
© Peter Andreae

Introduction to

Computer Science

COMP 112 2018 T1 .

Peter Andreae

(“Pondy”)

Computer Science

Victoria University of Wellington

© Peter Andreae

COMP112: 2

COMP 102

Menu:

• Introductions

• What is COMP112 about?

• Where does COMP112 fit in your degree?

• Course organisation

• What to do NOW!

Admin:
• Switching to COMP102: see me after the lecture, outside lecture room

© Peter Andreae

COMP112: 3

Introductions

Course Organiser

• David Streader Office: CO 260

david.streader@ecs.vuw.ac.nz

Lecturer

• Peter Andreae (Pondy) Office: CO 336

pondy@ecs.vuw.ac.nz

Senior Tutor (Administrative issues regarding labs)

• Zarinah Amin Office: CO 252

Zarinah.Amin@ecs.vuw.ac.nz

Programmer

• Dr. Monique Damito email to report problems: bugs@ecs.vuw.ac.nz

Tutors (Help in labs or via online help system)

• Range of Undergraduates and Graduates

School Office (Forgotten passwords)

• CO 358
© Peter Andreae

COMP112: 4

Essential Info: Lectures, Labs, Assigs, Info

• Lectures:

• Tuesday 10am CO LT122

• Thursday 10am MC LT101

• Friday 11am CO LT122

• Labs:

• One hour session on Monday

• 12-1 or

• 2-3

• Start next week.

Sign up at https://student-sa.victoria.ac.nz

• Assignments:
• weekly, starting next week

• Information:
• ecs.victoria.ac.nz/Courses/COMP102_2018T1, also accessible via Blackboard

Mon Tue Wed Thu Fri

9 Assig due

10 LECTURE LECTURE

11 LECTURE

12 Lab 1

1

2 Lab 2

3

4

5

© Peter Andreae

COMP112: 5

What is COMP 112?

A first course in

• Computer Science

• Computer Graphics

• Software Engineering

• Cybersecurity Engineering

A required course for

• Electronic and Computer Engineering

• Human Genetics

An important course for

• Information Systems

• Media Design

A useful course for Everyone

CS

CGRA

INFO

CYBR

ECEN

SWEN

MDDN

CS

© Peter Andreae

COMP112: 6

To understand the issues and principles of Computer Science, we need to

understand and be able to talk about computation.

• Programming is about specifying the computation that a computer should do

• We need to be able to write, understand, think about, and analyse programs to

address the issues of Computer Science

• Programming is fundamental to the engineering side of Computer Science.

COMP 112 will focus on Object-Oriented programming, using Java.

COMP 112 will also introduce a range of topics in Computer Science.

COMP 112 primarily about programming

© Peter Andreae

COMP112: 7

COMP112 vs COMP 102

• COMP 112 students:

• Group 1: Done NCEA level 3 DT standards in programming

and maybe Computer Science.

• Group 2: Learned programming by themselves (not in a classroom)

• Group 3: Learned programming in another course, institution, school course…..

• Course is for all of you, but targeted at group 1.

• Don't be intimidated by students who have years of programming!!

COMP 102

COMP 112

COMP 103

No programming experience

Programming experience

© Peter Andreae

COMP112: 8

What's your background?

• Introduce yourself to the students around you.

• Say which group you are from (NCEA, self-taught, other course)

• What programming language(s) did you learn?

© Peter Andreae

COMP112: 9

Should you take COMP102 instead?

• COMP102: alternative to COMP112 for BE or BSc(COMP)

• Both courses let you proceed to COMP103

• COMP 112 assumes programming experience:

• variables, loops, conditionals (if’s), input and output

• writing functions/procedures/methods with parameters

• lists or arrays

• little bit of event driven input, object oriented design

• doesn’t care what language you used

• COMP112 gives more breadth of coverage of Computer Science
• also involves more complex programming problems

COMP 102

COMP 112

COMP 103

No programming experience

Some programming experience

eg level 3 NCEA DT programming standards

You can’t do

COMP102 and COMP112

at the same time!

© Peter Andreae

COMP112: 10

Switching to COMP 102

• If you are not confident you have enough programming experience

• See me after a lecture to get switched over

• Within the first two weeks

• Bring a change of course form from the science faculty office.

BUT
• COMP 112 will run very parallel to COMP 102 this year.

• Assignments, tests, and exams will be mostly shared!

• You can pass COMP 112 and get in to COMP 103 with EXACTLY the same work

as you would need in COMP 102.

