
© Peter Andreae

Introduction to

Computer Science

COMP 112 2018 T1 .

Peter Andreae

(“Pondy”)

Computer Science

Victoria University of Wellington

© Peter Andreae

COMP112: 2

COMP 102

Menu:

• Introductions

• What is COMP112 about?

• Where does COMP112 fit in your degree?

• Course organisation

• What to do NOW!

Admin:
• Switching to COMP102: see me after the lecture, outside lecture room

© Peter Andreae

COMP112: 3

Introductions

Course Organiser

• David Streader Office: CO 260

david.streader@ecs.vuw.ac.nz

Lecturer

• Peter Andreae (Pondy) Office: CO 336

pondy@ecs.vuw.ac.nz

Senior Tutor (Administrative issues regarding labs)

• Zarinah Amin Office: CO 252

Zarinah.Amin@ecs.vuw.ac.nz

Programmer

• Dr. Monique Damito email to report problems: bugs@ecs.vuw.ac.nz

Tutors (Help in labs or via online help system)

• Range of Undergraduates and Graduates

School Office (Forgotten passwords)

• CO 358
© Peter Andreae

COMP112: 4

Essential Info: Lectures, Labs, Assigs, Info

• Lectures:

• Tuesday 10am CO LT122

• Thursday 10am MC LT101

• Friday 11am CO LT122

• Labs:

• One hour session on Monday

• 12-1 or

• 2-3

• Start next week.

Sign up at https://student-sa.victoria.ac.nz

• Assignments:
• weekly, starting next week

• Information:
• ecs.victoria.ac.nz/Courses/COMP102_2018T1, also accessible via Blackboard

Mon Tue Wed Thu Fri

9 Assig due

10 LECTURE LECTURE

11 LECTURE

12 Lab 1

1

2 Lab 2

3

4

5

© Peter Andreae

COMP112: 5

What is COMP 112?

A first course in

• Computer Science

• Computer Graphics

• Software Engineering

• Cybersecurity Engineering

A required course for

• Electronic and Computer Engineering

• Human Genetics

An important course for

• Information Systems

• Media Design

A useful course for Everyone

CS

CGRA

INFO

CYBR

ECEN

SWEN

MDDN

CS

© Peter Andreae

COMP112: 6

To understand the issues and principles of Computer Science, we need to

understand and be able to talk about computation.

• Programming is about specifying the computation that a computer should do

• We need to be able to write, understand, think about, and analyse programs to

address the issues of Computer Science

• Programming is fundamental to the engineering side of Computer Science.

COMP 112 will focus on Object-Oriented programming, using Java.

COMP 112 will also introduce a range of topics in Computer Science.

COMP 112 primarily about programming

© Peter Andreae

COMP112: 7

COMP112 vs COMP 102

• COMP 112 students:

• Group 1: Done NCEA level 3 DT standards in programming

and maybe Computer Science.

• Group 2: Learned programming by themselves (not in a classroom)

• Group 3: Learned programming in another course, institution, school course…..

• Course is for all of you, but targeted at group 1.

• Don't be intimidated by students who have years of programming!!

COMP 102

COMP 112

COMP 103

No programming experience

Programming experience

© Peter Andreae

COMP112: 8

What's your background?

• Introduce yourself to the students around you.

• Say which group you are from (NCEA, self-taught, other course)

• What programming language(s) did you learn?

© Peter Andreae

COMP112: 9

Should you take COMP102 instead?

• COMP102: alternative to COMP112 for BE or BSc(COMP)

• Both courses let you proceed to COMP103

• COMP 112 assumes programming experience:

• variables, loops, conditionals (if’s), input and output

• writing functions/procedures/methods with parameters

• lists or arrays

• little bit of event driven input, object oriented design

• doesn’t care what language you used

• COMP112 gives more breadth of coverage of Computer Science
• also involves more complex programming problems

COMP 102

COMP 112

COMP 103

No programming experience

Some programming experience

eg level 3 NCEA DT programming standards

You can’t do

COMP102 and COMP112

at the same time!

© Peter Andreae

COMP112: 10

Switching to COMP 102

• If you are not confident you have enough programming experience

• See me after a lecture to get switched over

• Within the first two weeks

• Bring a change of course form from the science faculty office.

BUT
• COMP 112 will run very parallel to COMP 102 this year.

• Assignments, tests, and exams will be mostly shared!

• You can pass COMP 112 and get in to COMP 103 with EXACTLY the same work

as you would need in COMP 102.

