
School of Engineering and Computer Science

Victoria University of Wellington

Copyright: Peter Andreae, VUW

Networking
COMP 112 2018

COMP112 21: 2

Networking

• Computers are (mostly) networked

ie, connected to other computers:

• desktops,

• laptops

• embedded controllers

• servers

• phones

• sensors

• Users expect to be able communicate with the world

• Computers may require networking to operate

• How does it work?

• How can we write programs that use the network?

COMP112 21: 3

What’s required to communicate?

http://www.geonet.org.nz/quakes/region/wellington/2014p240655

COMP112 21: 4

Levels of communication

• transmitting a character over the wire, fibre, or wireless

• chunking a message into “packets”

• ensuring that a packet is not corrupted or lost

• dealing with multiple packets from multiple computers on the

same wire at the same time

• specifying where a packet should go to

• working out how to get a packet to its destination

• ensuring that a collection of packets making a message all

arrive in order.

• specifying a message in a way that the recipient(s) will

understand

• managing a “conversation” with a distant server.

• keeping track of multiple connections with multiple computers

COMP112 21: 5

TCP/IP Stack

• Layers of programs that build on each other.

• Application Layer

• Transport Layer

• Internet Layer

• Network Access Layer

Each layer treats the layer below it

as a black box which provides an

abstraction that hides the lower

level details.

COMP112 21: 6

TCP/IP Stack

• Network Access Layer (eg, Ethernet protocol)

• Part of the operating system

• Encoding a packet into signals to go over a wire/fibre/wireless to the

computer at the other end of the wire, and decoding it.

• Dealing with collisions

COMP112 21: 7

TCP/IP Stack

• Internet Layer (eg, IP protocol)

• Part of operating system

• Encoding information into a packet with address information

• Dealing with addresses and routing a packet to the target computer at

the other side of the network.

• Network Access Layer

COMP112 21: 8

TCP/IP Stack

• Transport Layer (eg TCP protocol)

• Part of operating system

• Ensuring sequence of packets in a message all arrive in order

• Protocol to acknowledge, recover, resend, reorder.

• Internet Layer

• Network Access Layer

There are other

protocols that work

differently

COMP112 21: 9

TCP/IP Stack

• Application Layer

• Programs that need to communicate

• Clients and Servers

• Transport Layer

• Internet Layer

• Network Access Layer

COMP112 21: 10

Application Layer view

• Application wants a communication channel with a program

running on a target computer over the network.

• TCP (Transport Layer) provides “Sockets”:

• A socket is one end of a TCP connection

• Has two streams associated with it:

• Input stream (from the other end of the connection)

Application can read from it

• Output stream (to the other end of the connection)

Application can write/print to it

COMP112 21: 11

Using sockets in Java

• Easy!

• Streams are sequences of characters

• Like files, or UI text pane, or System.in/System.out

try {

Socket socket = get a socket somehow ;

Scanner inputFromTarget = new Scanner(socket.getInputStream());

PrintStream outputToTarget = new PrintStream(socket.getOutputStream());

while (inputFromTarget.hasNext()){

String line = inputFromTarget.nextLine();

String response = work out a response ;

outputToTarget.println(response);

outputToTarget.flush();

}

} catch (IOException e){System.out.println(“connection failure ”+e); }

COMP112 21: 12

Getting a Socket

• Connection requires each computer to set up a socket

connected to the other

• How do you specify where you want the connection to go to?

• Which program running on which computer is going to serve you a

web page?

• Which program goes first?

• Need a connection at the other end in order to set up the one at this

end!

COMP112 21: 13

Addressing a connection

• Two parts to the address:

• host computer: IP address, or Host name

• “port” (an integer)

• Each computer on the network must have an IP address.

130.195.5.9 or “debretts.ecs.vuw.ac.nz”

• Operating system provides a set of “ports” that connections

can be associated with.
• Many programs have a standard port number.

• Application can specify a remote host and a port.

• Can hope the program at the other end will listen

1

2

:

80

:

6667

1

2

:

80

:

6667

COMP112 21: 14

Who goes first?

• If application requests connection to a port on a remote host,

but there is no application on that port at the remote host that

will respond to the request, connection will fail.

• Need to have an application on remote host listening to the

port:

Client – Server model:

• If host provides some service:

• Server application must be running on remote host

• Server application must be listening on a well-known port

• Client application can request a connection to host : port

• Server application will hear, and can accept the request

• Operating systems will set up a new socket on each end with a

connection between them.

COMP112 21: 15

Addressing a connection

Host1

1

2

:

80

:

6667

Host2

1

2

:

80

:

6667

Listening on port 6667

Request connection to port

6667 on Host2 via port xx Application accepts connection

OS creates socket connected to

port xx on Host1
OS creates socket connected to

port 6667 on Host2

xxxx

Application is still listening!