• COMP 112 lectures will be faster (less boring), and will be wider coverage.

© Peter Andreae

COMP112: 11

Planning Ahead:

• If you are doing BE, or BSc (COMP), BSc (CGRA), or BDI minor

• then you should plan on taking COMP103 in Tri 2.

• If you are doing BE, or BSc (COMP or CGRA)

• Don’t forget the maths courses that you need for 2nd year!

• If you are doing BSc (CGRA)

• Don’t forget DSDN 132

© Peter Andreae

COMP112: 12

Planning Ahead: Mathematics

Engineering maths Mathematics maths

• BE SWEN: ENGR 121, 123 or MATH 161, STAT 193

• BE NWEN: ENGR 121, 123 or MATH 161, 151, STAT 193

• BE ECEN: ENGR 121, 122 or MATH 151, 142

• BSc COMP: ENGR 121, 123 or MATH 161, STAT 193/MATH177

• BSc CGRA: ENGR 121, 123, 122 or MATH 151, 142, 161

Which should you take?

© Peter Andreae

COMP112: 13

Planning Ahead: Mathematics

Which should you take?

• Most students are better off with the Engineering maths option.

• slower start

• focused on application of mathematics

• Students with good mathematics should consider the Mathematics maths option:

• Opens more options in later years

• Better background for postgraduate study, especially in computer graphics

• If you have the following NCEA achievement standards:

• 3.6 (differentiation, AS91578) and 3.7 (integration, AS91579)

• one of 3.5 (complex nos, AS91577) or 3.1 (conics, AS91573) or 3.3 (trigonometry, AS91575)

or 3.13 (probability, AS91585) or 3.14 (probability distributions, AS91586)).

• At least 2 standards must be with grades of merit or excellence.

• If you want to switch
© Peter Andreae

COMP112: 14

Computing is everywhere

• Computer based systems are everywhere

• user application programs – browsers, photo editors, chat programs

• social media and mobile phone apps,…

• computer games

• Information systems in commerce and business

• specialised applications – analysing gene data, X-rays, simulations

• controllers for device – cars, washing machines, TVs, DVD player, etc

• operating systems that run computers, cell phones, etc.

• network communication: internet connections, phone exchanges, fibre optics, cell phone

systems, etc

• ….

⇒ Computing underlies almost all aspects of modern life

© Peter Andreae

COMP112: 15

Computer Science

• Computer Science is the science of Computing

• The study of the computing processes that happen inside computers when they are working.

• How do we design, build, analyse systems that deal with information:

• text

• numbers

• graphics and video

• sound

• sensor and control signals

• ….

© Peter Andreae

COMP112: 16

Computer Science Questions

How do you….
• design a computer system to manage an organisation’s information?

• design an intelligent assistant for your phone that can talk with you?

• enable social interaction over communication networks

• send data securely and reliably over unreliable public networks?

• manage large teams of programmers building insanely complicated programs

• design algorithms that will create new visual effects for augmented reality applications

• design a database so that it is impossible to enter inconsistent data?

• design programming languages to make programming easier

• ensure that the computer program controlling a nuclear reactor or a spacecraft never makes a

mistake?

• design a self-driving car that drives safely on city roads?

• make a safe encryption scheme for electronic commerce?

• determine whether some computation is tractable or even possible?

© Peter Andreae

COMP112: 17

What to do NOW!

• Sign up for the labs: https://student-sa.victoria.ac.nz /

• choose ONE Thu/Fri Lab and ONE Mon/Tue Lab

• Note: You need to be registered for the course

(a) to sign up for a lab

(b) to be able to use the school computers

• Details of course organisation tomorrow

© Peter Andreae

COMP112: 18

Menu

• Introducing yourself

• More course details (FAST!)

• Programs and programming languages

• A first Java Program

Reading:

• Text Book Chapter 1

Announcements:

• Sign up for a lab session! Labs start Monday (12-1pm or 2-3)

• Voting for a Class Rep

• Put a message about yourself on the forum if you want to be class representative; the class

will vote on Monday.

• Trouble with passwords? Go to school office: CO 358

© Peter Andreae

COMP112: 19

Course Organisation

All the details are in the course outline:

• handout

• on the course web page:

http://ecs.victoria.ac.nz/Courses/COMP112_2018T1/

© Peter Andreae

COMP112: 20

Course Web Site

An essential resource for the course:

• http://ecs.victoria.ac.nz/Courses/COMP112_2018T1

(also accessible via link on BlackBoard)

• Course information, announcements, handouts, videos

• Lab Assignment details (times, dates, handouts, files, ...)