• COMP 112 lectures will be faster (less boring), and will be wider coverage.

© Peter Andreae

COMP112: 11

Planning Ahead:

• If you are doing BE, or BSc (COMP), BSc (CGRA), or BDI minor

• then you should plan on taking COMP103 in Tri 2.

• If you are doing BE, or BSc (COMP or CGRA)

• Don’t forget the maths courses that you need for 2nd year!

• If you are doing BSc (CGRA)

• Don’t forget DSDN 132

© Peter Andreae

COMP112: 12

Planning Ahead: Mathematics

Engineering maths Mathematics maths

• BE SWEN: ENGR 121, 123 or MATH 161, STAT 193

• BE NWEN: ENGR 121, 123 or MATH 161, 151, STAT 193

• BE ECEN: ENGR 121, 122 or MATH 151, 142

• BSc COMP: ENGR 121, 123 or MATH 161, STAT 193/MATH177

• BSc CGRA: ENGR 121, 123, 122 or MATH 151, 142, 161

Which should you take?

© Peter Andreae

COMP112: 13

Planning Ahead: Mathematics

Which should you take?

• Most students are better off with the Engineering maths option.

• slower start

• focused on application of mathematics

• Students with good mathematics should consider the Mathematics maths option:

• Opens more options in later years

• Better background for postgraduate study, especially in computer graphics

• If you have the following NCEA achievement standards:

• 3.6 (differentiation, AS91578) and 3.7 (integration, AS91579)

• one of 3.5 (complex nos, AS91577) or 3.1 (conics, AS91573) or 3.3 (trigonometry, AS91575)

or 3.13 (probability, AS91585) or 3.14 (probability distributions, AS91586)).

• At least 2 standards must be with grades of merit or excellence.

• If you want to switch
© Peter Andreae

COMP112: 14

Computing is everywhere

• Computer based systems are everywhere

• user application programs – browsers, photo editors, chat programs

• social media and mobile phone apps,…

• computer games

• Information systems in commerce and business

• specialised applications – analysing gene data, X-rays, simulations

• controllers for device – cars, washing machines, TVs, DVD player, etc

• operating systems that run computers, cell phones, etc.

• network communication: internet connections, phone exchanges, fibre optics, cell phone

systems, etc

• ….

⇒ Computing underlies almost all aspects of modern life

© Peter Andreae

COMP112: 15

Computer Science

• Computer Science is the science of Computing

• The study of the computing processes that happen inside computers when they are working.

• How do we design, build, analyse systems that deal with information:

• text

• numbers

• graphics and video

• sound

• sensor and control signals

• ….

© Peter Andreae

COMP112: 16

Computer Science Questions

How do you….
• design a computer system to manage an organisation’s information?

• design an intelligent assistant for your phone that can talk with you?

• enable social interaction over communication networks

• send data securely and reliably over unreliable public networks?

• manage large teams of programmers building insanely complicated programs

• design algorithms that will create new visual effects for augmented reality applications

• design a database so that it is impossible to enter inconsistent data?

• design programming languages to make programming easier

• ensure that the computer program controlling a nuclear reactor or a spacecraft never makes a

mistake?

• design a self-driving car that drives safely on city roads?

• make a safe encryption scheme for electronic commerce?

• determine whether some computation is tractable or even possible?

© Peter Andreae

COMP112: 17

What to do NOW!

• Sign up for the labs: https://student-sa.victoria.ac.nz /

• choose ONE Thu/Fri Lab and ONE Mon/Tue Lab

• Note: You need to be registered for the course

(a) to sign up for a lab

(b) to be able to use the school computers

• Details of course organisation tomorrow

© Peter Andreae

COMP112: 18

Menu

• Introducing yourself

• More course details (FAST!)

• Programs and programming languages

• A first Java Program

Reading:

• Text Book Chapter 1

Announcements:

• Sign up for a lab session! Labs start Monday (12-1pm or 2-3)

• Voting for a Class Rep

• Put a message about yourself on the forum if you want to be class representative; the class

will vote on Monday.

• Trouble with passwords? Go to school office: CO 358

© Peter Andreae

COMP112: 19

Course Organisation

All the details are in the course outline:

• handout

• on the course web page:

http://ecs.victoria.ac.nz/Courses/COMP112_2018T1/

© Peter Andreae

COMP112: 20

Course Web Site

An essential resource for the course:

• http://ecs.victoria.ac.nz/Courses/COMP112_2018T1

(also accessible via link on BlackBoard)

• Course information, announcements, handouts, videos

• Lab Assignment details (times, dates, handouts, files, ...)

