
© Peter Andreae

COMP112: 77

Programs that make decisions

• Programs that perform the same action every time are boring!

• You can vary the action in a program

• By clicking different buttons

• By getting input from the user:

String name = UI.askString("name:");

:

UI.printf("Hello %s, how are you?", name);

© Peter Andreae

COMP112: 78

Programs that make decisions

• But this just changes the values, not the action itself.

• To vary the action inside a method:

• Need a conditional, or choice, statement:

IF some condition is true

THEN do this action

ELSE do that action

We do this in English instructions all the time:

IF you solved the mouse maze

THEN raise your hand

IF your name starts with “A” or your name starts with “J”

THEN draw a small circle in the top left corner of your notes

ELSE draw a small square in the bottom right corner of your notes.

© Peter Andreae

COMP112: 79

Decisions in Java

Java has an if … else … statement:

• Can do an action only in some circumstances:

if (countTimes > 10) {

UI.clearGraphics();

this.drawBoard(10, 10, 100);

}

• Can choose between different actions:

if (userChoice.equals(“Yes")){

UI.drawImage("Nod.png", left, top);

}

else {

UI.drawImage(“Shake.png“, left, top);

}

© Peter Andreae

COMP112: 80

Java: if and if … else LDC 4.2

• Two forms of the if statement:

if (〈condition〉) {

〈actions to perform if condition is true 〉
}

⇒ just skip the actions when the condition is not true !

and

if (〈condition 〉) {

〈actions to perform if condition is true 〉
}

else {

〈actions to perform if condition is false 〉
}

Note: the { … } represent a "Block" – a sequence of

actions that are wrapped up together into a single statement.

© Peter Andreae

COMP112: 81

if … vs if … else …

if (boolean valued expression {

}

else

statements

)

statements

{

}

© Peter Andreae

COMP112: 82

Method with a condition

/** Ask for amount and currency; print note if –ve, print value.*/

public void convertMoney() { ;

double amount = UI.askDouble("Enter amount $NZ");

if (amount < 0) {

UI.println("Note: you have entered a debt!");

}

String currency = UI.askString ("Enter currency (US or Aus)");

if (currency.equals("US")) {

UI.printf("$NZ%.2f = $US%.2f\n", amount, (amount * 0.668));

}

else {

UI.printf("$NZ%.2f = $AUS%.2f\n", amountt, (amount * 0.893));

}
}

What is printf?

Like println, but can control

the format:

%.2f  floating point, 2dp

%d  integer

%s  string

\n  new line

© Peter Andreae

COMP112: 83

Multiway choice: if … else if … else if …

• Can put another if statement in the else part:

if (〈condition1 〉) {

〈actions to perform if condition1 is true〉
:

}

else if (〈condition2 〉) {

〈actions to perform if condition 2 is true (but not condition 1)〉
:

}

else if (〈condition3 〉) {

〈actions to perform if condition 3 is true (but not conditions 1, 2)〉
:

}

else {

〈actions to perform if other conditions are false〉
:

}
© Peter Andreae

COMP112: 84

Example with multiway choice

public void convertMoney() {

double amount = UI.askDouble("Enter amount");

if (amount < 0) {

UI.println("Note: you have entered a debt!");
}

String currency = UI.askString("Enter currency (US or Aus)");

if (currency.equals("US")) {

UI.printf("$NZ%.2f = $US%.2f%n", amount , amount * 0.668);

}

else if (currency.equals("Aus")) {

UI.printf("$NZ%.2f = $AUS%.2f\n", amount , amount * 0.893);

}

else {

UI.printf("I cannot convert to %s currency%n", currency);

}

}

© Peter Andreae

COMP112: 85

Example 2 with multi way choice

public void printPay(int day, int hours) {

double rate = 13.45;

double pay = rate * hours;

if (day > 7) {

UI.println(" Day must be between 1 and 7 ");
}

else if (day < 6) {

UI.printf("Pay = $ %.2f %n", pay);
}

else if (day == 6) {

pay = pay * 1.5;

UI.printf("Pay = $ %.2f (time-and-a-half) %n", pay);
}

else {

pay = pay * 2;

UI.printf("Pay = $ %.2f (double-time) %n", pay);
}

} © Peter Andreae

COMP112: 86

Boolean expressions LDC 4.1

What can go in the condition of an if statement?

• A Boolean value – a value that is either true or false.