• Forum, for questions and discussion

• Info about doing work at home.

• Java documentation

• Other useful links

Primary administrative communication channel.

© Peter Andreae

COMP112: 21

Lab assignments

• Ten assignments (roughly weekly),

• hand out: Thursday

• due: 10am Thursday (a week later) (except #10)

• alternative labs: 6&7, 7&8 more challenging and interesting; your choice

• Apply material from lectures and text book to practical programming problems.

This is where your learning happens!

• Scheduled lab session is to help, but start before the lab!!

• Further work required: expect 6 hours outside labs

• any of the ECS labs,

• on your home computer

• First week’s lab is short, and doesn’t require additional work.

© Peter Andreae

COMP112: 22

Course Organisation

Help Desk

• Online help:

• Forum for general questions;

• email/web form for questions about your code.

• Help Desk: Tutors available at various times at CO242a: see weekly timetable, starting wed in

3rd week.

Study groups

• We will facilitate organising study groups and tutored help sessions

• First year engineering/CompSci tutorials/help sessions

• Excellent way of helping your learning

• Science and Engineering Faculty Awhina programme:

• support for Maori and Pacific Nations students

• Women students support group.

© Peter Andreae

COMP112: 23

Text Book and Handouts

Text Book

• Java Foundations Lewis, DePasquale, Chase

• Same as for COMP103.

• [also OK: Java Software Solutions (6th ed) Lewis and Loftus]

• We consider it a useful resource on Java.

Handouts

• On COMP102 web page.

• Handed out in class if there is a demand for it.

© Peter Andreae

COMP112: 24

Tests and Exams

Terms Test 1:

• 15%

• Monday 9 April 6-7 ?? (rooms to be confirmed)

• NOT in lecture time!

Terms Test 2:

• 15%

• Monday 14 May 6-7 ?? (rooms to be confirmed)

• NOT in lecture time!

Exam:

• 50%

• Date tba (between 9 June and 12 July)

© Peter Andreae

COMP112: 25

Assessment

Mandatory Course Requirement:

• Submit reasonable attempts (at least D) for at least 8 of 10 assignments.

Final Grade:

• Assignments: 20%

• Terms Test 1: 15% (mark boosted to exam mark, if better)

Terms Test 2: 15% (mark boosted to exam mark, if better)

Exam: 50%

To pass the course, you must:

• Satisfy the Mandatory Requirement.

• Get overall grade of C- or better.

• To keep grades comparable with COMP 102,

There will be no C grades!!! ("just passing" will give you a B-)

© Peter Andreae

COMP112: 26

Withdrawal dates

• Early withdrawal with refund: up do Fri 16 March

• no consequences to early withdrawal

• Standard withdrawal without refund: up to Friday 18 May

• Withdrawal recorded

• No grade recorded on transcript

• BUT, withdrawal counts as a fail for determining "Satisfactory Academic Progress"

• Late withdrawal with Dean's permission: after 18 May

• Requires permission of Associate Dean

• Normally given only when special circumstances arise after deadline.

© Peter Andreae

COMP112: 27

Plagiarism (Cheating)

• You must not present anybody else’s work as if it were your own work:

• Basic principle of academic honesty.

• applies to work by other students, friends, relatives, the web, books…

• If you received substantial help, then you must state who helped and how much.

• If you declare any work from someone else, then it isn’t plagiarism!!!

• In COMP102:

• We encourage you to learn together, BUT you must submit your own answers

• If you use code from the assigned text book, or

from the lectures, then you do not need to declare it;

If you use any other code that wasn’t yours, then declare it!

© Peter Andreae

COMP112: 28

Cheating in the assignments.

Assignments are primarily for learning, not assessing

Cheating in the assignments is not worth it!

• You won't learn, so you will probably fail.

• If caught, you'll lose marks --- or worse.

• Assignments have a fairly small contribution to your grade.

© Peter Andreae

COMP112: 29

Lab Facilities

• All scheduled labs are in CO219/238

• Can also use other ECS labs (or other university student computing labs)

• Can also use home computers. (Details on Web Site)

• Lab Hours: 24/7

• Need ID card to access in evenings and weekends

• The labs are for getting work done

• Don’t prevent other people from working

• If you want to play around, go somewhere else

• We expect professional behaviour in the labs.

