);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

We need to

parameterise

the method

"John Quay was the Prime Minister");

"6 x 4 = 23");

“Summer is warmer than winter");

"Wellington’s population > 1,000,000 ");

String fact

+ fact

© Karsten Lundqvist, Peter Andreae

COMP102: 7

Improving ReactionTimeMeasurer (1)

public void measureReactionTime() {

this.measureQuestion("John Quay was the Prime Minister");

this.measureQuestion(“6 x 4 = 23");

this.measureQuestion(“Summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000 ");

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that" + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

