
© Peter Andreae

COMP112: 1

A program is a specification for the behaviour of a computer:

• What the computer should do when:

• the program is started

• the user types something

• the user clicks the mouse

• a message arrives over the network

• some input from a camera/switch/sensor arrives.

• ……

• Responses may be simple or very complex.

• A program consists of

• descriptions of responses to events/requests

• written as instructions

• in a language the computer can understand:

• Low level, High level, Specialised

What is a Program

© Peter Andreae

COMP112: 2

Machine Language

• What the computer can understand

• Different for each computer

• Very detailed, low-level control of the computer

• Horrible to read

:

:

000XX00X 0X00XXXX

0XX0X00X 00XXX0X0

00X0X00X X0XX0X0X

:

:

copy the contents of memory location 143

into register 1.

add the contents of memory location 116

to the contents of register 1.

copy the contents of register 1

to memory location 181.
Pattern of bits controls

the switches that

operate the CPU

© Peter Andreae

COMP112: 3

High Level Programming Languages

• Designed for people to use

• Designed to be translated into

machine language

• compiled (translated all at once), or

• interpreted (translated one step at a time), or

• compiled to an intermediate language, then

interpreted

Must be

• Precise: no ambiguity about what to do

• Expressive: must be able to specify whatever you want done.

• Readable: People must be able to read the instructions.

• Translatable: able to be translated into machine language

• Concise: not “long-winded” or redundant

Smalltalk

ML

Ada

C++

Eiffel

Prolog

Haskell

Miranda

Java

C#

Python

Scratch

GameMaker

Alice

FORTRAN

LISP

Algol

COBOL

Basic

C

Pascal

Simula

Modula

PHP

Javascript

© Peter Andreae

COMP112: 4

Programming Languages

• Different languages support different “paradigms”:

(ways of designing programs)

• imperative,

• object-oriented,

• functional,

• logic programming, ...

Object Oriented programming languages:

• Organise program around Classes (types) of objects

• Each class of objects can perform a particular set of actions

• Most instructions consist of asking an object to perform

one of its actions

© Peter Andreae

COMP112: 7

NCEA vs University

• NCEA has lots of components with individual grades; not all needed.

• being strategic on which components to do, and which to ignore

• Uni has lots of components that are combined into a single grade; all count.

• being strategic on how much time to put into each component.

• NCEA (internal) may allow resubmission

• Uni generally does NOT allow resubmission

• NCEA focusses on getting Achieved; Excellence is very difficult.

• if you have Achieved, may not be worth trying harder.

• Uni focusses on grades; A’s are more achievable

• Just passing is not enough

• It’s worth doing more because it will increase your grade.

© Peter Andreae

COMP112: 8

Java

• A high-level Object-Oriented programming language

• Designed by Sun Microsystems, early-mid 1990's.

• Widely used in teaching and industry

• Related to C++, but simpler. Similar to C#.

• Good for interactive applications.

• Extensive libraries of predefined classes

to support, UIs, graphics, databases, web applications, ...

• Portable between kinds of computers.

© Peter Andreae

COMP112: 9

A Java Program

import ecs100.*;

/** Program to compute the average of a sequence of numbers */

public class MeanFinder {

public MeanFinder () {

UI.addButton("Compute Mean" , this::doFindMean);

}

/** Ask for sequence of numbers and print the mean */

public void doFindMean () {

ArrayList<Double> numbers = UI.askNumbers("Enter numbers");

if (numbers.size() > 0) { UI.println("Mean = " + this.computeMean(numbers)); }

else { UI.println("You entered no numbers"); }
}

/** Compute the mean (average) of a sequence of numbers */

public double computeMean (ArrayList<Double> nums) {

double total= 0;

for (int num : nums) {

total = total + num;
}

return (total / nums.size());

}
}

© Peter Andreae

COMP112: 11

Learning to Program in Java

What’s involved?

• Understand what the language can specify

• Problem solving:

• program design,

• data structuring,

• Programming language (Java):

• syntax and semantics

• style and common patterns

• libraries of code written by other people

• Testing and Debugging (fixing).

• Common patterns in program design.

• Important data structures and algorithms.

© Peter Andreae

COMP112: 12

Constructing Programs in Java

Design

Edit
typing in the Java code

Compile
Translating to executable

instructions

Run
Testing the program to

see that it works

Specification

syntax

errors logic

errors

© Peter Andreae

COMP112: 13

A first Java Program

• Task: Write a temperature conversion program: C ⇔ F

• Step 1: Specification: what is it supposed to do?