Read the lab rules!
© Peter Andreae

COMP112: 30

Where to go for Help

Depends on the kind of help needed

• Course organiser / Lecturer, Senior Tutor, tutors (in labs or helpdesk only!)

• Forum (via website)

• On-line help system (via website)

• Help desk (CO 242a)

• ECS School Office: CO 358

• Student Services: http://www.vuw.ac.nz/st_services/

• Science Faculty office: http://www.victoria.ac.nz/science/student-administration

• Science/Engineering/Arch&Des Awhina programme

http://www.victoria.ac.nz/students/support/learning/awhina/

• The Web

© Peter Andreae

COMP112: 1

A program is a specification for the behaviour of a computer:

• What the computer should do when:

• the program is started

• the user types something

• the user clicks the mouse

• a message arrives over the network

• some input from a camera/switch/sensor arrives.

• ……

• Responses may be simple or very complex.

• A program consists of

• descriptions of responses to events/requests

• written as instructions

• in a language the computer can understand:

• Low level, High level, Specialised

What is a Program

© Peter Andreae

COMP112: 2

Machine Language

• What the computer can understand

• Different for each computer

• Very detailed, low-level control of the computer

• Horrible to read

:

:

000XX00X 0X00XXXX

0XX0X00X 00XXX0X0

00X0X00X X0XX0X0X

:

:

copy the contents of memory location 143

into register 1.

add the contents of memory location 116

to the contents of register 1.

copy the contents of register 1

to memory location 181.
Pattern of bits controls

the switches that

operate the CPU

© Peter Andreae

COMP112: 3

High Level Programming Languages

• Designed for people to use

• Designed to be translated into

machine language

• compiled (translated all at once), or

• interpreted (translated one step at a time), or

• compiled to an intermediate language, then

interpreted

Must be

• Precise: no ambiguity about what to do

• Expressive: must be able to specify whatever you want done.

• Readable: People must be able to read the instructions.

• Translatable: able to be translated into machine language

• Concise: not “long-winded” or redundant

Smalltalk

ML

Ada

C++

Eiffel

Prolog

Haskell

Miranda

Java

C#

Python

Scratch

GameMaker

Alice

FORTRAN

LISP

Algol

COBOL

Basic

C

Pascal

Simula

Modula

PHP

Javascript

© Peter Andreae

COMP112: 4

Programming Languages

• Different languages support different “paradigms”:

(ways of designing programs)

• imperative,

• object-oriented,

• functional,

• logic programming, ...

Object Oriented programming languages:

• Organise program around Classes (types) of objects

• Each class of objects can perform a particular set of actions

• Most instructions consist of asking an object to perform

one of its actions

© Peter Andreae

COMP112: 7

NCEA vs University

• NCEA has lots of components with individual grades; not all needed.

• being strategic on which components to do, and which to ignore

• Uni has lots of components that are combined into a single grade; all count.

• being strategic on how much time to put into each component.

• NCEA (internal) may allow resubmission

• Uni generally does NOT allow resubmission

• NCEA focusses on getting Achieved; Excellence is very difficult.

• if you have Achieved, may not be worth trying harder.

• Uni focusses on grades; A’s are more achievable

• Just passing is not enough

• It’s worth doing more because it will increase your grade.

© Peter Andreae

COMP112: 8

Java

• A high-level Object-Oriented programming language

• Designed by Sun Microsystems, early-mid 1990's.

• Widely used in teaching and industry

• Related to C++, but simpler. Similar to C#.

• Good for interactive applications.

• Extensive libraries of predefined classes

to support, UIs, graphics, databases, web applications, ...

• Portable between kinds of computers.

© Peter Andreae

COMP112: 9

A Java Program

import ecs100.*;

/** Program to compute the average of a sequence of numbers */

public class MeanFinder {

public MeanFinder () {

UI.addButton("Compute Mean" , this::doFindMean);

}

/** Ask for sequence of numbers and print the mean */

public void doFindMean () {

ArrayList<Double> numbers = UI.askNumbers("Enter numbers");

if (numbers.size() > 0) { UI.println("Mean = " + this.computeMean(numbers)); }

else { UI.println("You entered no numbers"); }
}

/** Compute the mean (average) of a sequence of numbers */

public double computeMean (ArrayList<Double> nums) {

double total= 0;

for (int num : nums) {

total = total + num;
}

return (total / nums.size());

}
} © Peter Andreae

COMP112: 11

Learning to Program in Java

What’s involved?

