
© Peter Andreae

COMP112: 1

Programs have bugs

• What problems does this cause?

Preventing Bugs in Programs

© Peter Andreae

COMP112: 2

How can we get rid of bugs?

• Testing

• Verifying – proving the code is right

• Using safer languages,

• eg “buffer overflow” not possible in Java, vs C

• Automated checking in the compiler

• eg type checking in Java, vs Python

• eg assertions and annotations

• How good could we get?

© Peter Andreae

COMP112: 3

Perfect checking isn’t possible

• Fundamental results of Theoretical Computer Science!

• Can prove that some things we would like to do are not possible

/* lunar lander in game: smooth descent */

double height = 1000; // start 1000 meters up

double speed = 200;

while (height > 0){

moveDown(speed); // move down for 1 second

speed = speed * 0.75; // slow down a bit

}

UI.println(“Landed”);

Will it stop?

© Peter Andreae

COMP112: 4

Will it halt?

•

public void simulate(int rabbits, int foxes){

while (rabbits + foxes > 0) {

if (rabbits > foxes) { rabbits = rabbits – foxes/2; }

else { foxes = foxes – rabbits/10; }

if (foxes < 100) { foxes++; }

if (rabbits < 10) { rabbits = rabbits*2; }

}

}

© Peter Andreae

COMP112: 5

Could you always detect if a program will halt?

• No! proof by contradiction:

• Suppose you gave me a perfect loop checker:

checker(program, input)

 “OK” if program(input) halts

 “Loops” if program(input) loops for ever.

• Then I could make a new program out of your program:

tricky (program)

if (checker (program, program) == “OK”) { while (true) {} }

if (checker (program, program) == “Loops”) { return; }

© Peter Andreae

COMP112: 6

tricky tricky

tricky (program)

if (checker (program, program) == “OK”) { while (true) {} }

if (checker (program, program) == “Loops”) { return; }

What does tricky(tricky) do?

if checker(tricky, tricky) == “OK” then  loops forever

ie, if tricky(tricky) halts, then  loops forever

if checker(tricky, tricky) == “Loops” then  halts

ie, if tricky(tricky) loops forever then  halts

if tricky(tricky) halts, then tricky(tricky) doesn’t halt

if tricky(tricky) doesn’t halt, then tricky(tricky) halts

Contradiction!

© Peter Andreae

COMP112: 7

The Halting problem

• Contradictions aren't possible.

Therefore the assumption must be false.

 You can’t make a checker that always tells whether an arbitrary program will halt.

• The Halting Problem is just one example of non-computable (undecidable)

problems.

• Gödel’s Theorems: You cannot make a theorem prover that could prove all the true

statements in some logical system.

© Peter Andreae

COMP112: 8

What does it mean for preventing bugs

• You can make a useful compiler/program checker that can identify lots of

problems, but you cannot make a perfect one.

Don’t waste time trying to make it perfect, just make it better

• You can write theorem provers that will help you prove that a program is correct,

but you can’t make a perfect one.

• Designing languages, compilers, automated provers, is important for improving

software, but there are fundamental limitations.

