
© Peter Andreae

COMP112: 152

Text Input: reading multiple values

• When the user types

into the text pane:

• nothing happens until they type a newline (“enter”)

• Then all the characters on the line are put into a buffer that the program can access

• The program can access the buffer using the “UI.next…” methods:

• UI.next() reads next “token” as a string

• UI.nextInt() reads next “token” as an integer

• UI.nextDouble() reads next token as a double

• UI.nextLine() reads up to next ↩ as a string

• all the methods move the cursor forward, past what was read.

This 20 pt text has 3↩

↩

↩

This 20 pt text has 3↩numbers, 46.32 words, and 6% spam.↩

 “This”

 20

 ERROR!

 “pt text has 3”

This 20 pt text has 3

numbers, 46.32 words, and 6% spam

© Peter Andreae

COMP112: 153

Text Input: reading multiple values

• If there is no input yet, the UI.next…() methods will just wait.

⇒ Always print a prompt to the user before you try to read!

• It is not safe to call UI.nextInt() or UI.nextDouble() unless

you can be certain the next token is an integer / double!

• How can you tell?

• UI.hasNextInt()  boolean true if next token is an integer

• UI.hasNextDouble()  boolean true if next token is a double

• UI.hasNext()  boolean true if there is a next token

(always true for text pane)

© Peter Andreae

COMP112: 154

next vs. nextLine()

• next(), nextInt(), nextDouble()

• picks up any spaces, discards them,

• picks up characters to make next “token” (until it reaches a space),

• returns the token

• next() returns it as a String

nextInt() returns it as an int,

nextDouble() returns it as a double.

• nextLine()

• Picks up all the characters (including spaces) until it reaches end-of-line character,

• throws away end-of-line, and

• returns all the characters (including spaces) as a String.

© Peter Andreae

COMP112: 155

Input with "next" methods
Method What it does Returns

next() Read and return next token of user’s input String

hasNext() Returns true if there is another token in the user input.

Waits for the user to type something if necessary.

boolean

nextInt()

nextDouble()

Read the next token of the user's input.

Return it as a integer if it is a number.

Throws an exception if it is not a number.

int

double

hasNextInt()

hasNextDouble()

Returns true if next token in the input is an int / double.

Waits for user to type something if necessary.

boolean

nextBoolean() Read the next token of the user's input. Return true if it

is "yes", "y", or "true", return false if it is "no", "n", or

"false" (case insensitive).

Throws an exception if it is anything else.

boolean

nextLine() Read the remaining characters of the user's input up to

(but not including) the next end-of-line and return them

as a string. Reads and throws away the end-of-line

character.

If there are no characters on the line, then it returns an

empty string ("").

String

© Peter Andreae

COMP112: 156

Reading words from user

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

// loop, stopping when you get to 'the'

// read next token

// increment count
UI.printf(“You had %d words before 'the'. %n", count);

}

© Peter Andreae

COMP112: 157

Reading words from user: BAD

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

while (! word.equalsIgnoreCase("the”)) {

String word = UI.next();

count = count + 1;

}
UI.printf(“You had %d words before 'the'. %n", count);

}

Too late for the condition!!!

© Peter Andreae

COMP112: 158

Reading words from user: BAD

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

String word = UI.next();

while (! word.equalsIgnoreCase("the”)) {

count = count + 1;
}
UI.printf(“You had %d words before 'the'. %n", count);

}

never reads the next word !!!

© Peter Andreae

COMP112: 159

Reading words from user: Fixed

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

String word = UI.next();

while (! word.equalsIgnoreCase("the”)) {

count = count + 1;

word = UI.next();
}

UI.printf(“You had %d words before 'the'. %n", count);
}

read next word at end of loop

("increment")

read first word before loop

© Peter Andreae

COMP112: 160

Alternate design: using break.

public void countWordsBeforeThe() {

int count = 0;

UI.print("Enter some words: ”);

while (true) {

String word = UI.next();

if (word.equalsIgnoreCase("the”)){

break;
}

count = count + 1;
}

UI.printf(“You had %d words before 'the'. %n", count);
}

© Peter Andreae

COMP112: 162

Menu

• Files

Admin

• assignments

• you are important to people!