• Boolean expressions:

• constant values: true, false

• numeric comparisons: (x > 0) (day <= 7),

(x == y), (day != 7)

• boolean method calls: month.equals("July")

word.contains("th")

• boolean variables: outlineOnly

[if declared boolean outlineOnly;]

• logical operators: !, &&, || (not, and, or)

(x > 0 && x < 7 && outlineOnly)

(month.startsWith("Ju") || month.equals("May"))

(! fileModified || ! (cmd.equals("exit")))

more methods on String

equalsIgnoreCase("John”)

startsWith(“Ab”)

endsWith(“ies”)

© Peter Andreae

COMP112: 87

Writing Boolean expressions

Mostly, boolean expressions are straightforward,
There are just a few traps:

• == is the "equals" operator for simple values,

= is assignment

(age == 15) vs (age = 15);

• But only use == for numbers (or characters, or references)

• Use the equals method for Strings, not ==
(occasionally == will give the right answer by chance!)

cur.equals("US") vs cur == "US"

• String equality is case sensitive:

“NZ".equals(“nz") → false

“NZ".equalsIgnoreCase(“nz") → true

© Peter Andreae

COMP112: 88

Boolean Variables

• A boolean value is a value!

⇒ it can be stored in a variable.

• Useful if the program needs to remember some option.

• Must declare the variable, and assign to it, before using it

boolean printSteps = UI.askBoolean("Print all steps?");

:

if (printSteps)

UI.println("Processed input");

:

if (printSteps)

UI.println("Computed Statistics");

:

© Peter Andreae

COMP112: 89

Compound Boolean expressions: operators

Using logical operators:

Not: ! eg (! currency.equalsIgnoreCase(“US"))

And: && eg (x > 0 && x < 7 && outlineOnly)

Evaluates each conjunct in turn.

If any conjunct false, then value of whole expression is false

If all conjuncts true, then value of whole expression is true

Or: || eg (month.startsWith("Ju") || month.equals("May"))

Evaluates each disjunct in turn.

If any disjunct true, then value of whole expression is true

If all disjuncts false, then value of whole expression is false

Can combine into complicated expressions:

(! fileModified || (cmd.equals("exit") && lastSaveTime > 5000))

safest to use lots of (…)
© Peter Andreae

COMP112: 90

Traps with Boolean expressions

• When combining with && and ||, which binds tighter?

if (x > 5 && y <= z || day == 0) { ….

• Use (and) whenever you are not sure!

if ((x > 5 && y <= z) || day == 0) { …

if (x > 5 && (y <= z || day == 0)) { …

• The not operator ! goes in front of expressions:

• if (!(x > 5 && y <= z) { … NOT if ((x !> 5 && y !<= z)

• if (! cur.equals("US")) { … NOT if (cur.!equals("US")) { …

• exception: if (! (count == 0)) { … OR if (count != 0) { …

© Peter Andreae

COMP112: 92

Object oriented programming

• Key idea of OO programming

• program structured into classes of objects.

• each class specifies a kind of object – eg, the actions it can perform.

• Calling methods in OO languages like java

• tell an object to perform a method, passing arguments

• Making objects

• Some objects are predefined.

• Create objects with bluej:

• Right-click on class, and select new ……

• This is how we run programs with BlueJ.

• not standard, and not a general solution

© Peter Andreae

COMP112: 93

Objects

Question:

How can a program make new objects?

More Questions:

What is an object anyway?

Why do we need them?

• An object is typically a collection of data with a set of actions it can perform.

• The objects we have made so far are a bit strange – no data; just actions.

(TemperatureConverter, Drawer)

© Peter Andreae

COMP112: 94

Examples of objects

Butterfly program

• Each butterfly is represented by an object which stores the state of the butterfly (position, wing

state, direction)

• Butterflies have methods

• move(double dist) and

• land()

• CartoonFigure program

• Each cartoon figure is represented by an object which stores the state of the cartoon figure

(image, position, direction facing, smile/frown).

• CartoonFigure objects have methods

• walk(double dist)

• smile() frown()

• lookLeft() lookRight()

• speak(String words) think(String words)

© Peter Andreae

COMP112: 95

Using objects

• If the variable bf1 and bf2 contained Butterfly objects, you could do:

public void showButterflies(){

Butterfly bf1 = ?????

Butterfly bf2 = ?????

bf1.move(10);

bf2.move(20);

bf1.land();

bf2.move(20);

bf1.move(5);

}

Problem:

How do you get a Butterfly object into the variables?

Nothing new here:

Just standard method calls!

© Peter Andreae

COMP112: 96

Creating Objects

• Need to construct new objects:

• New kind of expression: new

Butterfly bf1 = new Butterfly(… …)

• Constructor calls are like method calls that return a value.

• have ()

• may need to pass arguments

• returns a value – the new object that was constructed.

• Constructor calls are NOT method calls

• there is no object to call a method on.