• Forum, for questions and discussion

• Info about doing work at home.

• Java documentation

• Other useful links

Primary administrative communication channel.

© Peter Andreae

COMP112: 21

Lab assignments

• Ten assignments (roughly weekly),

• hand out: Thursday

• due: 10am Thursday (a week later) (except #10)

• alternative labs: 6&7, 7&8 more challenging and interesting; your choice

• Apply material from lectures and text book to practical programming problems.

This is where your learning happens!

• Scheduled lab session is to help, but start before the lab!!

• Further work required: expect 6 hours outside labs

• any of the ECS labs,

• on your home computer

• First week’s lab is short, and doesn’t require additional work.

© Peter Andreae

COMP112: 22

Course Organisation

Help Desk

• Online help:

• Forum for general questions;

• email/web form for questions about your code.

• Help Desk: Tutors available at various times at CO242a: see weekly timetable, starting wed in

3rd week.

Study groups

• We will facilitate organising study groups and tutored help sessions

• First year engineering/CompSci tutorials/help sessions

• Excellent way of helping your learning

• Science and Engineering Faculty Awhina programme:

• support for Maori and Pacific Nations students

• Women students support group.

© Peter Andreae

COMP112: 23

Text Book and Handouts

Text Book

• Java Foundations Lewis, DePasquale, Chase

• Same as for COMP103.

• [also OK: Java Software Solutions (6th ed) Lewis and Loftus]

• We consider it a useful resource on Java.

Handouts

• On COMP102 web page.

• Handed out in class if there is a demand for it.

© Peter Andreae

COMP112: 24

Tests and Exams

Terms Test 1:

• 15%

• Monday 9 April 6-7 ?? (rooms to be confirmed)

• NOT in lecture time!

Terms Test 2:

• 15%

• Monday 14 May 6-7 ?? (rooms to be confirmed)

• NOT in lecture time!

Exam:

• 50%

• Date tba (between 9 June and 12 July)

© Peter Andreae

COMP112: 25

Assessment

Mandatory Course Requirement:

• Submit reasonable attempts (at least D) for at least 8 of 10 assignments.

Final Grade:

• Assignments: 20%

• Terms Test 1: 15% (mark boosted to exam mark, if better)

Terms Test 2: 15% (mark boosted to exam mark, if better)

Exam: 50%

To pass the course, you must:

• Satisfy the Mandatory Requirement.

• Get overall grade of C- or better.

• To keep grades comparable with COMP 102,

There will be no C grades!!! ("just passing" will give you a B-)

© Peter Andreae

COMP112: 26

Withdrawal dates

• Early withdrawal with refund: up do Fri 16 March

• no consequences to early withdrawal

• Standard withdrawal without refund: up to Friday 18 May

• Withdrawal recorded

• No grade recorded on transcript

• BUT, withdrawal counts as a fail for determining "Satisfactory Academic Progress"

• Late withdrawal with Dean's permission: after 18 May

• Requires permission of Associate Dean

• Normally given only when special circumstances arise after deadline.

© Peter Andreae

COMP112: 27

Plagiarism (Cheating)

• You must not present anybody else’s work as if it were your own work:

• Basic principle of academic honesty.

• applies to work by other students, friends, relatives, the web, books…

• If you received substantial help, then you must state who helped and how much.

• If you declare any work from someone else, then it isn’t plagiarism!!!

• In COMP102:

• We encourage you to learn together, BUT you must submit your own answers

• If you use code from the assigned text book, or

from the lectures, then you do not need to declare it;

If you use any other code that wasn’t yours, then declare it!

© Peter Andreae

COMP112: 28

Cheating in the assignments.

Assignments are primarily for learning, not assessing

Cheating in the assignments is not worth it!

• You won't learn, so you will probably fail.

• If caught, you'll lose marks --- or worse.

• Assignments have a fairly small contribution to your grade.

© Peter Andreae

COMP112: 29

Lab Facilities

• All scheduled labs are in CO219/238

• Can also use other ECS labs (or other university student computing labs)

• Can also use home computers. (Details on Web Site)

• Lab Hours: 24/7

• Need ID card to access in evenings and weekends

• The labs are for getting work done

• Don’t prevent other people from working

• If you want to play around, go somewhere else

• We expect professional behaviour in the labs.