© Peter Andreae

COMP112: 163

Files

• The UI text pane window is transient:

• Typing large amounts of input into the text pane is a pain!

• It would be nice to be able to save the output of the program easily.

• Large amounts of text belong in files

• How can your program read from a file and write to a file?

• Writing to files is like writing to the UI text pane!

• Use print, println, printf methods

• But, need extra objects: File and PrintStream objects

• Reading from files is a bit different

• Doesn't use "ask…" methods

• Need to use "next…" methods

• And need extra objects: File and Scanner objects

© Peter Andreae

COMP112: 164

Text with the text pane

UI Window

red: 40

green: 60

blue: 30

all done

UI.askInteger();

UI.println();

My Program

:

int r =UI.askInteger("red");

int g =UI.askInteger("green");

int b =UI.askInteger("blue");

UI.setColor(new Color(r,g,b);

:

UI.println("all done");

© Peter Andreae

COMP112: 165

Text with Files

My Program

:

int r =scan.nextInt();

int g =scan.nextInt();

int b =scan.nextInt();

UI.setColor(new Color(r,g,b);

:

outFile.println("all done");

A real file: “myfile.txt”

File

object

Scanner

object

nextInt();

println();

PrintStream

object

Needs several objects:

• Need File object to talk to the actual file on the disk.

• Need Scanner/PrintStream object to talk to the File object

• Program talks to the Scanner or PrintStream object.

© Peter Andreae

COMP112: 166

Using a Scanner

• Scanner: a class in Java that allows a program to read input from a file (or any

other source of characters such as a String, a socket, …)

• File: a class in Java that connects to an actual file on disk and get characters in

and out of the file

• Program needs to make a File object an get the next token, or the next line

String fileName = "My File.txt";

File inFile = new File(fileName);

Scanner scan = new Scanner(inFile);

⁞

int r = scan.nextInt();

My File.txt

25 53

201 240 2 150

100 250 0

© Peter Andreae

COMP112: 167

Scanner

• A Scanner breaks up the source into a sequence of chunks that the program can

get, one at a time.

• lines, (separated by the end-of-line characters)

• tokens (separated by spaces, tabs, or end-of-line's)

• Program can read the next token (or the next line)

Scanner scan = new Scanner (new File("My File.txt"));

while (scan.hasNext()){

double radius = scan.nextDouble();

UI.drawOval(X-radius, Y-radius, radius*2, radius*2);

}

My File.txt

25 53

201 240 2 150

100 250 0

© Peter Andreae

COMP112: 168

Scanner "next" methods
Method What it does Returns

next() Read and return next token String

nextInt()

nextDouble()

Read the next token.

Return it as a number, if it is a number.

Throws an exception if it is not a number.

int

double

nextBoolean() Read the next token.

Return true if it is "true"; return false if it is "false".

Throws an exception if it is anything else.

boolean

hasNext() Returns true if there is another token boolean

hasNextInt()

hasNextDouble()

hasNextBoolean()

Returns true if there is another token AND

the next token is an int / double / Boolean

boolean

nextLine() Read characters up to the next end-of-line and return them as a string.

Reads and throws away the end-of-line character.

If the first character is an end-of-line, then it returns an empty string ("").

String

close() close the file

© Peter Andreae

COMP112: 169

Scanner methods.

• Scanner has a cursor that keeps track of where it is up to in the file.

ACCY308 Lecture Tue 1030 1120 GBLT2

ACCY308 Lecture Fri 1440 1530 GBLT3

ACCY308 Lecture Tue 1640 1730 GBLT3

ACCY330 Lecture Fri 1340 1430 RHLT2

ACCY330 Lecture Wed 1240 1330 RHLT2

ACCY401 Comp-Lab Mon 0930 1220 RWW402

ACCY401 Lecture Mon 0930 1220 RWW220

ACCY402 Lecture Wed 1240 1530 RWW311

ACCY412 Lecture Wed 0830 1120 RWW311

ACCY421 Lecture Thu 1340 1630 RWW311

ALIN201 Lecture Mon 1200 1250 KK204

ALIN201 Lecture Wed 1200 1250 KK204

ALIN201 Tutorial Wed 1610 1800 AM102

ALIN301 Lecture Tue 0900 0950 KK105

ALIN301 Lecture Thu 0900 0950 KK105

ALIN301 Tutorial Thu 1610 1700 MY103

ANTH101 Lecture Mon 1310 1400 KKLT303

ANTH101 Lecture Tue 1310 1400 KKLT303

© Peter Andreae

COMP112: 170

Reading lines using Scanner:

/** Read lines from a file and print them to UI text pane. */

public void readFile(){

File myfile = new File(“input.txt”);

Scanner scan = new Scanner(myfile);

UI.println(“----------- input.txt --------------”);

while (scan.hasNext()){

String line= scan.nextLine();

UI.println(line);
}

UI.println(“----------- end of input.txt --------------”);

}

• Almost right, but compiler complains!!!

• Dealing with files may “raise exceptions”

Missing bits to

handle exceptions !!

© Peter Andreae

COMP112: 171

Files: handling exceptions

If a piece of code might raise an exception:

• Have to enclose it in a

try {

…

}

catch (IOException e) { … }

public void readFile(){

File myfile = new File(“input.txt”);

try {

Scanner scan = new Scanner(myfile);

while (scan.hasNext()){

String line = scan.nextLine();

UI.println(line);
}

UI.println(“----------- end of input.txt --------------”);
}

catch (IOException e) { UI.println(“File failure: ” + e); }

what to do

what to do if it goes wrong

© Peter Andreae

COMP112: 172

Reading from files: example

/** Finds oldest person in file of ages and names. */

public void printOldest(String filename){

try {

Scanner scan = new Scanner(new File(filename));

String oldest = "";

int maxAge = 0;

while (scan.hasNext()){

int age = scan.nextInt();

String name = scan.nextLine();

if (age > maxAge) {

maxAge = age;

oldest = name;
}

}

UI.printf(“Oldest is %s (%d)%n”, oldest, maxAge);

} catch (IOException e) { UI.println("File failure: " + e); }

}

Read a token,

then read rest of line

66 Marie Curie

48 James Clerk Maxwell

84 Isaac Newton

62 Aristotle

© Peter Andreae

COMP112: 173

Reading data from a file

public void drawShapes(String filename){

try {

Scanner scan = new Scanner(new File(fileName));

while (scan.hasNext()){

double left = scan.nextDouble();

double top = scan.nextDouble();

String shape = scan.next();

int r = scan.nextInt();

int g = scan.nextInt();

int b = scan.nextInt();

UI.setColor(new Color (r, g, b));

if (shape.equals("Oval")){ UI.fillOval(left, top, WIDTH, HEIGHT); }

else { UI.fillRect(left, top, WIDTH, HEIGHT); }

}

}

catch (IOException e) { UI.println(“File failure: ” + e); }

}

50.0 20.0 Oval 25 53 201

75.0 100.2 Rect 240 2 150

304.0 28.7 Oval 100 250 0

Reading all the values on the line

Do something

with all the

values

Stop at

end of

file

© Peter Andreae

COMP112: 174

A common simple pattern

• File with one entity per line,

described by multiple values:

while (sc.hasNext()){

String type = sc.next();

double cost = sc.nextDouble();

int wheels = sc.nextInt();

String colour = sc.next();

String make = sc.next()

if (wheels > 4) {

….

}

else {

…

}

}

…

Read all the values

into variables

process the values in

the variables

bicycle 1025 2 green Giant

truck 120000 18 black Isuzu

car 26495 4 red Toyota

© Peter Andreae

COMP112: 175

Reading files line by line

If items have a varying number of values:

May need to read a line at a time, then process:

/**Adds up sales of item on each line of a file */

public void addCounts(){

try {

Scanner scan = new Scanner(new File(“data.txt"));

while (scan.hasNext()){

String line = scan.nextLine();

Scanner lineSc = new Scanner(line);

int code = lineSc.nextInt();

String item = lineSc.next();

int lineTot = 0;

while (lineSc.hasNextInt()) {

lineTot = lineTot + lineSc.nextInt();
}

UI.printf("%s (%d): %d\n", item, code, lineTot);
}

} catch (IOException e) { UI.println("File failure: ” + e); }

}

Wrapping a Scanner

around a String,

Lets you “read” values

from the String

973 biscuits 27 33 15 4 9

731 cake 3 5 2

189 fruit 54 2 83 96

446 beans 1 3 2 5 3 4 7 2 5 1

© Peter Andreae

COMP112: 176

Files that specify how big they are.