• must have the keyword new

• name must be the name of the class

Calling the constructor

100, 300

Creates a new object, which is put into bf1

© Peter Andreae

COMP112: 97

Creating Objects: new

Butterfly b1 = new Butterfly(100, 300);

UI.setColor(new Color(255, 190, 0));

• Calling a constructor:

• new (a keyword)

• Butterfly (the type of object to construct)

• (…) (arguments: specifying information needed to construct

the new object)

• This is an expression: it returns the new object

• can put in a variable

• can use in an enclosing expression or method call

new 〈Class name〉 〈arguments〉()

© Peter Andreae

COMP112: 98

Reading Documentation

• Documentation of a class:

• Specifies the methods:

• name

• type of the return value (or void if no value returned)

• number and types of the parameters.

void move (double dist)

moves the butterfly by dist, in its current direction.

• Specifies the constructors:

• number and types of the parameters

(name is always the name of the class,

return type is always the class)

Butterfly(double x, double y)

requires the initial position of the butterfly

Bluej lets you see the

documentation of your classes

© Peter Andreae

COMP112: 99

Example: Butterfly Grove program

public class ButterflyGrove{

/** A grove of Butterflies which

fly around and land */

public void oneButterfly(){

Butterfly b1 = new Butterfly(50, 20);

b1.move(5);

b1.move(10);

b1.move(15);

b1.move(10);

b1.move(11);

b1.move(12);

b1.move(13);

b1.move(14);

b1.move(15);

b1.move(16);

b1.move(10);

b1.land();

}

public void twoButterflies(){

Butterfly b1 = new Butterfly(100, 20);

b1.move(5);

b1.move(10);

b1.move(15);

double x = 400*Math.random();

Butterfly b2 = new Butterfly(x, 40);

b2.move(10);

b1.move(15);

b2.move(10);

b1.move(12);

b2.move(10);

b1.move(11);

b1.move(7);

b1.land();

b2.move(20);

b2.move(25);

b2.land();

}

© Peter Andreae

COMP112: 100

Objects are values too:

• Objects can be passed to methods, just like other values.

public void Butterflies(){

Butterfly b1 = new Butterfly(100, 20);

Butterfly b2 = new Butterfly(x, 40);

this.upAndDown(b1);

this.upAndDown(b2);

}

public void upAndDown(Butterfly b){

b.move(10);

b.move(15);

b.land();

b.move(15);

b.move(20);

b.land();

}

© Peter Andreae

COMP112: 102

Menu

• More defining methods with parameters

• Methods that return values

Administration:

© Peter Andreae

COMP112: 103

Another Java Program

• Design a Java program to measure reaction time of users responding to true and

false "facts".

• Ask the user about a fact: "Is it true that the BE is a 4 Year degree?"

• Measure the time they took

• Print out how much time.

• Need a class

• what name?

• Need a method

• what name?

• what parameters?

• what actions?

© Peter Andreae

COMP112: 104

ReactionTimeMeasurer

/** Measures reaction times for responding to true-false statements */

public class ReactionTimeMeasurer {

public ReactionTimeMeasurer(){

UI.addButton("Measure Time", this::measureReactionTime);

}

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

// find out the current time and remember it

// ask the question and wait for answer

// find out (and remember) the current time

// print the difference between the two times

}

}

Write the method body in comments first,

(to plan the method without worrying about syntax)

Work out what information needs to be stored (ie, variables)

© Peter Andreae

COMP112: 105

ReactionTimeMeasurer

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that the sky is blue?");

long endTime = System.currentTimeMillis();

UI.printf("Reaction time = %d milliseconds \n", (endTime - startTime));

}

}

Just asking one question is not enough for an experiment.

 need to ask a sequence of questions.

Returns a very big integer

⇒ long

(milliseconds since 1/1/1970

© Peter Andreae

COMP112: 106

Multiple questions, the bad way

/** Measure and report the time taken to react to a question */

public void measureReactionTime(){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that John Quay is the Prime Minister");

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that 6 x 4 = 23");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that summer is warmer than winter");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that Wellington’s population > 1,000,000");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

Lots of repetition.

But not exact repetition.

How can we improve it?