• Understand what the language can specify

• Problem solving:

• program design,

• data structuring,

• Programming language (Java):

• syntax and semantics

• style and common patterns

• libraries of code written by other people

• Testing and Debugging (fixing).

• Common patterns in program design.

• Important data structures and algorithms.

© Peter Andreae

COMP112: 12

Constructing Programs in Java

Design

Edit
typing in the Java code

Compile
Translating to executable

instructions

Run
Testing the program to

see that it works

Specification

syntax

errors logic

errors

© Peter Andreae

COMP112: 13

A first Java Program

• Task: Write a temperature conversion program: C ⇔ F

• Step 1: Specification: what is it supposed to do?

• Write a program that will let the user do two things:

• print out the conversion formula

• let user enter temperature in Fahrenheit, and print out in Celsius.

• Step 2: Design:

• For calculate action:

• Ask user for the Fahrenheit value to be converted

• Print Celsius value:

• Calculate Celsius value out of given value (F-32.0)*5.0/9.0

• Print out the answer

Two Actions

⇒ two buttons

© Peter Andreae

COMP112: 14

Designing the Java program

Step 3: Editing

• Need to write this design in the Java language.

 Need an object : a "temperature calculator"

- all actions must be performed on some object

 Need a class to describe the object

 The class needs a name

 The class needs to specify a constructor to set up the interface

 The class needs to specify the two actions its objects can do

 Define methods to do things.

 Give names to the methods

 specify what the methods will do

© Peter Andreae

COMP112: 15

Writing the Java code

import ecs100.*;

/** Program for converting between temperature scales */

public class TemperatureCalculator{

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this:: printFormula);

UI.addButton("F->C", this:: doFahrenheitToCelsius);
}

/** Print conversion formula */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");
}

/** Ask for Fahrenheit and convert to Celsius */

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this. convertToCelsius(fahrenheit);

}

/** Print Fahrenheit temperature as Celsius */

public void convertToCelsius(double temp){

double celsius = (temp - 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

}

Comments

Keywords

Identifiers

Strings

Types

Numbers

Operators

PunctuationI have chosen to split

into two separate

methods.

Could have just one

bigger method.

© Peter Andreae

COMP112: 16

Elements of the program

Program Structure:

• Import
• list the "libraries" you will use (We always use ecs100, and usually java.awt.Color and java.util.*)

• Class
• Top level component of program

• Describes a class of objects

• Specifies the set of actions this kind of object can perform

• (Can also specify information the objects can hold)

• Note name, and conventions for naming.

• Constructor
• Called when object is created

• Typically sets up the user interface (in one-class programs)

• Methods
• Main elements of a class

• Each method describes an action that objects of this class can perform
© Peter Andreae

COMP112: 17

Elements of the program

• Comments vs Code

• Keywords / Identifiers / Strings / Types / numbers / operators and punctuation

• Keywords : words with special meaning in the Java Language

eg: public, class, if, while, …

mostly to do with the structure of the program

• Identifiers : other words, used to refer to things in the program.

mostly made up by the programmer,

some are predefined.

• Strings : bits of text that the program will manipulate.

always surrounded by " and "

• Types : names for kinds of values.

• numbers

• operators and punctuation : + - * / = % . ; , () { } [] ' "

all have precise meanings and rules for use

© Peter Andreae

COMP112: 18

Actions in a program

• Method calls object . method (arguments)

• telling an object to do one of its methods, passing the necessary information as arguments:

UI.println("Celsius = (Fahrenheit - 32) *5/9");

this.printCelsius(fahrenheit);

UI.drawRect(100, 200, 50, 75);

UI.addButton(“Draw", this::doDraw);

• What are the possible objects? what are the possible methods.

• UI object has methods for

• Printing, asking, drawing, buttons, ….

• this object – the one we are defining – has the methods being defined in the class

• Assignment statements place = value

• putting a value in a place

double celsius = (fahren – 32.0) * 5.0 / 9.0;

double fahren= UI.askDouble(“Fahrenheit:");

© Peter Andreae

COMP112: 19

BlueJ

• BlueJ is an IDE for Java
(Integrated Development Environment)

• Class manager, for keeping track of the files in your program

• Editor for entering and modifying the program

• Built-in compiler interface to help compile and fix the syntax errors

• Special interface to make it easy to construct objects and call methods on them.