• Write a program that will let the user do two things:

• print out the conversion formula

• let user enter temperature in Fahrenheit, and print out in Celsius.

• Step 2: Design:

• For calculate action:

• Ask user for the Fahrenheit value to be converted

• Print Celsius value:

• Calculate Celsius value out of given value (F-32.0)*5.0/9.0

• Print out the answer

Two Actions

⇒ two buttons

© Peter Andreae

COMP112: 14

Designing the Java program

Step 3: Editing

• Need to write this design in the Java language.

 Need an object : a "temperature calculator"

- all actions must be performed on some object

 Need a class to describe the object

 The class needs a name

 The class needs to specify a constructor to set up the interface

 The class needs to specify the two actions its objects can do

 Define methods to do things.

 Give names to the methods

 specify what the methods will do

© Peter Andreae

COMP112: 15

Writing the Java code

import ecs100.*;

/** Program for converting between temperature scales */

public class TemperatureCalculator{

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this:: printFormula);

UI.addButton("F->C", this:: doFahrenheitToCelsius);
}

/** Print conversion formula */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");
}

/** Ask for Fahrenheit and convert to Celsius */

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this. convertToCelsius(fahrenheit);

}

/** Print Fahrenheit temperature as Celsius */

public void convertToCelsius(double temp){

double celsius = (temp - 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

}

Comments

Keywords

Identifiers

Strings

Types

Numbers

Operators

PunctuationI have chosen to split

into two separate

methods.

Could have just one

bigger method.

© Peter Andreae

COMP112: 16

Elements of the program

Program Structure:

• Import
• list the "libraries" you will use (We always use ecs100, and usually java.awt.Color and java.util.*)

• Class
• Top level component of program

• Describes a class of objects

• Specifies the set of actions this kind of object can perform

• (Can also specify information the objects can hold)

• Note name, and conventions for naming.

• Constructor
• Called when object is created

• Typically sets up the user interface (in one-class programs)

• Methods
• Main elements of a class

• Each method describes an action that objects of this class can perform

© Peter Andreae

COMP112: 17

Elements of the program

• Comments vs Code

• Keywords / Identifiers / Strings / Types / numbers / operators and punctuation

• Keywords : words with special meaning in the Java Language

eg: public, class, if, while, …

mostly to do with the structure of the program

• Identifiers : other words, used to refer to things in the program.

mostly made up by the programmer,

some are predefined.

• Strings : bits of text that the program will manipulate.

always surrounded by " and "

• Types : names for kinds of values.

• numbers

• operators and punctuation : + - * / = % . ; , () { } [] ' "

all have precise meanings and rules for use

© Peter Andreae

COMP112: 18

Actions in a program

• Method calls object . method (arguments)

• telling an object to do one of its methods, passing the necessary information as arguments:

UI.println("Celsius = (Fahrenheit - 32) *5/9");

this.printCelsius(fahrenheit);

UI.drawRect(100, 200, 50, 75);

UI.addButton(“Draw", this::doDraw);

• What are the possible objects? what are the possible methods.

• UI object has methods for

• Printing, asking, drawing, buttons, ….

• this object – the one we are defining – has the methods being defined in the class

• Assignment statements place = value

• putting a value in a place

double celsius = (fahren – 32.0) * 5.0 / 9.0;

double fahren= UI.askDouble(“Fahrenheit:");

© Peter Andreae

COMP112: 19

BlueJ

• BlueJ is an IDE for Java
(Integrated Development Environment)

• Class manager, for keeping track of the files in your program

• Editor for entering and modifying the program

• Built-in compiler interface to help compile and fix the syntax errors

• Special interface to make it easy to construct objects and call methods on them.

• Let’s do it… editing in BlueJ

© Peter Andreae

COMP112: 20

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Let’s do it…

© Peter Andreae

COMP112: 21

Compiling and Running

Step 4: Compiling

• If there are syntax errors (invalid Java)

then the compiler will complain and list all the errors

⇒ read the error message to work out what's wrong

⇒ fixing syntax errors until it compiles without complaint

• BlueJ makes this process easier

Step 5: Running and Testing

• Must run the program and test it on lots of different input.

• BlueJ makes it easy to run individual methods.

© Peter Andreae

COMP112: 22

Using BlueJ for Java Programs

Simple use of BlueJ for simple programs:

1. Edit the class file(s) to define the methods

2. Compile the class

3. Create an object of the class

• right click on the rectangle representing the class

• select “new…..”

