
School of Engineering and Computer Science

Victoria University of Wellington

Copyright: Peter Andreae, VUW

AI for games: min-max search

COMP 112 2018

COMP112 26: 2

Menu

• AI and Board Games:

min-max search for 2-person turn-taking games

• Admin

COMP112 26: 3

AI: Games

• Where is AI used in Games?

COMP112 26: 4

Min-Max search

• 2-person, turn-taking games (eg, board games)

It’s O’s turn / white’s turn

What should they do?

♖

♔ ♘

♗

♙ ♜

♝

♚

♜

COMP112 26: 5

Approaches:

• Look-up table of good moves for each position.

• Heuristics (“rules-of-thumb”) to evaluate each move.

• Look-ahead search:

• for each possible move

• for each possible response

• for each possible move

• for each possible …..

•

• work out if win or loss

propagate it back….

COMP112 26: 6

O’s choice

O’s choice

X’s Choice

X’s Choice

It’s O’s turn: what should O do?

Work backwards to determine status of earlier positions
X will try to make O lose

COMP112 26: 7

O’s choices

O’s choice

X’s Choice

It’s O’s turn: what should O do?

Work backwards to determine status of earlier positions
O will try to win

COMP112 26: 8

O’s choice

X’s Choices

It’s O’s turn: what should O do?

Work backwards to determine status of earlier positions
X will try to make O lose

COMP112 26: 9

O’s choice

It’s O’s turn: what should O do?

Work backwards to determine status of earlier positions
O will try to win

COMP112 26: 10

Min-max search

• To choose move:

• for each possible move,

• evaluate new board state from other player’s perspective

• perform move with lowest value board (worst for them, best for me)

• To evaluate a board from players’ perspective

• If the game is over, return 1 for win, -1 for lose, 0 for draw

• for each possible move of the player,

• construct board state after move

• value = -ve of (evaluate new state from other player’s perspective)

• keep track of maximum value (ie, best for this player)

• return value

COMP112 26: 11

AI for O and X.

public void doAITurn(){

String bestOutcome = "X"; //start pessimistic - the real player will win

int bestRow = -1;

for (int row=0; row<3; row++){for (int col=0; col<3; col++){

if (board[row][col] == null){ // it's an empty cell

if (bestRow == -1){ bestRow = row; bestCol = col; } //we can at least play here

String[][] hypotheticalBoard = this.newBoard(this.board, row, col, "O");

String value = evaluate(hypotheticalBoard, "X");

if (value.equals("O")){ // Winning move: play here

this.board[row][col] = "O";

return;

}

else if (value.equals("draw")){ // might be best option

bestOutcome = "draw";

bestRow = row; bestCol = col;

}

}}

}

if (bestRow != -1) { this.board[bestRow][bestCol] = "O"; } // play at best option.

}

COMP112 26: 12

AI for O and X

public String evaluate(String[][] brd, String player){ // player plays next

String outcome = this.boardOutcome(brd);

if (outcome != null)){ return outcome; } //the game is over

String other = this.other(player); // the other player from this perspective

outcome = other; // minimum outcome if player can't do better

for (int r=0; r<3; r++){for (int c=0; c<3; c++){

if (!brd[r][c].equals("")){ continue; }

String[][] hypotheticalBoard = this.newBoard(brd, r, c, player);

// see what the outcome of that play would be

String v = evaluate(hypotheticalBoard, other);

if (v.equals(player)){ // the player could win

return player; // then they definitely would choose this

}

if (v.equals("draw")){ outcome = "draw"; } // choose this if there is no win

}}

return outcome; //there was no win for the nextPlayer,

}

COMP112 26: 13

What about 3D OandX?

• Is this approach feasible?

• What about chess or draughts (checkers)?

• How big is the search?

• OandX, 3D 0andX, Draughts, Chess, Go?

COMP112 26: 14

Min-Max search for big games

• Need to search as deep as possible,

• Then use heuristics to evaluate board states:

• eg: piece count, dominance

 values between -1 and 1

• Propagate the values back

• minimising the values on the opponent’s turn

• maximising the values on the player’s turn.

COMP112 26: 15

Min-max search.

