
© Peter Andreae

COMP112: 1

A program is a specification for the behaviour of a computer:

• What the computer should do when:

• the program is started

• the user types something

• the user clicks the mouse

• a message arrives over the network

• some input from a camera/switch/sensor arrives.

• ……

• Responses may be simple or very complex.

• A program consists of

• descriptions of responses to events/requests

• written as instructions

• in a language the computer can understand:

• Low level, High level, Specialised

What is a Program

© Peter Andreae

COMP112: 2

Machine Language

• What the computer can understand

• Different for each computer

• Very detailed, low-level control of the computer

• Horrible to read

:

:

000XX00X 0X00XXXX

0XX0X00X 00XXX0X0

00X0X00X X0XX0X0X

:

:

copy the contents of memory location 143

into register 1.

add the contents of memory location 116

to the contents of register 1.

copy the contents of register 1

to memory location 181.
Pattern of bits controls

the switches that

operate the CPU

© Peter Andreae

COMP112: 3

High Level Programming Languages

• Designed for people to use

• Designed to be translated into

machine language

• compiled (translated all at once), or

• interpreted (translated one step at a time), or

• compiled to an intermediate language, then

interpreted

Must be

• Precise: no ambiguity about what to do

• Expressive: must be able to specify whatever you want done.

• Readable: People must be able to read the instructions.

• Translatable: able to be translated into machine language

• Concise: not “long-winded” or redundant

Smalltalk

ML

Ada

C++

Eiffel

Prolog

Haskell

Miranda

Java

C#

Python

Scratch

GameMaker

Alice

FORTRAN

LISP

Algol

COBOL

Basic

C

Pascal

Simula

Modula

PHP

Javascript

© Peter Andreae

COMP112: 4

Programming Languages

• Different languages support different “paradigms”:

(ways of designing programs)

• imperative,

• object-oriented,

• functional,

• logic programming, ...

Object Oriented programming languages:

• Organise program around Classes (types) of objects

• Each class of objects can perform a particular set of actions

• Most instructions consist of asking an object to perform

one of its actions

© Peter Andreae

COMP112: 7

NCEA vs University

• NCEA has lots of components with individual grades; not all needed.

• being strategic on which components to do, and which to ignore

• Uni has lots of components that are combined into a single grade; all count.

• being strategic on how much time to put into each component.

• NCEA (internal) may allow resubmission

• Uni generally does NOT allow resubmission

• NCEA focusses on getting Achieved; Excellence is very difficult.

• if you have Achieved, may not be worth trying harder.

• Uni focusses on grades; A’s are more achievable

• Just passing is not enough

• It’s worth doing more because it will increase your grade.

© Peter Andreae

COMP112: 8

Java

• A high-level Object-Oriented programming language

• Designed by Sun Microsystems, early-mid 1990's.

• Widely used in teaching and industry

• Related to C++, but simpler. Similar to C#.

• Good for interactive applications.

• Extensive libraries of predefined classes

to support, UIs, graphics, databases, web applications, ...

• Portable between kinds of computers.

© Peter Andreae

COMP112: 9

A Java Program

import ecs100.*;

/** Program to compute the average of a sequence of numbers */

public class MeanFinder {

public MeanFinder () {

UI.addButton("Compute Mean" , this::doFindMean);

}

/** Ask for sequence of numbers and print the mean */

public void doFindMean () {

ArrayList<Double> numbers = UI.askNumbers("Enter numbers");

if (numbers.size() > 0) { UI.println("Mean = " + this.computeMean(numbers)); }

else { UI.println("You entered no numbers"); }
}

/** Compute the mean (average) of a sequence of numbers */

public double computeMean (ArrayList<Double> nums) {

double total= 0;

for (int num : nums) {

total = total + num;
}

return (total / nums.size());

}
}

© Peter Andreae

COMP112: 11

Learning to Program in Java

What’s involved?

• Understand what the language can specify

• Problem solving:

• program design,

• data structuring,

• Programming language (Java):

• syntax and semantics

• style and common patterns

• libraries of code written by other people

• Testing and Debugging (fixing).

• Common patterns in program design.

• Important data structures and algorithms.