⇒ a red square representing the object

4. Call methods on the object

• right click on the square representing the object

• select the method.

© Peter Andreae

COMP112: 26

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

• Lectures have examples that you can use as models for your assignment programs

© Peter Andreae

COMP112: 27

A new program

• Calculator to convert inches to centimeters

import ecs100.*;

/** Program to convert inches to centimeters */

public class TemperatureCalculator{

public void doFahrenheitToCelsius(){

double fahrenheit = UI.askDouble("Farenheit:");

this.convertToCelsius(fahrenheit);

}

public void convertToCelsius(double temp){

double celsius = (temp – 32.0) * 5.0 / 9.0;

UI.println(temp + " F -> " + celsius + " C");
}

© Peter Andreae

COMP112: 28

Writing your own programs

How?

• Use other programs as models, and then modify

• Very useful strategy

BUT

• It can be hard to work out how to modify

• It is very limiting

Need to understand the language

⇒ vocabulary

⇒ syntax rules

⇒ meaning (“semantics”)

© Peter Andreae

COMP112: 29

Syntax rules: Program structure

• First version

〈import statements〉

public class

〈constructor description〉

{

}

〈classname〉

Comments can be

added anywhere

import ecs100.*;

import java.awt.Color;

〈method description〉

© Peter Andreae

COMP112: 30

Comments

Three kinds of comments:

• Documentation comments

eg /** Program for converting between temperature scales */

• end-of-line comments

eg double celsius = (fahren – 32.0) * 5.0 / 9.0; // compute answer

• anywhere comments

eg /* double fahren = celsius * 9 / 5 + 32;

UI.println(celsius + “C is " + fahren + " F"); */

/** 〈text of comment〉 */

// 〈text of comment〉

Top of class,

Before each method

at end of any line

/* 〈text of comment〉 */

multi-line, or

middle of line, or …

© Peter Andreae

COMP112: 31

Constructor Definitions

/** Constructor: Set up interface */

public TemperatureCalculator (){

UI.addButton("Formula", this :: printFormula);

UI.addButton("F->C", this :: doFahrenheitToCelsius);
}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public ()〈class-name〉

instructions to perform when

creating a new object

© Peter Andreae

COMP112: 32

Method Definitions

/** Print out the conversion formulas */

public void printFormula () {

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

〈Doc Comment〉 〈Header〉 〈Body〉{ }

public void ()〈name〉 〈parameters〉

instructions to perform

this action

Specifying the information

the action needs.

May be empty

© Peter Andreae

COMP112: 33

“Statements” (instructions)

(Single instructions are called “statements” for silly historical reasons!)

Two important kinds of statements:

• method call statement:

• tell some object to perform one of its methods.

eg: tell the UI object to ask the user for a number

eg: tell this object to print the celsius value of a temperature

eg: tell the UI object to print out a string

eg: tell the UI object to add a button

• assignment statement

• compute some value and put it in a place in memory.

© Peter Andreae

COMP112: 34

Method Calls

/** Print out the conversion formulas */

public void printFormula(){

UI.println("Celsius = (Fahrenheit - 32) *5/9");

}

• Method call Statement:

who . what (data to use) ;

UI . println (“Celsius = (Fahren…”) ;

• Meaning of Statement:

• Tell the object

to perform the method

using the argument values provided

〈object〉 〈methodname〉 〈arguments〉. () ;

© Peter Andreae

COMP112: 35

Objects and their methods in Java

• What objects are there?

Predefined eg:

• UI a "User Interface" window with several panes

 initialize() quit() addButton(…) println(….) drawRect(…) clearGraphics(),

askDouble(…) askString(…)

• Math methods for mathematical calculations

 random(), sin(…)

• System representing the computer system

 currentTimeMillis()

Others

• this The object(s) defined by this class in your program

• New objects that your program creates

Some method calls return a value

© Peter Andreae

COMP112: 36

Values / Data

There are lots of different kinds ("Types") of values:

• Numbers

• Integers (int or long) 42 -194573203 Integer.MAX_VALUE

• real numbers (double or float) 42.0 16.43 6.626e-34 Double.NAN,

Double.POSITIVE_INFINITY, Double.MIN_VALUE

Math.PI

• …

• Characters (char) 'X' '4'

• Text (String) " F -> "

• Colours (Color) Color.red Color.green

• Methods (strictly: Lambdas) this::doFahrenheitToCelsius

• Other Objects

• …