• Sometimes a data file may specify how many values it contains

• Can then use a "counted" loop to read the values:

try {

Scanner scan = new Scanner(new File (orderFileName));

while (scan.hasNext()){

String model = scan.nextLine();

int count = scan.nextInt();

int totalOrders = 0;

int i = 0;

while (i < count){

totalOrders = totalOrders + scan.nextInt();

i++;
}

UI.println(model + " had a total of " + totalOrders + " orders.");
}

scan.close();

} catch (IOException e) { UI.println("File error: " + e); }

Fit EV

5

35

270

15

380

89

Clarity

6

35

28

18

9

17

29

Honda EV Orders.txt

© Peter Andreae

COMP112: 177

Files that specify how big they are.

• Image files: ppm format

P3

12 5

255

200 182 163 215 198 177 130 116 93 37 28 9 31 22 7

81 67 38 83 71 42 6 5 6 0 0 0 57 68 60 97 112 104

97 92 76 202 186 165 97 82 60 32 25 5 38 30 13 103 90

63 158 140 97 58 49 25 43 42 17 107 104 74 127 140

113 95 102 79 66 58 41 71 57 37 41 30 7 82 71 41 111

95 64 174 157 120 115 101 63 49 43 12 67 65 30 126

124 74 133 136 97 88 87 62 98 93 54 78 63 37 108 93

62 121 104 69 135 120 88 190 172 139 36 30 15 1 0 0

16 17 9 64 77 58 50 57 39 7 2 0 105 106 64 121 103 71

117 100 67 159 144 113 212 197 171 161 146 114 0 0 0

0 0 0 37 48 32 72 88 68 24 26 19 12 12 9 74 72 49

"Magic number" – code for ppm files

width (number of columns of pixels) and

height (the number of rows of pixels)

maximum colour value

red-green-blue

of each pixel,

in turn

read into

variables:

int cols

int rows

nested while loops to

read colour of each pixel

set colour of UI

draw pixel.

© Peter Andreae

COMP112: 178

Writing to a File

• Open a File object

• Wrap it in a new PrintStream object.

• Call print, print ln, or printf on it.

• Close the file
try {

PrintStream out = new PrintStream(new File("powers-table.txt"));

int n=1;

out.println("Number\tSquare\tCube");

while (n <= 1000) {

out.printf("%4d \t%7d \t%10\n", n, n*n, n*n*n);

n = n+1;

}

out.close()

}

catch (IOException e) { UI.println("File error: " + e); }

File Object

Just like printing to UI

PrintStream Object

© Peter Andreae

COMP112: 179

Checking if files exist

• Can check that file exists before trying to read:

public void lineNumber(String fname){ /** Make a copy of a file with line numbers */

File infile = new File(fname);

if (! infile.exists()) { UI.println("The file " + fname + " doesn't exist"); return; }

File outfile = new File("numbered-” +fname);

try {

Scanner sc = new Scanner (infile);

PrintStream out = new PrintStream(outfile);

int lineNum = 0;

while (sc.hasNext()) {

out.println(lineNum + ": " + sc.nextLine());

lineNum++;

}

out.close();

sc.close();

} catch (IOException e) { UI.printf(“File failure %s\n”, e);}
}

© Peter Andreae

COMP112: 180

Passing an open scanner

• First method: Just opens and closes the file

public void countTokensInFile(String fname){

try {

Scanner scan = new Scanner (new File(fname));

int numTokens = this.countTokens(scan);

UI.printf(“%s has %d tokens\n”, fname, numTokens);

sc.close();

} catch (Exception e) {UI.printf(“File failure %s\n”, e);}

}

• Second Method: Just reads from the scanner and counts

public int countTokens (Scanner sc){

int count = 0;

while (sc.hasNext()) {

sc.next(); // throws result away !

count = count+1;
}
return count;

}

scan:

Scanner-2543

File-872

973 biscuits 27

731 cake 3

189 fruit 54

446 beans 1

sc: I

© Peter Andreae

COMP112: 181

UIFileChooser

• So far, we’ve specified which file to open and read or write with a String.

eg: File myfile = new File("input.txt");

• How can we allow the user to choose a file?