© Peter Andreae

COMP112: 12

Constructing Programs in Java

Design

Edit
typing in the Java code

Compile
Translating to executable

instructions

Run
Testing the program to

see that it works

Specification

syntax

errors logic

errors

© Peter Andreae

COMP112: 13

A first Java Program

• Task: Write a temperature conversion program: C ⇔ F

• Step 1: Specification: what is it supposed to do?

• Write a program that will let the user do two things:

• print out the conversion formula

• let user enter temperature in Fahrenheit, and print out in Celsius.

• Step 2: Design:

• For calculate action:

• Ask user for the Fahrenheit value to be converted

• Print Celsius value:

• Calculate Celsius value out of given value (F-32.0)*5.0/9.0

• Print out the answer

Two Actions

⇒ two buttons

© Peter Andreae

COMP112: 14

Designing the Java program

Step 3: Editing

• Need to write this design in the Java language.

 Need an object : a "temperature calculator"

- all actions must be performed on some object

 Need a class to describe the object

 The class needs a name

 The class needs to specify a constructor to set up the interface

 The class needs to specify the two actions its objects can do

 Define methods to do things.

 Give names to the methods

 specify what the methods will do

© Peter Andreae

COMP112: 15

Writing the Java code

import ecs100.*;

/** Program for converting between temperature scales */

public class TemperatureCalculator{

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this:: printFormula);

UI.addButton("F->C", this:: doFahrenheitToCelsius);
}

/** Print conversion formula */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");
}

/** Ask for Fahrenheit and convert to Celsius */

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this. convertToCelsius(fahrenheit);

}

/** Print Fahrenheit temperature as Celsius */

public void convertToCelsius(double temp){

double celsius = (temp - 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

}

Comments

Keywords

Identifiers

Strings

Types

Numbers

Operators

PunctuationI have chosen to split

into two separate

methods.

Could have just one

bigger method.

© Peter Andreae

COMP112: 16

Elements of the program

Program Structure:

• Import
• list the "libraries" you will use (We always use ecs100, and usually java.awt.Color and java.util.*)

• Class
• Top level component of program

• Describes a class of objects

• Specifies the set of actions this kind of object can perform

• (Can also specify information the objects can hold)

• Note name, and conventions for naming.

• Constructor
• Called when object is created

• Typically sets up the user interface (in one-class programs)

• Methods
• Main elements of a class

• Each method describes an action that objects of this class can perform

© Peter Andreae

COMP112: 17

Elements of the program

• Comments vs Code

• Keywords / Identifiers / Strings / Types / numbers / operators and punctuation

• Keywords : words with special meaning in the Java Language

eg: public, class, if, while, …

mostly to do with the structure of the program

• Identifiers : other words, used to refer to things in the program.

mostly made up by the programmer,

some are predefined.

• Strings : bits of text that the program will manipulate.

always surrounded by " and "

• Types : names for kinds of values.

• numbers

• operators and punctuation : + - * / = % . ; , () { } [] ' "

all have precise meanings and rules for use

© Peter Andreae

COMP112: 18

Actions in a program

• Method calls object . method (arguments)

• telling an object to do one of its methods, passing the necessary information as arguments:

UI.println("Celsius = (Fahrenheit - 32) *5/9");

this.printCelsius(fahrenheit);

UI.drawRect(100, 200, 50, 75);

UI.addButton(“Draw", this::doDraw);

• What are the possible objects? what are the possible methods.

• UI object has methods for

• Printing, asking, drawing, buttons, ….

• this object – the one we are defining – has the methods being defined in the class

• Assignment statements place = value

• putting a value in a place

double celsius = (fahren – 32.0) * 5.0 / 9.0;

double fahren= UI.askDouble(“Fahrenheit:");

© Peter Andreae

COMP112: 19

BlueJ

• BlueJ is an IDE for Java
(Integrated Development Environment)

• Class manager, for keeping track of the files in your program

• Editor for entering and modifying the program

• Built-in compiler interface to help compile and fix the syntax errors

• Special interface to make it easy to construct objects and call methods on them.

• Let’s do it… editing in BlueJ

© Peter Andreae

COMP112: 20

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Let’s do it…

© Peter Andreae

COMP112: 21

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Step 5: Running and Testing

• Must run the program and test it on lots of different input.

