
© Peter Andreae

COMP112: 103

Another Java Program

• Design a Java program to measure reaction time of users responding to true and

false "facts".

• Ask the user about a fact: "Is it true that the BE is a 4 Year degree?"

• Measure the time they took

• Print out how much time.

• Need a class

• what name?

• Need a method

• what name?

• what parameters?

• what actions?

© Peter Andreae

COMP112: 104

ReactionTimeMeasurer

/** Measures reaction times for responding to true-false statements */

public class ReactionTimeMeasurer {

public ReactionTimeMeasurer(){

UI.addButton("Measure Time", this::measureReactionTime);

}

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

// find out the current time and remember it

// ask the question and wait for answer

// find out (and remember) the current time

// print the difference between the two times

}

}

Write the method body in comments first,

(to plan the method without worrying about syntax)

Work out what information needs to be stored (ie, variables)

© Peter Andreae

COMP112: 105

ReactionTimeMeasurer

/** Measure and report the time taken to react to a question */

public void measureReactionTime() {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that the sky is blue?");

long endTime = System.currentTimeMillis();

UI.printf("Reaction time = %d milliseconds \n", (endTime - startTime));

}

}

Just asking one question is not enough for an experiment.

 need to ask a sequence of questions.

Returns a very big integer

⇒ long

(milliseconds since 1/1/1970

© Peter Andreae

COMP112: 106

Multiple questions, the bad way

/** Measure and report the time taken to react to a question */

public void measureReactionTime(){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that John Quay is the Prime Minister");

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that 6 x 4 = 23");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that summer is warmer than winter");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

startTime = System.currentTimeMillis();

UI.askString("Is it true that Wellington’s population > 1,000,000");

endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

Lots of repetition.

But not exact repetition.

How can we improve it?

© Peter Andreae

COMP112: 107

Good design with methods

• Key design principle:

• Wrap up repeated sections of code into a separate method,

• Call the method several times:

public void measureReactionTime () {

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

this.measureQuestion();

}

public void measureQuestion (……) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " ………);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));
}

We need to

parameterise

the method

"John Quay is the Prime Minister");

"6 x 4 = 23");

“Summer is warmer than winter");

"Wellington’s population > 1,000,000 ");

String fact

fact

© Peter Andreae

COMP112: 108

Improving ReactionTimeMeasurer (1)

public void measureReactionTime() {

this.measureQuestion("John Quay is the Prime Minister");

this.measureQuestion(“6 x 4 = 23");

this.measureQuestion(“Summer is warmer than Winter");

this.measureQuestion("Wellington’s population > 1,000,000 ");

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

UI.askString("Is it true that" + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds \n", (endTime - startTime));

}

© Peter Andreae

COMP112: 109

"this" and method calls

• When you call a method on an object, the method "knows" which object it was

called on.

• stored in the "special variable": this

• If the method needs to call another method from the same class, it generally needs

to call it on the same object.

public class MyObjects {

:

public void method1(){

…

this.method2(45, "name");

…

}

public void method2(int num, String n){

…

}

}

But, this. is optional!

If you leave the object out

of a method call, Java will

assume you meant this!

To be safe: always put the

this. in, until you really

know what you are doing.

© Peter Andreae

COMP112: 116

Problem

• A good experiment would measure the average time over a series of trials

• Our program measures and reports for each trial.

• Need to add up all the times, and compute average:

• problem:

• MeasureReactionTime needs to add up the times

• MeasureQuestion actually measures the time, but prints it out.

• How do we get the time back from MeasureQuestion to MeasureTime?

© Peter Andreae

COMP112: 117

Methods that return values

• Some methods just have "effects":

UI.println("Hello there!");

UI.printf("%4.2f miles is the same as %4.2f km\n", mile, km);

UI.fillRect(100, 100, wd, ht);

UI.sleep(1000);

• Some methods just return a value:

long now = System.currentTimeMillis();

double distance = 20 * Math.random();

double ans = Math.pow(3.5, 17.3);

• Some methods do both:

double height = UI.askDouble("How tall are you");

Color col =JColorChooser.showDialog(UI.getFrame(), "paintbrush", Color.red);

© Peter Andreae

COMP112: 118

Defining methods to return values

Improving ReactionTimeMeasurer:

public void measureReactionTime() {

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("11 x 13 = 143");

time = time + this.measureQuestion(“Summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000 ");

UI.printf("Average reaction time = %d milliseconds\n", (time / 4));

}

public void measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

……

}

long

Specifies the type of value returned.

void means "no value returned"

make measureQuestion return a value

instead of just printing it out.

.

