L. COMP112: 77 L COMP112: 78
Programs that make decisions Programs that make decisions
* Programs that perform the same action every time are boring! + But this just changes the values, not the action itself.
* You can vary the action in a program Lo
y prog » To vary the action inside a method:
* By clicking different buttons N .
* Need a conditional, or choice, statement:
IF some condition is true
* By getting input from the user: THEN do this action
String name = Ul.askString("name:"); ELSE do that action
Ul.printf("Hello %s, how are you?", name); We do this in English instructions all the time:
IF you solved the mouse maze
THEN raise your hand
IF your name starts with “A” or your name starts with “J”
THEN draw a small circle in the top left corner of your notes
ELSE draw a small square in the bottom right corner of your notes.
© Peter Andreae © Peter Andreae
COMP112: 79 COMP112: 80

Decisions in Java

Java has anif ... else ... statement:

» Can do an action only in some circumstances:

if (countTimes >10){
Ul.clearGraphics();
this.drawBoard(10, 10, 100);
}

» Can choose between different actions:

if (userChoice.equals(“Yes")){

Ul.drawlmage("Nod.png", left, top);
}

else {
Ul.drawlmage(“Shake.png*, left, top);
}

© Peter Andreae

Java: if and if... else Lbca>

* Two forms of the if statement:

if ({condition)) {
(actions to perform if condition is true »
}

= just skip the actions when the condition is not true !

and

if ({condition)) {
(actions to perform if condition is true »

}
else {

(actions to perform if condition is false)
}

Note: the { ... } represent a "Block" — a sequence of
actions that are wrapped up together into a single statement.

© Peter Andreae

if ... else ...

boolean valued expression

COMP112: 81

© Peter Andreae

COMP112: 82

Method with a condition

[** Ask for amount and currency; print note if —ve, print value.*/
public void convertMoney() {;

double amount = Ul.askDouble("Enter amount $NZ");

Like printin, but can control

if t<0 the format:
if (amoun) %.2f = floating point, 2dp
Ul.printin("Note: you have entered a debt!"); %d = integer

} %s = string

String currency = Ul.askString (“"Enter currency (US or Aus)"); L = LA

if (currency.equals("US")) {
Ul.printf("$NZ%.2f = $US%.2f\n", amount, (amount * 0.668));

}
else {

Ul printf("$NZ%.2f = $AUS%.2\n", amountt, (amount * 0.893));

}
}

© Peter Andreae

Multiway choice: if... else if ... else if ...

« Can put another if statement in the else part:

if ({condition1)) {
(actions to perform if condition1 is true)

elseif ({condition2)) {
(actions to perform if condition 2 is true (but not condition 1))

else if ({condition3)) {
{actions to perform if condition 3 is true (but not conditions 1, 2))

}

else {
{actions to perform if other conditions are false)

COMP112: 83

© Peter Andreae

COMP112: 84

Example with multiway choice

public void convertMoney() {
double amount = Ul.askDouble("Enter amount");
if (@mount<0){
Ul.printin("Note: you have entered a debt!");

String currency = Ul.askString("Enter currency (US or Aus)");
if (currency.equals("US")) {

Ul.printf("$NZ%.2f = $US%.2{%n", amount , amount * 0.668);
}

else if (currency.equals("Aus")) {

Ul.printf("$NZ%.2f = $AUS%.2f\n", amount , amount * 0.893);
}
else {

Ul.printf("l cannot convert to %s currency%n”, currency);

}

© Peter Andreae

COMP112: 85

Example 2 with multi way choice

public void printPay(int day, int hours) {
double rate = 13.45;
double pay = rate * hours;
if (day>7) {
Ul.printin(" Day must be between 1 and 7 ");
elseif (day<6) {
) Ul.printf("Pay = $ %.2f %n", pay);
elseif (day==6) {
pay = pay * 1.5;
Ul.printf("Pay = $ %.2f (time-and-a-half) %n", pay);
else {

pay = pay * 2;
Ul.printf("Pay = $ %.2f (double-time) %n", pay);