Read the lab rules!
© Peter Andreae

COMP112: 30

Where to go for Help

Depends on the kind of help needed

• Course organiser / Lecturer, Senior Tutor, tutors (in labs or helpdesk only!)

• Forum (via website)

• On-line help system (via website)

• Help desk (CO 242a)

• ECS School Office: CO 358

• Student Services: http://www.vuw.ac.nz/st_services/

• Science Faculty office: http://www.victoria.ac.nz/science/student-administration

• Science/Engineering/Arch&Des Awhina programme

http://www.victoria.ac.nz/students/support/learning/awhina/

• The Web

© Peter Andreae

COMP112: 1

A program is a specification for the behaviour of a computer:

• What the computer should do when:

• the program is started

• the user types something

• the user clicks the mouse

• a message arrives over the network

• some input from a camera/switch/sensor arrives.

• ……

• Responses may be simple or very complex.

• A program consists of

• descriptions of responses to events/requests

• written as instructions

• in a language the computer can understand:

• Low level, High level, Specialised

What is a Program

© Peter Andreae

COMP112: 2

Machine Language

• What the computer can understand

• Different for each computer

• Very detailed, low-level control of the computer

• Horrible to read

:

:

000XX00X 0X00XXXX

0XX0X00X 00XXX0X0

00X0X00X X0XX0X0X

:

:

copy the contents of memory location 143

into register 1.

add the contents of memory location 116

to the contents of register 1.

copy the contents of register 1

to memory location 181.
Pattern of bits controls

the switches that

operate the CPU

© Peter Andreae

COMP112: 3

High Level Programming Languages

• Designed for people to use

• Designed to be translated into

machine language

• compiled (translated all at once), or

• interpreted (translated one step at a time), or

• compiled to an intermediate language, then

interpreted

Must be

• Precise: no ambiguity about what to do

• Expressive: must be able to specify whatever you want done.

• Readable: People must be able to read the instructions.

• Translatable: able to be translated into machine language

• Concise: not “long-winded” or redundant

Smalltalk

ML

Ada

C++

Eiffel

Prolog

Haskell

Miranda

Java

C#

Python

Scratch

GameMaker

Alice

FORTRAN

LISP

Algol

COBOL

Basic

C

Pascal

Simula

Modula

PHP

Javascript

© Peter Andreae

COMP112: 4

Programming Languages

• Different languages support different “paradigms”:

(ways of designing programs)

• imperative,

• object-oriented,

• functional,

• logic programming, ...

Object Oriented programming languages:

• Organise program around Classes (types) of objects

• Each class of objects can perform a particular set of actions

• Most instructions consist of asking an object to perform

one of its actions

© Peter Andreae

COMP112: 7

NCEA vs University

• NCEA has lots of components with individual grades; not all needed.

• being strategic on which components to do, and which to ignore

• Uni has lots of components that are combined into a single grade; all count.

• being strategic on how much time to put into each component.

• NCEA (internal) may allow resubmission

• Uni generally does NOT allow resubmission

• NCEA focusses on getting Achieved; Excellence is very difficult.

• if you have Achieved, may not be worth trying harder.

• Uni focusses on grades; A’s are more achievable

• Just passing is not enough

• It’s worth doing more because it will increase your grade.

© Peter Andreae

COMP112: 8

Java

• A high-level Object-Oriented programming language

• Designed by Sun Microsystems, early-mid 1990's.

• Widely used in teaching and industry

• Related to C++, but simpler. Similar to C#.

• Good for interactive applications.

• Extensive libraries of predefined classes

to support, UIs, graphics, databases, web applications, ...

• Portable between kinds of computers.

© Peter Andreae

COMP112: 9

A Java Program

import ecs100.*;

/** Program to compute the average of a sequence of numbers */

public class MeanFinder {

public MeanFinder () {

UI.addButton("Compute Mean" , this::doFindMean);

}

/** Ask for sequence of numbers and print the mean */

public void doFindMean () {

ArrayList<Double> numbers = UI.askNumbers("Enter numbers");

if (numbers.size() > 0) { UI.println("Mean = " + this.computeMean(numbers)); }

else { UI.println("You entered no numbers"); }
}

/** Compute the mean (average) of a sequence of numbers */

public double computeMean (ArrayList<Double> nums) {

double total= 0;

for (int num : nums) {

total = total + num;
}

return (total / nums.size());

}
} © Peter Andreae

COMP112: 11

Learning to Program in Java

What’s involved?

