

Min-max search

- To choose move:
 - for each possible move,
 - evaluate new board state from other player's perspective
 - perform move with lowest value board (*worst for them, best for me*)

COMP112 26: 10

- To evaluate a board from players' perspective
 - If the game is over, return 1 for win, -1 for lose, 0 for draw
 - for each possible move of the player,
 - construct board state after move
 - value = -ve of (evaluate new state from other player's perspective)
 - keep track of maximum value (ie, best for this player)
 - return value

Al for O and X.	Al for O and X COMP112 26: 12
<pre>public void doAlTurn(){ String bestOutcome = "X"; //start pessimistic - the real player will win int bestRow = -1; for (int row=0; row<3; row++){for (int col=0; col<3; col++){ if (board[row][col] == null){ // it's an empty cell if (bestRow == -1){ bestRow = row; bestCol = col; } //we can at least play String[][] hypotheticalBoard = this.newBoard(this.board, row, col, "O"); String value = evaluate(hypotheticalBoard, "X"); if (value.equals("O")){ // Winning move: play here this.board[row][col] = "O"; return; } else if (value.equals("draw")){ // might be best option bestOutcome = "draw"; bestRow = row; bestCol = col; } if (bestRow != -1) { this.board[bestRow][bestCol] = "O"; } // play at best option } } } } </pre>	<pre>public String evaluate(String[][] brd, String player){ // player plays next String outcome = this.boardOutcome(brd); if (outcome != null)){ return outcome; } //the game is over String other = this.other(player); // the other player from this perspective outcome = other; // minimum outcome if player can't do better for (int r=0; r<3; r++){for (int c=0; c<3; c++){ if (!brd[r][c].equals("")){ continue; } String[]] hypotheticalBoard = this.newBoard(brd, r, c, player); // see what the outcome of that play would be String v = evaluate(hypotheticalBoard, other); if (v.equals(player)){ // the player could win return player; // then they definitely would choose this } if (v.equals("draw")){ outcome = "draw"; } // choose this if there is no win } return outcome; //there was no win for the nextPlayer, }</pre>

What about 3D OandX?	COMP112 26: 13	Min-Max search for big games	COMP112 26: 14
 Is this approach feasible? 		 Need to search as deep as possible, Then use bouristics to evolute board states. 	
 What about chess or draughts (checkers)? 		 • eg: piece count, dominance ⇒ values between -1 and 1 	
 How big is the search? OandX, 3D 0andX, Draughts, Chess, Go? 		 Propagate the values back minimising the values on the opponent's turn maximising the values on the player's turn. 	

Min-max search.	COMP112 26: 15