} © Peter Andreae

COMP112: 86

Boolean expressions LDC 4.1

What can go in the condition of an if statement?
* A Boolean value — a value that is either true or false.

more methods on String

equalsignoreCase("John”)
startsWith(“Ab”)

* Boolean expressions:

» constant values: true, false endsWith(“ies”)
* numeric comparisons: (x>0) (day <=7),
(x==y), (day!'=7)

* boolean method calls: month.equals("July")

word.contains("th")

* boolean variables: outlineOnly
[if declared boolean outlineOnly;]

* logical operators: I, &&, || (not, and, or)
(x>0 && x<7 && outlineOnly)
(' month.startsWith("Ju") || month.equals("May"))
(! fileModified || ! (cmd.equals(“exit")))

© Peter Andreae

COMP112: 87

Writing Boolean expressions

Mostly, boolean expressions are straightforward,
There are just a few traps:

» == js the "equals" operator for simple values,
= is assignment
(age == 15) Vs (age™= ;

» But only use == for numbers (or characters, or references)

» Use the equals method for Strings, not ==
(occasionally == will give the right answer by chance!)

cur.equals("US") vs M

» String equality is case sensitive:
“NZ".equals(“nz")
“NZ".equalslgnoreCase(“nz")

— false
— true

© Peter Andreae

COMP112: 88

Boolean Variables

* A boolean value is a value!
= it can be stored in a variable.

« Useful if the program needs to remember some option.
* Must declare the variable, and assign to it, before using it

boolean printSteps = Ul.askBoolean("Print all steps?");

if (printSteps)
Ul.printin("Processed input");

if (printSteps)
Ul.printin("Computed Statistics");

© Peter Andreae

. COMP112: 89 . . COMP112: 90
Compound Boolean expressions: operators Traps with Boolean expressions
Using logical operators: * When combining with && and ||, which binds tighter?
Not: ! eg (!currency.equalsignoreCase(‘US")) if (x>5 &8 y<=z || day==0){....
And: && eg (x>0 && x<7 && outlineOnly) *Use (and) wheneveryou are not sure!
Evaluates each conjunct in turn. if ((x>5 && y<=z) || day==0){...
If any conjunct false, then value of whole expression is false
If all conjuncts true, then value of whole expression is true if (x>5&& (y<=z || day==0)){...
or. || eg (month.startsWith("Ju") || month.equals("May")) * The not operator ! goes in front of expressions:
Evaluates each disjunct in turn. . _ . _
If any disjunct true, then value of whole expression is true cif(x>58&&y<=z){... NOT if ((x!>58&&y!<=2)
If all disjuncts false, then value of whole expression is false « if (1 cur.equals('US"){ ... NOT if (cur.lequals("US")){ ...
Can combine into complicated expressions:
(! fileModified || (cmd.equals("exit") && lastSaveTime > 5000))
. tion: if (! t==0 ... OR if t!=0
safest to use lots of (...) exception: if (! (coun)) { if (coun){
© Peter Andreae © Peter Andreae
. . . COMP112: 92 . COMP112: 93
Object oriented programming Objects
» Key idea of OO programming Question:

« program structured into classes of objects.
+ each class specifies a kind of object — eg, the actions it can perform.

+ Calling methods in OO languages like java
« tell an object to perform a method, passing arguments

* Making objects
* Some objects are predefined.
* Create objects with bluej:
* Right-click on class, and select new
* This is how we run programs with BlueJ.
* not standard, and not a general solution

© Peter Andreae

How can a program make new objects?

More Questions:
What is an object anyway?
Why do we need them?

* An object is typically a collection of data with a set of actions it can perform.