• Understand what the language can specify

• Problem solving:

• program design,

• data structuring,

• Programming language (Java):

• syntax and semantics

• style and common patterns

• libraries of code written by other people

• Testing and Debugging (fixing).

• Common patterns in program design.

• Important data structures and algorithms.

© Peter Andreae

COMP112: 12

Constructing Programs in Java

Design

Edit
typing in the Java code

Compile
Translating to executable

instructions

Run
Testing the program to

see that it works

Specification

syntax

errors logic

errors

© Peter Andreae

COMP112: 13

A first Java Program

• Task: Write a temperature conversion program: C ⇔ F

• Step 1: Specification: what is it supposed to do?

• Write a program that will let the user do two things:

• print out the conversion formula

• let user enter temperature in Fahrenheit, and print out in Celsius.

• Step 2: Design:

• For calculate action:

• Ask user for the Fahrenheit value to be converted

• Print Celsius value:

• Calculate Celsius value out of given value (F-32.0)*5.0/9.0

• Print out the answer

Two Actions

⇒ two buttons

© Peter Andreae

COMP112: 14

Designing the Java program

Step 3: Editing

• Need to write this design in the Java language.

 Need an object : a "temperature calculator"

- all actions must be performed on some object

 Need a class to describe the object

 The class needs a name

 The class needs to specify a constructor to set up the interface

 The class needs to specify the two actions its objects can do

 Define methods to do things.

 Give names to the methods

 specify what the methods will do

© Peter Andreae

COMP112: 15

Writing the Java code

import ecs100.*;

/** Program for converting between temperature scales */

public class TemperatureCalculator{

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this:: printFormula);

UI.addButton("F->C", this:: doFahrenheitToCelsius);
}

/** Print conversion formula */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");
}

/** Ask for Fahrenheit and convert to Celsius */

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this. convertToCelsius(fahrenheit);

}

/** Print Fahrenheit temperature as Celsius */

public void convertToCelsius(double temp){

double celsius = (temp - 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

}

Comments

Keywords

Identifiers

Strings

Types

Numbers

Operators

PunctuationI have chosen to split

into two separate

methods.

Could have just one

bigger method.

© Peter Andreae

COMP112: 16

Elements of the program

Program Structure:

• Import
• list the "libraries" you will use (We always use ecs100, and usually java.awt.Color and java.util.*)

• Class
• Top level component of program

• Describes a class of objects

• Specifies the set of actions this kind of object can perform

• (Can also specify information the objects can hold)

• Note name, and conventions for naming.

• Constructor
• Called when object is created

• Typically sets up the user interface (in one-class programs)

• Methods
• Main elements of a class

• Each method describes an action that objects of this class can perform
© Peter Andreae

COMP112: 17

Elements of the program

• Comments vs Code

• Keywords / Identifiers / Strings / Types / numbers / operators and punctuation

• Keywords : words with special meaning in the Java Language

eg: public, class, if, while, …

mostly to do with the structure of the program

• Identifiers : other words, used to refer to things in the program.

mostly made up by the programmer,

some are predefined.

• Strings : bits of text that the program will manipulate.

always surrounded by " and "

• Types : names for kinds of values.

• numbers

• operators and punctuation : + - * / = % . ; , () { } [] ' "

all have precise meanings and rules for use

© Peter Andreae

COMP112: 18

Actions in a program

• Method calls object . method (arguments)

• telling an object to do one of its methods, passing the necessary information as arguments:

UI.println("Celsius = (Fahrenheit - 32) *5/9");

this.printCelsius(fahrenheit);

UI.drawRect(100, 200, 50, 75);

UI.addButton(“Draw", this::doDraw);

• What are the possible objects? what are the possible methods.

• UI object has methods for

• Printing, asking, drawing, buttons, ….

• this object – the one we are defining – has the methods being defined in the class

• Assignment statements place = value

• putting a value in a place

double celsius = (fahren – 32.0) * 5.0 / 9.0;

double fahren= UI.askDouble(“Fahrenheit:");

© Peter Andreae

COMP112: 19

BlueJ

• BlueJ is an IDE for Java
(Integrated Development Environment)

• Class manager, for keeping track of the files in your program

• Editor for entering and modifying the program

• Built-in compiler interface to help compile and fix the syntax errors

• Special interface to make it easy to construct objects and call methods on them.

