
© Peter Andreae

COMP112: 137

While statements: repeating with a condition

• For statements: repetition over a list of values.

• While statements : general repetition, subject to a condition.

while (condition-to-do-it-again) {

actions to perform each time round

}

while (true) {

UI.println("this repeats forever!");

}

int n = 1;

while (n <= 100) {

UI.println(n) ;

n = n + 1;

}

Similar structure to

the if statement

© Peter Andreae

COMP112: 138

While statement

• Meaning:

Repeatedly

• If the condition is still true, do the actions another time

• If the condition is false, stop and go on to the next statement.

• Note: don’t do actions at all if the condition is initially false

• Similar to if, but NOT THE SAME!

• keeps repeating the actions,

• as long as the condition is still true each time round

• no else — just skips to next statement when condition is false

while (condition)

action

{

}

© Peter Andreae

COMP112: 139

While with numbers #1

• Print a table of numbers and their squares:

public void printTable(int max){

int num = 1;

while (num <= max) {

UI.printf(“ %3d %6d %n”, num, (num*num));

num = num + 1;

}

}

• Repetition with while generally involves

• initialisation: get ready for the loop

• test: whether to repeat

• body: what to repeat

• “increment”: get ready for the next iteration

Initialise

Body

Test

Increment

© Peter Andreae

COMP112: 140

While with numbers #2

• Draw a row of squares:

public static final double SIZE = 20;

⋮

/** Draws n squares in a horizontal row, starting at (left,top) */

public void drawSquares (int left, int top, int n){

int count = 0;

while (count < n) {

double x = left + count * SIZE;

UI.drawRect(x, top, SIZE, SIZE);

count = count + 1;

}

}

Initialise

Body

Test

Increment++;
Shorthand for

count = count + 1

except value is value

of x before adding

Scope of variables

declared in loop is

limited to the loop

© Peter Andreae

COMP112: 141

While with numbers #3

• Counting down:

public void countDown(int start){

int count = start;

while (count >= 1) {

UI.println(count);

count = count – 1;

}

UI.println(“ GO”);

}

:

this.countDown(5);

:

© Peter Andreae

COMP112: 142

Nested while loops with numbers

Draw a grid of circles

public void drawCircles(int rows, int cols, int diam) {

int row = 0;

while (row < rows) {

int col = 0;

while (col < cols) {

int x = LEFT + row*diam;

int y = TOP +col*diam;

UI.fillOval(x, y, diam, diam);

col++;

}

row++;

}

}

Inside loop:

do each column within the

current row

Outside loop:

do each row

© Peter Andreae

COMP112: 144

Designing loops with numbers

When the number of steps is known at the beginning of the loop:

int count = 0; int num = 1;

while (count < number) { OR while (num <= number) {

do actions 〉 do actions 〉

count = count + 1; num = num + 1;

} }

• Can count from 0 or from 1

• If counting from 0, loop while count is less than target:

(count is the number of iterations that have been completed)

• If counting from 1, loop while num is less than or equal to target:

(num is the iteration it is about to do)

© Peter Andreae

COMP112: 145

Designing nested loops with numbers

2D structures, eg table of rows and columns:

• Can do rows in the outside loop and columns in the inside loop, or vice versa

int row = 0; int col = 0;

while (row < numberOfRows) { while (col < numberOfCols) {

int col = 0; int row = 0;

while (col < numberOfCols) { while (row < numberOfRows) {

do actions for row, col 〉 do actions for row, col 〉

col++; row++;

} }

row++; col++

} }

© Peter Andreae

COMP112: 146

General while loops

/** Practice times-tables until got 5 answers correct */

public void playArithmeticGame (){

int score = 0;

while (score < 5) {

// ask an arithmetic question

int a = this.randomInteger(10);

int b = this.randomInteger(10);

int ans = UI.askInteger("What is " + a + " times " + b + "?");

if (ans == a * b) {

score = score +1;

}

}

UI.println("You got 5 right answers");

}
public int randomInteger(int max) {

return (int) (Math.random() * max) + 1;

}

© Peter Andreae

COMP112: 147

General while loops

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

boolean correct = false;

while (! correct) {

int ans = UI.askInteger(question);

if (ans == a * b) {

correct = true;

}

}

UI.println("You got it right!");

}

• This seems unnecessarily complex!!

© Peter Andreae

COMP112: 148

Loops with the test "in the middle"

If the condition for exiting the loop depends on the actions, need to exit in the middle!

Common with loops asking for user input.

• break allows you to exit a loop (while, or for) (or a switch)

• Must be inside a loop

• Ignores any if 's

• Does not exit the method (return does that)

while (true) {

actions to set up for the test

if (exit-test) {

break;

}

additional actions

}

continue means exit

this iteration of the loop,

and jump to the next

iteration.

© Peter Andreae

COMP112: 149

General while loops with break

/** Ask a multiplication problem until got it right */

public void practiceArithmetic (){

int a = this.randomInteger(10);

int b = this.randomInteger(10);

String question = "What is " + a + " times " + b + "?";

boolean correct = false;

while (! correct) {

int ans = UI.askInteger(question);

if (ans == a * b) {

correct = true;

}

}

UI.println("You got it right!");

}

• Only use break when the exit is not at the beginning of the loop.

true

break;

Setting up for test

no additional actions

Test and break

© Peter Andreae

COMP112: 150

More loops with user input

• Make user guess a magic word:

public void playGuessingGame(String magicWord){

UI.println("Guess the magic word:");

while (true) {

String guess = UI.askString("your guess: ");

if (guess.equalsIgnoreCase(magicWord)) {

UI.println("You guessed it!");

break;

}

UI.println("No, that wasn't right. Try again!");

}

}

Setting up for test

Additional actions

Test and break

© Peter Andreae

COMP112: 151

Testing your program

A) Need to try out your program on sample input while removing the "easy" bugs.