• BlueJ makes it easy to run individual methods.

© Peter Andreae

COMP112: 22

Using BlueJ for Java Programs

Simple use of BlueJ for simple programs:

1. Edit the class file(s) to define the methods

2. Compile the class

3. Create an object of the class

• right click on the rectangle representing the class

• select “new…..”

⇒ a red square representing the object

4. Call methods on the object

• right click on the square representing the object

• select the method.

© Peter Andreae

COMP112: 26

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

• Lectures have examples that you can use as models for your assignment programs

© Peter Andreae

COMP112: 27

A new program

• Calculator to convert inches to centimeters

import ecs100.*;

/** Program to convert inches to centimeters */

public class TemperatureCalculator{

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this.convertToCelsius(fahrenheit);

}

public void convertToCelsius(double temp){

double celsius = (temp – 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

© Peter Andreae

COMP112: 28

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

BUT

• It can be hard to work out how to modify

• It is very limiting

Need to understand the language

⇒ vocabulary

⇒ syntax rules

⇒ meaning (“semantics”)

© Peter Andreae

COMP112: 29

Syntax rules: Program structure

• First version

〈import statements〉

public class

〈constructor description〉

{

}

〈classname〉

Comments can be

added anywhere

import ecs100.*;

import java.awt.Color;

〈method description〉

© Peter Andreae

COMP112: 30

Comments

Three kinds of comments:

• Documentation comments

eg /** Program for converting between temperature scales */

• end-of-line comments

eg double celsius = (fahren – 32.0) * 5.0 / 9.0; // compute answer

• anywhere comments

eg /* double fahren = celsius * 9 / 5 + 32;

UI.println(celsius + “C is " + fahren + " F"); */

/** 〈text of comment〉 */

// 〈text of comment〉

Top of class,

Before each method

at end of any line

/* 〈text of comment〉 */

multi-line, or

middle of line, or …

© Peter Andreae

COMP112: 31

Constructor Definitions

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this :: printFormula);

UI.addButton("F->C", this :: doFahrenheitToCelsius);
}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public ()〈class-name〉

instructions to perform when

creating a new object

© Peter Andreae

COMP112: 32

Method Definitions

/** Print out the conversion formulas */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public void ()〈name〉 〈parameters〉

instructions to perform

this action

Specifying the information

the action needs.

May be empty

© Peter Andreae

COMP112: 33

“Statements” (instructions)

(Single instructions are called “statements” for silly historical reasons!)

Two important kinds of statements:

• method call statement:

• tell some object to perform one of its methods.

eg: tell the UI object to ask the user for a number

eg: tell this object to print the celsius value of a temperature

eg: tell the UI object to print out a string

eg: tell the UI object to add a button

• assignment statement

• compute some value and put it in a place in memory.

© Peter Andreae

COMP112: 34

Method Calls

/** Print out the conversion formulas */

public void printFormula(){

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

• Method call Statement:

who . what (data to use) ;

UI . println (“Celsius = (Fahren…”) ;

• Meaning of Statement:

• Tell the object

to perform the method

using the argument values provided

〈object〉 〈methodname〉 〈arguments〉. () ;

© Peter Andreae

COMP112: 35

Objects and their methods in Java

• What objects are there?

Predefined eg:

• UI a "User Interface" window with several panes

 initialize() quit() addButton(…) println(….) drawRect(…) clearGraphics(),

askDouble(…) askString(…)

• Math methods for mathematical calculations

 random(), sin(…)

• System representing the computer system

 currentTimeMillis()

Others

• this The object(s) defined by this class in your program

• New objects that your program creates

Some method calls return a value

© Peter Andreae

COMP112: 36

Values / Data

There are lots of different kinds ("Types") of values:

• Numbers

• Integers (int or long) 42 -194573203 Integer.MAX_VALUE

• real numbers (double or float) 42.0 16.43 6.626e-34 Double.NAN,

Double.POSITIVE_INFINITY, Double.MIN_VALUE

Math.PI

• …

• Characters (char) 'X' '4'

• Text (String) " F -> "

• Colours (Color) Color.red Color.green

• Methods (strictly: Lambdas) this::doFahrenheitToCelsius

• Other Objects

• …