© Peter Andreae

COMP112: 119

Syntax: Method Definitions (v3)

/** Measure time taken to answer a question*/

public long measureQuestion (String fact){

long startTime = System.currentTimeMillis();

:

〈Comment〉 〈Header〉 〈Body〉{ }

public 〈type〉 〈parameters〉()〈name〉

〈type〉

,

〈name〉

© Peter Andreae

COMP112: 120

Defining methods to return values

If you declare that a method returns a value,

then the method body must return one!

public long measureQuestion(String fact) {

long startTime = System.currentTimeMillis();

String ans = UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

UI.printf("You took %d milliseconds\n" , (endTime - startTime));

}

return (endTime - startTime) ;

New kind of statement

Means: exit the method and return the value

The value must be of the right type

© Peter Andreae

COMP112: 121

• What happens if we call the method:

RTM-1 . askQuestions();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(“Wellington’s pop > 1,000,000");

Returning values.

0

this:

RTM-1

✓

© Peter Andreae

COMP112: 122

Returning values

return value:

public long measureQn(String fact){

long startTime = System.currentTimeMillis();

UI.askString("Is it true that " + fact);

long endTime = System.currentTimeMillis();

return (endTime - startTime) ;

}

"John Quay is…"

" "

this:

RTM- 1

© Peter Andreae

COMP112: 123

• What happens if we call the method:

RTM-1 . askQuestions();

public void measureReactionTime(){

long time = 0;

time = time + this.measureQuestion("John Quay is the Prime Minister");

time = time + this.measureQuestion("6 x 4 = 23");

time = time + this.measureQuestion(“summer is warmer than Winter");

time = time + this.measureQuestion(" Wellington’s pop > 1,000,000");

Returning values.

0

✓

this:

RTM-1

✓

© Peter Andreae

COMP112: 124

Aside: Random numbers

• Math.random() computes and returns a random double
• between 0.0 and 1.0

• To get a random number between min and max:

• min + random number * (max-min)

(50.0 + Math.random() * 70.0)

gives a value between 50.0 and 120.0

• This is an expression:

• can assign it to a variable to remember it

• can use it inside a larger expression

• can pass it directly to a method

© Peter Andreae

COMP112: 125

Menu

• Repetition/Iteration

Admin:

• Test

• Submission

• When the assignments are marked, marks and comments are available via the link

on the Assignments page

© Peter Andreae

COMP112: 127

Repetition / Iteration

Doing some action repeatedly:

• “Polish each of the cups on the shelf”

• “Put every chair on top of its desk”

• “Give a ticket to everyone who passes you”

• “Keep patrolling around the building until midnight”

• “Practice the music until you can play it perfectly”

Two patterns:

• Do something to each thing in a collection

• Do something until some condition changes

© Peter Andreae

COMP112: 128

Repetion/Iteration in Java LDC 4.5

Several different ways of specifying repetition.

• For statement:

• Do something to each element of a list

for (type value : listOfValues) {

do something to value

}

• While statement:

• Repeat some action until some condition becomes false

while (condition-to-do-it-again) {

actions to perform each time round

}

© Peter Andreae

COMP112: 129

For statement

Three components

• a list of values

• a variable that is assigned each value of the list in turn.

• actions to perform for each value in the list

// print each number in a list of numbers:

for (Double num : listOfNumbers) {

UI.println(num);

}

// print each string in a list of numbers that starts with "A":

for (String str : listOfStrings) {

if (str.startsWith("A")) {

UI.println(str);

}

listOfNumbers: 150.0, 32.2, 6.9, 49.5, 83.4, -21.0, 1.0

num:

listOfStrings: "Jamie", "Andie", "Jules", "Amy", "Mark"

str: " "

© Peter Andreae

COMP112: 130

For statement ("foreach" version)

for (Double num : listOfNumbers) {

UI.println(num);

}

• Meaning:

Repeatedly (for each value in the list)

• put the next value of the list into the variable

• do the actions.

for ()

action

{

}

type variable : list of values of type

© Peter Andreae

COMP112: 131

Lists of values

• What type is a list of values?

• How do we get a list of values?

ArrayList <Double> numberList = UI.askNumbers("Enter numbers");

for (double num : numberList) {

UI.println(num);

}

UI.setColor(Color.red);

UI.setLineWidth(5);

for (double radius : numberList) {

if (radius> 20 && radius < 200) {

UI.drawOval(300 – radius, 250 – radius, radius * 2.0, radius * 2.0);

}

List of doubles

Have to use Double, not double

Double is the "wrapped-up" version of double,

for putting into a list

Asks for a list of numbers, ending with 'done'

© Peter Andreae

COMP112: 132

Lists of values

• What type is a list of values?