COMP112 21: 16

Setting up the sockets

try {

ServerSocket serverSocket = new ServerSocket(PORT);

while (true) {

Socket socket = serverSocket.accept();

… set up Scanner and PrintStream and communicate via socket

}

} catch (IOException e){System.out.println("Failed connection "+ e); }

try {

Socket socket = new Socket("irc.ecs.vuw.ac.nz", PORT);

…set up Scanner and PrintStream and communicate via socket

} catch (IOException e){System.out.println("Failed connection "+ e); }

Server

Client

COMP112 21: 17

Echo Service

• Echo server will echo back any message sent to it:

Client Server

Client

Hello there. Are you listening

Echo: Hello there. Are you listening

I want help

Echo: I want help

COMP112 21: 18

Echo Client.

public static final String SERVER = "localhost";

public static final int PORT = 6667;

public static void main(String[] args) {

try {

Socket socket = new Socket(SERVER, PORT);

Scanner input = new Scanner(socket.getInputStream());

PrintStream output = new PrintStream(socket.getOutputStream(), true);

while (true) {

String toSend = UI.askString(">");

if (toSend.equals("QUIT")){ return; }

output.println(toSend);

String rcvd = input.nextLine();

UI.println(rcvd);

}

}catch(IOException e){UI.println("IO failure "+ e);}

}

Autoflush

COMP112 21: 19

Your IRC client

• Will be larger than the echo client

• Will be more than just a main method

• Needs a richer interface (buttons, etc)

• Needs to deal with messages better.

• Needs a more complex logging in.

• BUT

• The basic ideas are mostly present in the echo client

• EXCEPT for asynchronous send and receive.

COMP112 21: 20

Echo Server

• Server has to handle lots of clients

• Needs a process in a separate thread for each client

 Server requires threads and concurrency!

• Design:

• Listen to the port.

• When there is a request,

• create a new socket for that client connection

• start a thread to process that client

• Processing the client

• loop

• listen for input from client

• echo it back

• quit if the message was QUIT

COMP112 21: 21

Echo Server: Listening for clients

public class EchoServer{

public static final int PORT = 6667; // The port the server will listen on

public static void main(String[] args) {

try{

ServerSocket serverSocket = new ServerSocket(PORT);

System.out.println("Waiting for clients to connect...");

while (true) {

Socket socket = serverSocket.accept();

System.out.println("Found client");

EchoService echoService= new EchoService(socket);

new Thread(echoService).start();

}

}catch(IOException e){System.out.println("Failed to connect" + e);}

}

}

new thread

waits for a client

COMP112 21: 22

Echo Server: per client

class EchoService implements Runnable {

private Socket socket;

private Scanner clientIn;

private PrintStream clientOut;

public EchoService(Socket socket) {

this.socket = socket;

try {

clientIn = new Scanner(socket.getInputStream());

clientOut = new PrintStream(socket.getOutputStream());

}

catch (IOException e) {System.out.println(“Connection failed." + e);}

}

COMP112 21: 23

Echo Server: per client

public void run() {

while (clientIn.hasNext()) {

String message = clientIn.nextLine();

System.out.println("Received: "+ message);

if (message.equals("QUIT")) { break;}

clientOut.println("ECHO: "+ message);

clientOut.flush();

}

try{ socket.close();}

catch (IOException e) {System.out.println("Error socket close" + e);}

System.out.println("Client disconnected.");

}

}

COMP112 21: 24

Synchronous or Asynchronous?

• Echo client:

• get message from user

• send message to server

• get reply from server

• display reply

• IRC client:

• messages may come from the server unprompted by user

• messages may come from the user unprompted by server

 client must be listening to both user and server

 client must have two threads!

Synchronous:

single thread of send and receive.

Asynchronous:

two threads of send and receive.

COMP112 21: 25

Asynchronous client

public class AsynchClient {

private static final String SERVER = "localhost";

private static final int PORT = 6667;

private Socket socket;

private Scanner input;

private PrintStream output;

public static void main(String[] args) { new AsynchClient(); }

public AsynchClient(){

try {

socket = new Socket(SERVER, PORT);

new Thread(new Runnable(){ public void run(){

listenToServer();

}}).start();

sendToServer();

}catch(IOException e){UI.println("IO failure "+ e);}

}

COMP112 21: 26

Asynchronous client

public void sendToServer(){

PrintStream output = new PrintStream(socket.getOutputStream());

while (true) {

String toSend = UI.askString(">");

output.println(toSend);

output.flush();

}

}

public void listenToServer(){

Scanner input = new Scanner(socket.getInputStream());

while (input.hasNext()){

String line = input.nextLine();

UI.println("SERVER: "+ line);

}

}

COMP112 21: 27

Threads

• What is a thread?

• Like a separate CPU running a program (or part of a program).

• independent of all the other threads (could be faster or slower).

• Java threads all have access to the same memory

• Two threads accessing the same location can cause conflict and error

• Safe Programming with threads is HARD.

• Harder to debug.

• No problems if the different threads don’t share any resources

• You should expect some odd things to happen if the threads do share

resources (eg, the same window!)

COMP112 21: 28

How do you get a Thread?

• The main method is called with one thread

• anything it calls is executed in that thread:

main  constructor  sendToServer

• The GUI events are executed in a separate thread

• repainting, responding to mouse, buttons etc.

• Create a new Thread object and call run() on it.

• ecs100 library:

• Each call to buttonPerformed is done in a new thread

• Mouse events are processed by a mouse event thread.

COMP112 21: 29

IRC login

Login sequence:

 NICK pondy

 USER pondy 0 unused :Peter Andreae

…lots of messages… including grumbling about looking up hostname

 :irc.ecs.vuw.ac.nz.net 001 pondy …….

 :irc.ecs.vuw.ac.nz.net 002 pondy …….

 :irc.ecs.vuw.ac.nz.net 003 pondy …….

 :irc.ecs.vuw.ac.nz.net 004 pondy irc.ecs.vuw.ac.nz hybrid-7.2.3 ….

or

:irc.ecs.vuw.ac.nz.net 433 * pondy :Nickname is already in use