© Peter Andreae

COMP112: 107

Good design with methods

• Key design principle:

• Wrap up repeated sections of code into a separate method,

• Call the method several times:

public void measureReactionTime () {

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

}

public void measureQuestion (……) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " ………);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

We need to

parameterise

the method

"John Quay is the Prime Minister");

"6 x 4 = 23");

“Summer is warmer than winter");

"Wellington’s population > 1,000,000 ");

String fact

fact

© Peter Andreae

COMP112: 108

Improving ReactionTimeMeasurer (1)

public void measureReactionTime() {

this.measureQuestion("John Quay is the Prime Minister");

this.measureQuestion(“6 x 4 = 23");

this.measureQuestion(“Summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000 ");

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that" + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

© Peter Andreae

COMP112: 111

• What happens if we call the method on the object RTM1:

RTM1 . measureTime();

public void measureReactionTime(){

this.measureQuestion("John Quay is the Prime Minister");

this.measureQuestion("6 x 4 = 23");

this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population >1,000,000");

The object the method was called on is copied to "this" place

Understanding ReactionTimeMeasurer

this:

RTM- 1

© Peter Andreae

COMP112: 112

Understanding method calls

public void measureQuestion(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

✓

✓

✓

this:

RTM-1"John Quay is…"

✓

© Peter Andreae

COMP112: 113

public void measureReactionTime(){

this.measureQuestion("John Quay is the Prime Minister");

this.measureQuestion("6 x 4 = 23");

this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000");

Understanding ReactionTimeMeasurer

✓

this:

RTM-1

© Peter Andreae

COMP112: 114

New measureQuestion worksheet:

public void measureQuestion(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

Each time you call a method,

it makes a fresh copy of the worksheet!

" 6 x 9 = 54 "

Understanding ReactionTimeMeasurer

✓

✓

✓

✓

this:

RTM-1

© Peter Andreae

COMP112: 115

public void MeasureReactionTime(){

this.measureQn("John Quay is the Prime Minister");

this.measureQn("6 x 4 = 23");

this.measureQn(“summer is warmer than Winter");

this.measureQn(" Wellington’s population > 1,000,000");

Understanding ReactionTimeMeasurer

✓

✓

this:

RTM-1

© Peter Andreae

COMP112: 116

Problem

• A good experiment would measure the average time over a series of trials

• Our program measures and reports for each trial.

• Need to add up all the times, and compute average:

• problem:

• MeasureReactionTime needs to add up the times

• MeasureQuestion actually measures the time, but prints it out.

• How do we get the time back from MeasureQuestion to MeasureTime?

© Peter Andreae

COMP112: 117

Methods that return values

• Some methods just have "effects":

UI.println("Hello there!");

UI.printf("%4.2f miles is the same as %4.2f km\n", mile, km);

UI.fillRect(100, 100, wd, ht);

UI.sleep(1000);

• Some methods just return a value:

long now = System.currentTimeMillis();

double distance = 20 * Math.random();

double ans = Math.pow(3.5, 17.3);

• Some methods do both:

double height = UI.askDouble("How tall are you");

Color col =JColorChooser.showDialog(UI.getFrame(), "paintbrush", Color.red);

© Peter Andreae

COMP112: 118

Defining methods to return values

Improving ReactionTimeMeasurer:

public void measureReactionTime() {

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("11 x 13 = 143");

time = time + this.measureQuestion(“Summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000 ");

UI.printf("Average reaction time = %d milliseconds\n", (time / 4));

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

……

}

long

Specifies the type of value returned.

void means "no value returned"

make measureQuestion return a value

instead of just printing it out.

.

© Peter Andreae

COMP112: 119

Syntax: Method Definitions (v3)

/** Measure time taken to answer a question*/

public long measureQuestion (String fact){

long startTime = System.currentTimeMillis();

:

〈Comment〉 〈Header〉 〈Body〉{ }

public 〈type〉 〈parameters〉()〈name〉

〈type〉

,

〈name〉

© Peter Andreae

COMP112: 120

Defining methods to return values

If you declare that a method returns a value,

then the method body must return one!

public long measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

String ans = UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds\n" , (endTime - startTime));

}

return (endTime - startTime) ;

New kind of statement

Means: exit the method and return the value

The value must be of the right type

© Peter Andreae

COMP112: 121

• What happens if we call the method:

RTM-1 . askQuestions();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(“Wellington’s pop > 1,000,000");

Returning values.

0

this:

RTM-1

✓

© Peter Andreae

COMP112: 122

Returning values

return value:

public long measureQn(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

return (endTime - startTime) ;

}

"John Quay is…"

" "

this:

RTM- 1

© Peter Andreae

COMP112: 123

• What happens if we call the method:

RTM-1 . askQuestions();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000");

Returning values.

0

✓

this:

RTM-1

✓

© Peter Andreae

COMP112: 124

Aside: Random numbers

• Math.random() computes and returns a random double
• between 0.0 and 1.0

• To get a random number between min and max:

• min + random number * (max-min)

(50.0 + Math.random() * 70.0)

gives a value between 50.0 and 120.0

• This is an expression:

• can assign it to a variable to remember it

• can use it inside a larger expression

• can pass it directly to a method