• How do we get a list of values?

ArrayList <String> nameList = UI.askStrings("Enter names");

for (String name : nameList) {

UI.println("Hello " + name);

}

UI.println("=========== Long names ============");

for (String name : nameList) {

if (name.length() > 6) { UI.println(name); }

}

UI.println("=========== Short names ============");

for (String name : nameList) {

if (name.length() <= 6) { UI.print(name + ", "); }

}

UI.println();

List of String values

Asks for a list of strings, ending with empty line

print without a new line

print just a new line
© Peter Andreae

COMP112: 133

Doing more with the loops: using Variables

• Add up all the numbers in a list:

ArrayList <Double> numberList = UI.askNumbers("Enter numbers");

double total = 0.0;

for (double num : numberList) {

total = total + num;

}

UI.println("Total of numbers = " + total);

Declare and initialise variable

Add each number into the total:

- Uses current value in total

- Adds the next number to it

- Puts result back into total

numberList: 150.0, 32.2, 6.9, 49.5, 83.4, -21.0, 1.0

© Peter Andreae

COMP112: 134

Doing more with the loops: using Variables

• Count the number of long names in a list.

ArrayList <String> nameList = UI.askStrings("Enter names");

int count = 0;

for (String name : nameList) {

if (name.length() > 6) {

count = count + 1;

}

}

UI.printf("There were %d long names out of %d names \n", count, nameList.size());

Number of values in a list

Declare and initialise variable

Add 1 to the count

© Peter Andreae

COMP112: 135

Lists are values too: passing lists around

public void analyseNames() {

ArrayList <String> nameList = UI.askStrings("Enter names");

UI.println("Total characters: " + this.totalChars (nameList));

UI.println("Starts with A: " + this.wordStartingWith(nameList, "A"));

}

public int totalChars(ArrayList <String> strings){

int count = 0;

for (String str : strings) {

count = count + str.length();

}

return count;

}

public String wordStartingWith(ArrayList <String> strings, String pattern){

for (String str : strings) {

if (str.startsWith(pattern)) { return str; } // returns first word starting with the pattern

}

return "<none>";

}

© Peter Andreae

COMP112: 137

While statements: repeating with a condition

• For statements: repetition over a list of values.

• While statements : general repetition, subject to a condition.

while (condition-to-do-it-again) {

actions to perform each time round

}

while (true) {

UI.println("this repeats forever!");

}

int n = 1;

while (n <= 100) {

UI.println(n) ;

n = n + 1;

}

Similar structure to

the if statement

© Peter Andreae

COMP112: 138

While statement

• Meaning:

Repeatedly

• If the condition is still true, do the actions another time

• If the condition is false, stop and go on to the next statement.

• Note: don’t do actions at all if the condition is initially false

• Similar to if, but NOT THE SAME!

• keeps repeating the actions,

• as long as the condition is still true each time round

• no else — just skips to next statement when condition is false

while (condition)

action

{

}

© Peter Andreae

COMP112: 139

While with numbers #1

• Print a table of numbers and their squares:

public void printTable(int max){

int num = 1;

while (num <= max) {

UI.printf(“ %3d %6d %n”, num, (num*num));

num = num + 1;

}

}

• Repetition with while generally involves

• initialisation: get ready for the loop

• test: whether to repeat

• body: what to repeat

• “increment”: get ready for the next iteration

Initialise

Body

Test

Increment

© Peter Andreae

COMP112: 140

While with numbers #2

• Draw a row of squares:

public static final double SIZE = 20;

⋮

/** Draws n squares in a horizontal row, starting at (left,top) */

public void drawSquares (int left, int top, int n){

int count = 0;

while (count < n) {

double x = left + count * SIZE;

UI.drawRect(x, top, SIZE, SIZE);

count = count + 1;

}

}

Initialise

Body

Test

Increment++;

Shorthand for

count = count + 1

© Peter Andreae

COMP112: 141

While with numbers #3

• Counting down:

public void countDown(int start){

int count = start;

while (count >= 1) {

UI.println(count);

count = count – 1;

}

UI.println(“ GO”);

}

:

this.countDown(5);

:

© Peter Andreae

COMP112: 142

Nested while loops with numbers

Draw a grid of circles

public void drawCircles(int rows, int cols, int diam) {

int row = 0;

while (row < rows) {

int col = 0;

while (col < cols) {

int x = LEFT + row*diam;

int y = TOP +col*diam;

UI.fillOval(x, y, diam, diam);

col++;

}

row++;

}

}

Inside loop:

do each column within the

current row

Outside loop:

do each row

