
1

School of Engineering and Computer Science

Victoria University of Wellington

Copyright: Peter Andreae david streader, VUW

Networking and Concurrency
COMP 112 2018

COMP112 23: 2
Menu
• Recall the many client problem for the Echo Server
• You need to:

1. Understand what the problem is
2. How the solution works
3. Recognise a similar problem and apply the same solution

(Echo Server ----- IRC Client)

COMP112 23: 3

What dose the server look like if there are two clients

Unknown action order

The two Client problem!

B
Wait input

send to serverWait echo

Display

S

A
Wait input

send to serverWait echo

Display

Receive from A
Receive from B

Send to ASend to B

Receive from A

Receive from B

Send to A

Send to B

Receive from B Send to B

Send to A Receive from A

COMP112 23: 4
Problem!

Cope with unknown execution order!

2

COMP112 23: 5
Building blocks for solution.
• Computers appear to execute two programs at once
• A process has state and a thread of execution
• Two processes have disjoint state
• One processes can have multiple threads of execution

State

State

State

State

Each thread shares
the same state as all
other threads of the
same process

This can introduce
very subtle errors!

Process

Thread

COMP112 23: 6
Echo Server
• The Server may have lots of Clients and needs to process

each Client with no apparent delay
• Client processing should be independent of each other
• Server canot wait for Client A to respond else Client B may

have to wait utill after A reponds

• Echo Server has one process listening for new clients and
one process listening for client comunication.

• The process listening for client comunication has one thread
for each Client

• Basic Server design:
• Listen to the port. (unknown number of clients)
• Start a new thread for each client (unknown action order)

COMP112 23: 7
Concurret Echo server

Client
A

Server

• Server and Client are distinct processes
• Client connects to server (main thread)
• Server main thread runs a new thread to communicate

with each Client
• Distinct clients are distinct processes
• The sever runs separate threads for each client

Client
B

COMP112 23: 8
Concurrent Echo Server Design

1. Main Program
• Listen to the port.
• Loop

• Wait for a new client to try to connect
• create a new socket for the client connection
• start a thread to process the client

2. Thread processing the client
• Loop

• listen for input from client
• echo it back
• quit if the message was QUIT

3

COMP112 23: 9
Problem + Solution

1. Cope with unknown execution order!

2. Use more than one thread

COMP112 23: 10
Echo Server: Listening for clients
public class EchoServer{

public static final int PORT = 6667; // The port the server will listen on

public static void main(String[] args) {
try{

ServerSocket serverSocket = new ServerSocket(PORT);
System.out.println("Waiting for clients to connect...");
while (true) {

Socket socket = serverSocket.accept();
System.out.println("Found client");
EchoService echoService= new EchoService(socket);
new Thread(echoService).start();

}
}catch(IOException e){System.out.println("Failed to connect" + e);}

}
}

new thread

wait for a client
Builds new socket

Executed when
calling EchoServer

Executes
constructor

Executes
the run method

One portOne port
Many sockets

COMP112 23: 11
Echo Service: per client
class EchoService implements Runnable {

private Socket socket;
private Scanner clientIn;
private PrintStream clientOut;

public EchoService(Socket socket) {
this.socket = socket;
try {

clientIn = new Scanner(socket.getInputStream());
clientOut = new PrintStream(socket.getOutputStream());

}
catch (IOException e) {System.out.println(“Connection failed." + e);}

}

Constructor only
sets up streams

for socket

COMP112 23: 12
Echo Service: per client

public void run() {
while (clientIn.hasNext()) {

String message = clientIn.nextLine();
System.out.println("Received: "+ message);
if (message.equals("QUIT")) { break;}
clientOut.println("ECHO: "+ message);
clientOut.flush();

}
try{ socket.close();}
catch (IOException e) {System.out.println("Error socket close" + e);}
System.out.println("Client disconnected.");

}

}

For each client this is
Executed in a separate thread

Note flush stream

Shared
memory

4

COMP112 23: 13
Synchronous or Asynchronous?
• Two different echo clients are asynchronous
• Each echo client:

• While(true)
• get message from user
• send message to server
• get reply from server
• display reply

• How do you want an IRC client to behave ?
• IRC client:

• messages may come from the server to be displayed to the user
• messages may come from the user to be sent to the server
Þ client must be concurrently listening to user and server
Þ each client must have two threads!

Each client is Synchronous:
one thread sending and receiving.

Fixed cycle of interaction

Each client is Asynchronous:
one thread sends user input to server
another receives data from server and displays .

NO Fixed cycle of interaction

COMP112 23: 14
Reuse solution.

1. Cope with unknown execution order!

2. Use more than one thread

3. Similar problem similar solution

Echo server. - IRC Chat client

COMP112 23: 15

• What dose async client look like!
• One thread one waiting for user input
• Another waiting for server input
• What about output?
• Assume fast so put any where
• Keep

1. All sever IO in Server thread
2. All user IO in User thread

• Communicate via shared memory
• Evaluate!

The Asynchronous Client problem!

S
Wait On
Server input

Wait On
User input

U

Output to
User

Output to
Server

String out
User
output

COMP112 23: 16
Asynchronous client
public class AsynchClient {

private static final String SERVER = "localhost";
private static final int PORT = 6667;

private Socket socket;
private Scanner input;
private PrintStream output;

public static void main(String[] args) { new AsynchClient(); }

public AsynchClient(){
try {

socket = new Socket(SERVER, PORT);
new Thread(new Runnable(){ public void run(){

listenToServer();
}}).start();
listenToUser();

}catch(IOException e){UI.println("IO failure "+ e);}
}

5

COMP112 23: 17
Asynchronous client

public void listenToUser(){
PrintStream output = new PrintStream(socket.getOutputStream());
while (true) {
String toSend = UI.askString(">");
output.println(toSend);
output.flush();
}

}

public void listenToServer(){
Scanner input = new Scanner(socket.getInputStream());
while (input.hasNext()){

String line = input.nextLine();
UI.println("SERVER: "+ line);

}
}

COMP112 23: 18
Threads
• What is a thread?

• Like a separate CPU running a program (or part of a program).
• independent of all the other threads (could be faster or slower).

• Java threads all have access to the same memory
• Two threads accessing the same location can cause conflict and error

• Safe Programming with threads is HARD.
• Harder to debug.
• No problems if the different threads don’t share any resources
• You should expect some odd things to happen if the threads do share

resources (eg, the same window!)

COMP112 23: 19
How do you get a Thread?
• The main method is called with one thread

• anything it calls is executed in that thread:
main à constructor

• The GUI events are executed in a separate thread called by
the Java language not you, the application programmer.

• repainting, responding to mouse, buttons etc.

• You can create a new Thread object and call run() on it.