• Let’s do it… editing in BlueJ

© Peter Andreae

COMP112: 20

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Let’s do it…

© Peter Andreae

COMP112: 21

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Step 5: Running and Testing

• Must run the program and test it on lots of different input.

• BlueJ makes it easy to run individual methods.

© Peter Andreae

COMP112: 22

Using BlueJ for Java Programs

Simple use of BlueJ for simple programs:

1. Edit the class file(s) to define the methods

2. Compile the class

3. Create an object of the class

• right click on the rectangle representing the class

• select “new…..”

⇒ a red square representing the object

4. Call methods on the object

• right click on the square representing the object

• select the method.

© Peter Andreae

COMP112: 26

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

• Lectures have examples that you can use as models for your assignment programs

© Peter Andreae

COMP112: 27

A new program

• Calculator to convert inches to centimeters

import ecs100.*;

/** Program to convert inches to centimeters */

public class TemperatureCalculator{

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this.convertToCelsius(fahrenheit);

}

public void convertToCelsius(double temp){

double celsius = (temp – 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
} © Peter Andreae

COMP112: 28

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

BUT

• It can be hard to work out how to modify

• It is very limiting

Need to understand the language

⇒ vocabulary

⇒ syntax rules

⇒ meaning (“semantics”)

© Peter Andreae

COMP112: 29

Syntax rules: Program structure

• First version

〈import statements〉

public class

〈constructor description〉

{

}

〈classname〉

Comments can be

added anywhere

import ecs100.*;

import java.awt.Color;

〈method description〉

© Peter Andreae

COMP112: 30

Comments

Three kinds of comments:

• Documentation comments

eg /** Program for converting between temperature scales */

• end-of-line comments

eg double celsius = (fahren – 32.0) * 5.0 / 9.0; // compute answer

• anywhere comments

eg /* double fahren = celsius * 9 / 5 + 32;

UI.println(celsius + “C is " + fahren + " F"); */

/** 〈text of comment〉 */

// 〈text of comment〉

Top of class,

Before each method

at end of any line

/* 〈text of comment〉 */

multi-line, or

middle of line, or …

© Peter Andreae

COMP112: 31

Constructor Definitions

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this :: printFormula);

UI.addButton("F->C", this :: doFahrenheitToCelsius);
}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public ()〈class-name〉

instructions to perform when

creating a new object

© Peter Andreae

COMP112: 32

Method Definitions

/** Print out the conversion formulas */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public void ()〈name〉 〈parameters〉

instructions to perform

this action

Specifying the information

the action needs.

May be empty

© Peter Andreae

COMP112: 33

“Statements” (instructions)

(Single instructions are called “statements” for silly historical reasons!)

Two important kinds of statements:

• method call statement:

• tell some object to perform one of its methods.

eg: tell the UI object to ask the user for a number

eg: tell this object to print the celsius value of a temperature

eg: tell the UI object to print out a string

eg: tell the UI object to add a button

• assignment statement

• compute some value and put it in a place in memory.

© Peter Andreae

COMP112: 34

Method Calls

/** Print out the conversion formulas */

public void printFormula(){

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

• Method call Statement:

who . what (data to use) ;

UI . println (“Celsius = (Fahren…”) ;

• Meaning of Statement:

• Tell the object

to perform the method

using the argument values provided

〈object〉 〈methodname〉 〈arguments〉. () ;

© Peter Andreae

COMP112: 35

Objects and their methods in Java

• What objects are there?

Predefined eg:

• UI a "User Interface" window with several panes

 initialize() quit() addButton(…) println(….) drawRect(…) clearGraphics(),

askDouble(…) askString(…)

• Math methods for mathematical calculations

 random(), sin(…)

• System representing the computer system

 currentTimeMillis()

Others

• this The object(s) defined by this class in your program

• New objects that your program creates

Some method calls return a value

© Peter Andreae

COMP112: 36

Values / Data

There are lots of different kinds ("Types") of values:

• Numbers

• Integers (int or long) 42 -194573203 Integer.MAX_VALUE

• real numbers (double or float) 42.0 16.43 6.626e-34 Double.NAN,

Double.POSITIVE_INFINITY, Double.MIN_VALUE

Math.PI

• …

• Characters (char) 'X' '4'

• Text (String) " F -> "

• Colours (Color) Color.red Color.green

• Methods (strictly: Lambdas) this::doFahrenheitToCelsius

• Other Objects

• …