» The objects we have made so far are a bit strange — no data; just actions.
(TemperatureConverter, Drawer)

© Peter Andreae

. COMP112: 94 . . COMP112: 95
Examples of objects Using objects
Butterfly program « If the variable bfl and bf2 contained Butterfly objects, you could do:
+ Each butterfly is represented by an object which stores the state of the butterfly (position, wing
state, direction) public void showButterflies(){
* Butterflies have methods Butterfly bfl = 22277
* move(double dist) and Butterfly bf2 = 2222?
* land() bfl.move(10);
bf2.move(20);
+ CartoonFigure program bf1.land(); ﬁNothing new here:
» Each cartoon figure is represented by an object which stores the state of the cartoon figure bf2.move(20); Just standard method calls!
(image, position, direction facing, smile/frown). bfl.move(5);
+ CartoonFigure objects have methods }
+ walk(double dist)
+ smile() frown() Problem:
* lookLeft() lookRight() How do you get a Butterfly object into the variables?
* speak(String words) think(String words)
© Peter Andreae © Peter Andreae
COMP112: 96 COMP112: 97

Creating Objects

* Need to construct new objects:
* New kind of expression: new

Calling the constructor]

Butterfly bfl ='new Butterfly(100, 300

[Cre—ates/m;ct, which is put into bfl }

» Constructor calls are like method calls that return a value.
* have ()
* may need to pass arguments
* returns a value — the new object that was constructed.
» Constructor calls are NOT method calls
« there is no object to call a method on.
» must have the keyword new
* name must be the name of the class

© Peter Andreae

Creating Objects: new

Butterfly b1 = new Butterfly(100, 300);

Ul.setColor(new Color(255, 190, 0));

[Hociss o (fargameno M

+ Calling a constructor:
('a keyword)
(the type of object to construct)
(arguments: specifying information needed to construct
the new object)
* This is an expression: it returns the new object
» can put in a variable
» can use in an enclosing expression or method call

* new
« Butterfly

< (..)

© Peter Andreae

COMP112: 98

Reading Documentation

« Documentation of a class:
* Specifies the methods:
* name
« type of the return value (or void if no value returned)
* number and types of the parameters.

Bluej lets you see the
documentation of your classes

void move (double dist)

moves the butterfly by dist, in its current direction.

* Specifies the constructors:
* number and types of the parameters
(name is always the name of the class,
return type is always the class)

Example: Butterfly Grove program

public class ButterflyGrove{
/** A grove of Butterflies which
fly around and land */

public void twoButterflies(){

bl.move(5);
b1l.move(10);
bl.move(15);

double x = 400*Math.random();
Butterfly b2 = new Butterfly(x, 40);

b2.move(10);
bl.move(15);
b2.move(10);
bl.move(12);
b2.move(10);
bl.move(11);
b1l.move(7);
bl.land();
b2.move(20);

public void oneButterfly(){

Butterfly bl = new Butterfly(50, 20);
bl.move(5);
b1l.move(10);
bl.move(15);
b1l.move(10);
bl.move(11);
bl.move(12);
bl.move(13);
bl.move(14);
bl.move(15);
b1l.move(16);
b1l.move(10);

Butterfly b1 = new Butterfly(100, 20);

COMP112: 99

bl.land(); '
Butterfly(double x, double y) } Eg'{;g(\j’g(,zs)’
requires the initial position of the butterfly } '
© Peter Andreae © Peter Andreae
. COMP112: 100 COMP112: 102
Objects are values too: Menu

» Objects can be passed to methods, just like other values.

public void Butterflies(){
Butterfly b1 = new Butterfly(100, 20);
Butterfly b2 = new Butterfly(x, 40);

this.upAndDown(b1);

this.upAndDown(b2);
}

public void upAndDown(Butterfly b){
b.move(10);
b.move(15);
b.land();
b.move(15);
b.move(20);
b.land();

© Peter Andreae

» More defining methods with parameters

* Methods that return values

Administration:

© Peter Andreae

COMP112: 103

Another Java Program

» Design a Java program to measure reaction time of users responding to true and
false "facts".
» Ask the user about a fact: "Is it true that the BE is a 4 Year degree?"
» Measure the time they took
* Print out how much time.

* Need a class
* what name?
* Need a method
» what name?
+ what parameters?
» what actions?