• Can be a pain if need lots of input (eg TemperatureAnalyser)

• UI window has a menu item – "set input" – to get input from a text file instead of user typing it.

 don't have to type lots of data each time

• Create the text file, eg in Notepad

• Select file using menu before the program has started asking for input.

• File can contain multiple sequences of data.

• B) Need to test your program on a range of inputs

• Easy, "ordinary", inputs

• Boundary cases — values that are only just in range, or just out of range

Need to check that your if conditions are right

• Invalid data—does your program handle invalid input correctly?

Creating test cases involves creativity – have to try to come up with ways to break your program.

© Peter Andreae

COMP112: 152

Text Input: reading multiple values

• When the user types

into the text pane:

• nothing happens until they type a newline (“enter”)

• Then all the characters on the line are put into a buffer that the program can access

• The program can access the buffer using the “UI.next…” methods:

• UI.next() reads next “token” as a string

• UI.nextInt() reads next “token” as an integer

• UI.nextDouble() reads next token as a double

• UI.nextLine() reads up to next ↩ as a string

• all the methods move the cursor forward, past what was read.

This 20 pt text has 3↩

↩

↩

This 20 pt text has 3↩numbers, 46.32 words, and 6% spam.↩

 “This”

 20

 ERROR!

 “pt text has 3”

This 20 pt text has 3

numbers, 46.32 words, and 6% spam

© Peter Andreae

COMP112: 153

Text Input: reading multiple values

• If there is no input yet, the UI.next…() methods will just wait.

⇒ Always print a prompt to the user before you try to read!

• It is not safe to call UI.nextInt() or UI.nextDouble() unless

you can be certain the next token is an integer / double!

• How can you tell?

• UI.hasNextInt()  boolean true if next token is an integer

• UI.hasNextDouble()  boolean true if next token is a double

• UI.hasNext()  boolean true if there is a next token

(always true for text pane)

© Peter Andreae

COMP112: 154

next vs. nextLine()

• next(), nextInt(), nextDouble()

• picks up any spaces, discards them,

• picks up characters to make next “token” (until it reaches a space),

• returns the token

• next() returns it as a String

nextInt() returns it as an int,

nextDouble() returns it as a double.

• nextLine()

• Picks up all the characters (including spaces) until it reaches end-of-line character,

• throws away end-of-line, and

• returns all the characters (including spaces) as a String.

© Peter Andreae

COMP112: 155

Input with "next" methods
Method What it does Returns

next() Read and return next token of user’s input String

hasNext() Returns true if there is another token in the user input.

Waits for the user to type something if necessary.

boolean

nextInt()

nextDouble()

Read the next token of the user's input.

Return it as a integer if it is a number.

Throws an exception if it is not a number.

int

double

hasNextInt()

hasNextDouble()

Returns true if next token in the input is an int / double.

Waits for user to type something if necessary.

boolean

nextBoolean() Read the next token of the user's input. Return true if it

is "yes", "y", or "true", return false if it is "no", "n", or

"false" (case insensitive).

Throws an exception if it is anything else.

boolean

nextLine() Read the remaining characters of the user's input up to

(but not including) the next end-of-line and return them

as a string. Reads and throws away the end-of-line

character.

If there are no characters on the line, then it returns an

empty string ("").

String

© Peter Andreae

COMP112: 156

Reading words from user

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

// loop, stopping when you get to 'the'

// read next token

// increment count
UI.printf(“You had %d words before 'the'. %n", count);

}

© Peter Andreae

COMP112: 157

Reading words from user: BAD

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

while (! word.equalsIgnoreCase("the”)) {

String word = UI.next();

count = count + 1;

}
UI.printf(“You had %d words before 'the'. %n", count);

}

Too late for the condition!!!

© Peter Andreae

COMP112: 158

Reading words from user: BAD

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

String word = UI.next();

while (! word.equalsIgnoreCase("the”)) {

count = count + 1;
}
UI.printf(“You had %d words before 'the'. %n", count);

}

never reads the next word !!!

© Peter Andreae

COMP112: 159

Reading words from user: Fixed

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

String word = UI.next();

while (! word.equalsIgnoreCase("the”)) {

count = count + 1;

word = UI.next();
}

UI.printf(“You had %d words before 'the'. %n", count);
}

read next word at end of loop

("increment")

read first word before loop

© Peter Andreae

COMP112: 160

Alternate design: using break.

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

while (true) {

String word = UI.next();

if (word.equalsIgnoreCase("the”)){

break;
}

count = count + 1;
}

UI.printf(“You had %d words before 'the'. %n", count);
}

• Note: Textbook does not like this style; I do

• Only use when the test has to be in the middle of the loop

• Typically only use with a while (true) {…..

• The condition is an exit condition, not a keep going condition

gets out of the

enclosing while loop

© Peter Andreae

COMP112: 161

Using next… methods

/** sum up all numbers entered by user */

:

UI.print(“Enter numbers: end with ‘done’:”);

double sum = 0;

while (UI.hasNextDouble()) { //peeking at next value or “token”

double amt = UI.nextDouble(); //getting the next value and move pointer

sum = sum + amt;
}

UI.nextLine(); // throw away the ‘done’

UI.printf(“Total of all numbers entered: %.2f %n”, sum);

Enter numbers: end with ‘done’: 40 60

30 50 done

Total of all numbers entered: 180.00

* MENU *