• Let’s do it… editing in BlueJ

© Peter Andreae

COMP112: 20

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Let’s do it…

© Peter Andreae

COMP112: 21

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Step 5: Running and Testing

• Must run the program and test it on lots of different input.

• BlueJ makes it easy to run individual methods.

© Peter Andreae

COMP112: 22

Using BlueJ for Java Programs

Simple use of BlueJ for simple programs:

1. Edit the class file(s) to define the methods

2. Compile the class

3. Create an object of the class

• right click on the rectangle representing the class

• select “new…..”

⇒ a red square representing the object

4. Call methods on the object

• right click on the square representing the object

• select the method.

© Peter Andreae

COMP112: 26

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

• Lectures have examples that you can use as models for your assignment programs

© Peter Andreae

COMP112: 27

A new program

• Calculator to convert inches to centimeters

import ecs100.*;

/** Program to convert inches to centimeters */

public class TemperatureCalculator{

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this.convertToCelsius(fahrenheit);

}

public void convertToCelsius(double temp){

double celsius = (temp – 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
} © Peter Andreae

COMP112: 28

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

BUT

• It can be hard to work out how to modify

• It is very limiting

Need to understand the language

⇒ vocabulary

⇒ syntax rules

⇒ meaning (“semantics”)

© Peter Andreae

COMP112: 29

Syntax rules: Program structure

• First version

〈import statements〉

public class

〈constructor description〉

{

}

〈classname〉

Comments can be

added anywhere

import ecs100.*;

import java.awt.Color;

〈method description〉

© Peter Andreae

COMP112: 30

Comments

Three kinds of comments:

• Documentation comments

eg /** Program for converting between temperature scales */

• end-of-line comments

eg double celsius = (fahren – 32.0) * 5.0 / 9.0; // compute answer

• anywhere comments

eg /* double fahren = celsius * 9 / 5 + 32;

UI.println(celsius + “C is " + fahren + " F"); */

/** 〈text of comment〉 */

// 〈text of comment〉

Top of class,

Before each method

at end of any line

/* 〈text of comment〉 */

multi-line, or

middle of line, or …

© Peter Andreae

COMP112: 31

Constructor Definitions

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this :: printFormula);

UI.addButton("F->C", this :: doFahrenheitToCelsius);
}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public ()〈class-name〉

instructions to perform when

creating a new object

© Peter Andreae

COMP112: 32

Method Definitions

/** Print out the conversion formulas */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public void ()〈name〉 〈parameters〉

instructions to perform

this action

Specifying the information

the action needs.

May be empty

© Peter Andreae

COMP112: 33

“Statements” (instructions)

(Single instructions are called “statements” for silly historical reasons!)

Two important kinds of statements:

• method call statement:

• tell some object to perform one of its methods.

eg: tell the UI object to ask the user for a number

eg: tell this object to print the celsius value of a temperature

eg: tell the UI object to print out a string

eg: tell the UI object to add a button

• assignment statement

• compute some value and put it in a place in memory.

© Peter Andreae

COMP112: 34

Method Calls

/** Print out the conversion formulas */

public void printFormula(){

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

• Method call Statement:

who . what (data to use) ;

UI . println (“Celsius = (Fahren…”) ;

• Meaning of Statement:

• Tell the object

to perform the method

using the argument values provided

〈object〉 〈methodname〉 〈arguments〉. () ;

© Peter Andreae

COMP112: 35

Objects and their methods in Java

• What objects are there?

Predefined eg:

• UI a "User Interface" window with several panes

 initialize() quit() addButton(…) println(….) drawRect(…) clearGraphics(),

askDouble(…) askString(…)

• Math methods for mathematical calculations

 random(), sin(…)

• System representing the computer system

 currentTimeMillis()

Others

• this The object(s) defined by this class in your program

• New objects that your program creates

Some method calls return a value

© Peter Andreae

COMP112: 36

Values / Data

There are lots of different kinds ("Types") of values:

• Numbers

• Integers (int or long) 42 -194573203 Integer.MAX_VALUE

• real numbers (double or float) 42.0 16.43 6.626e-34 Double.NAN,

Double.POSITIVE_INFINITY, Double.MIN_VALUE

Math.PI

• …

• Characters (char) 'X' '4'

• Text (String) " F -> "

• Colours (Color) Color.red Color.green

• Methods (strictly: Lambdas) this::doFahrenheitToCelsius

• Other Objects

• …