© Peter Andreae

COMP112: 104

ReactionTimeMeasurer

[** Measures reaction times for responding to true-false statements */
public class ReactionTimeMeasurer {
public ReactionTimeMeasurer(){
Ul.addButton("Measure Time", this::measureReactionTime);
}
/** Measure and report the time taken to react to a question */
public void measureReactionTime() {
[]/ find out the current time and remember it
/I ask the question and wait for answer
[./ find out (and remember) the current time
/I print the difference between the two times

}
}

Write the method body in comments first,
(to plan the method without worrying about syntax)
Work out what information needs to be stored (ie, variables)

© Peter Andreae

COMP112: 105

ReactionTimeMeasurer

Returns a very big integer
= long
(milliseconds since 1/1/1970

/** Measure and report the time taken to react to a question */
public void measureReactionTime() {

long startTime = System.currentTimeMillis();
Ul.askString("Is it true that the sky is blue?");
long endTime = System.currentTimeMillis();

Ul.printf("Reaction time = %d milliseconds \n", (endTime - startTime));

Just asking one question is not enough for an experiment.
=>» need to ask a sequence of questions.

© Peter Andreae

COMP112: 106

Lots of repetition.
But not exact repetition.
How can we improve it?

Multiple questions, the bad way

/** Measure and report the time taken to react to a question */
public void measureReactionTime(){

long startTime = System.currentTimeMillis();

Ul.askString("Is it true that John Quay is the Prime Minister");
long endTime = System.currentTimeMillis();

Ul.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

Ul.askString("Is it true that 6 x 4 = 23");

endTime = System.currentTimeMillis();

UL printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

Ul.askString("Is it true that summer is warmer than winter");
endTime = System.currentTimeMillis();

UL printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

Ul.askString("Is it true that Wellington’s population > 1,000,000");
endTime = System.currentTimeMillis();

UL printf("You took %d milliseconds \n", (endTime - startTime));

© Peter Andreae

COMP112: 107

Good design with methods

» Key design principle:
* Wrap up repeated sections of code into a separate method,
+ Call the method several times:

public void measureReactionTime () {
this.measureQuestion("John Quay is the Prime Minister");
this.measureQuestion("6 x 4 = 23");
this.measureQuestion(“Summer is warmer than winter");
this.measureQuestion("Wellington’s population > 1,000,000 ");
}
public void measureQuestion (String fact) {
long startTime = System.currentTimeMillis();
Ul.askString("ls it true that " fact .);
long endTime = System.currentTimeMillis();
Ul.printf("You took %d milliseconds \n", (endTime - startTime));

We need to
parameterise
the method

© Peter Andreae

Improving ReactionTimeMeasurer (1)

public void measureReactionTime() {
this.measureQuestion("John Quay is the Prime Minister");
this.measureQuestion(“6 x 4 = 23"),
this.measureQuestion(“Summer is warmer than Winter");
this.measureQuestion("Wellington’s population > 1,000,000 ");
}
public void measureQuestion(String fact) {
long startTime = System.currentTimeMillis();
Ul.askString("ls it true that" + fact);
long endTime = System.currentTimeMillis();
Ul.printf("You took %d milliseconds \n", (endTime - startTime));

COMP112: 108

© Peter Andreae

COMP112: 111

Understanding ReactionTimeMeasurer

* What happens if we call the method on the object RTM1:
RTM1 . measureTime();

public void measureReactionTime(){ RTM-1

this.measureQuestion("John Quay is the Prime Minister");
this.measureQuestion("6 x 4 = 23");
this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population >1,000,000");

The object the method was called on is copied to "this" place

© Peter Andreae

Understanding method calls

COMP112: 112

© Peter Andreae

COMP112: 113

Understanding ReactionTimeMeasurer

public void measureReactionTime(){

v/ this.measureQuestion("John Quay is the Prime Minister");
this.measureQuestion("6 x 4 = 23");
this.measureQuestion(“summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000");

© Peter Andreae

Understanding ReactionTimeMeasurer

New measureQuestion worksheet:

public void measureQuestion(String fact){| !