• UIFileChooser class (part of ecs100 library, like UI)

Method What it does Returns

open() Opens dialog box;

User can select an existing file to open.

Returns name of file or null if user cancelled.

String

open(String title) Same as open(), but with specified title; String

save() Opens dialog box;

User can select file (possibly new) to save to.

Returns name of file, or null if the user cancelled.

String

save(String title) Same as save(), but with specified title. String

© Peter Andreae

COMP112: 182

/** allow user to choose and open an existing file*/

String filename = UIFileChooser.open();

File myfile = new File(filename);

Scanner scan = new Scanner(myfile);

OR

Scanner scan = new Scanner(new File(UIFileChooser.open()));

/** allow user to choose and open an existing file,

specifies a title for dialog box*/

File myfile = new File(UIFileChooser.open(“Choose a file to copy”));

Scanner scan = new Scanner(myfile);

• Two “open” methods in one class?

Overloading : two methods in the same class can have the same name as long as

they have different parameters.

Using UIFileChooser methods: open

© Peter Andreae

COMP112: 183

Using UIFileChooser methods: save

/** allow user to choose and save to a (new/existing) file*/

String filename = UIFileChooser.save();

File myfile = new File(filename);

PrintStream ps = new PrintStream(myfile);

OR

PrintStream ps = new PrintStream(new File(UIFileChooser.save()));

/** allow user to choose and save to a (new/existing) file,

Specifies a title for dialog box */

File myfile = new File(UIFileChooser.save(“File to save data in”));

PrintStream ps = new PrintStream(myfile);

© Peter Andreae

COMP112: 184

Coercion

• Mismatching types:

double num = scan.nextInt();

int number = scan.nextDouble();  Can't do this

double squareroot = Math.sqrt(25);  but sqrt wants double?

String name = “number-” + num;

• Java will “coerce” a value to the needed type if it can: eg

• If a method needs a double and is given an int:

• If an int is assigned to a double variable

• If “adding” any value to a String

• But only if it does not lose any information:
• WON’T coerce a double to an int

• WON’T coerce a String to a number, or vice versa

• except when “adding” a number to a String

• WON’T coerce any object to a mismatching type

• except when printing or “adding” to a String

© Peter Andreae

COMP112: 185

Casting

• Where it makes sense to convert a value into another type,

but some information may be lost...

• You can sometimes “cast” the value to the other type:

int number = (int) Math.sqrt(49.5);

float red = (float) Math.random();

• casting a double to an int will lose the fractional part

and may mess up the value if the number is too big!

• Not everything can be cast to everything else!

• Scanner scan = (Scanner) (new File(“data.txt”));

(〈new type〉) 〈expression〉

© Peter Andreae

COMP112: 186

More about static

/** Play a guessing game with the user*/

public class GuessingGame{

public static final int maxValue = 40;

public void GuessingGame(){

UI.addButton(“Play”, this::playGame);

}

/** plays rounds of game*/

public void playGame (){
… …

}

/** main method */

public static void main(String[] args){

new GuessingGame();

}
}

static means

“Belongs to class as a whole,

Not to individual objects”

main method

- called when the program is run directly

from Java

- used when running a jar files

© Peter Andreae

COMP112: 187

Static methods:

• Static methods are methods that don’t need an object:

• Methods in the Math class are static methods:

Math.min(…)

Math.max(…)

Math.random()

Math.sqrt(…)

• Methods in the UI class are static methods:

UI.drawRect(…)

UI.println(…)

UI.askInt(…)

None of these methods need an object to be created first.

Methods are called on the class itself, not on an object of that class.