Each time you call a method,
it makes a fresh copy of the worksheet!

COMP112: 114

© Peter Andreae

COMP112: 115

Understanding ReactionTimeMeasurer

this:

public void MeasureReactionTime(){

v/ this.measureQn("John Quay is the Prime Minister");
v~ this.measureQn("6 x 4 = 23");

this.measureQn(‘summer is warmer than Winter");

this.measureQn(" Wellington’s population > 1,000,000");

© Peter Andreae

Problem

+ A good experiment would measure the average time over a series of trials
» Our program measures and reports for each trial.

* Need to add up all the times, and compute average:
* problem:
» MeasureReactionTime needs to add up the times

» MeasureQuestion actually measures the time, but prints it out.

» How do we get the time back from MeasureQuestion to MeasureTime?

COMP112: 116

© Peter Andreae

COMP112: 117

Methods that return values

* Some methods just have "effects":
Ul.printin("Hello there!");
Ul.printf("%4.2f miles is the same as %4.2f km\n", mile, km);
UL fillRect(100, 100, wd, ht);
Ul.sleep(1000);

* Some methods just return a value:
long now = System.currentTimeMillis();
double distance = 20 * Math.random();
double ans = Math.pow(3.5, 17.3);

* Some methods do both:
double height = Ul.askDouble("How tall are you");
Color col =JColorChooser.showDialog(Ul.getFrame(), "paintbrush”, Color.red);

© Peter Andreae

Defining methods to return values

COMP112: 118

Improving ReactionTimeMeasurer: ‘make measureQuestion return a value

instead of just printing it out.

public void measureReactionTime() {
[Jlong time =0;
time = time + this.measureQuestion("John Quay is the Prime Minister");
time = time + this.measureQuestion("11 x 13 = 143");
time = time + this.measureQuestion(“Summer is warmer than Winter");
time = time + this.measureQuestion(" Wellington’s pop > 1,000,000 ");
Ul.printf("Average reaction time = %d milliseconds\n", (time / 4));

} Specifies the type of value returned.
void means "no value returned"
public long measureQuestion(String fact) {
long startTime = System.currentTimeMillis();

© Peter Andreae

COMP112: 119

Syntax: Method Definitions (v3)

/** Measure time taken to answer a question*/
public long measureQuestion (String fact){
long startTime = System.currentTimeMillis();

’(Comment) H (Header)

- ~

- —————— N, e e, ———————
- -

- ~

—_————-——

(type) H {name)

© Peter Andreae

Defining methods to return values

If you declare that a method returns a value,
then the method body must return one!

public long measureQuestion(String fact) {
long startTime = System.currentTimeMillis();
String ans = Ul.askString("ls it true that " + fact);
long endTime = System.currentTimeMillis();
return (endTime - startTime) ;

Means: exit the method and return the valu

New kind of statement
e
The value must be of the right type

COMP112: 120

© Peter Andreae

Returning values.

* What happens if we call the method:
RTM-1 . askQuestions();

public void measureReactionTime(){ RTM-1

v/ long time = 0;
time = time + this.measureQuestion("John Quay is the Prime Minister");
time = time + this.measureQuestion("6 x 4 = 23");
time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(“Wellington’s pop > 1,000,000");

COMP112: 121

© Peter Andreae

Returning values

return value: . this:

public long measureQn(String fact){ | | |RTM-1

COMP112: 122

© Peter Andreae

Returning values.

* What happens if we call the method:
RTM-1 . askQuestions();

public void measureReactionTime(){ RTM-1

v ongtme=0; [oJ

s ~N
v/ time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");
time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000");

COMP112: 123

© Peter Andreae

Aside: Random numbers

« Math.random() computes and returns a random double
* between 0.0 and 1.0

* To get a random number between min and max:
* min + random number * (max-min)

(50.0 + Math.random() * 70.0)

gives a value between 50.0 and 120.0

* This is an expression:
 can assign it to a variable to remember it
» can use it inside a larger expression
« can pass it directly to a method

COMP112: 124

© Peter Andreae

