
© Peter Andreae

COMP112: 191

Why objects?

• A program has a collection of classes

• Each class has a collection of methods

• FlagDrawer class had several methods:

• public void doJapanFlag ()

• public void doFrenchFlag()

• Why do you have to create a FlagDrawer object before you can call these methods on

it?

• Why do you have to call the method on an object?

• What is the object for?

?

© Peter Andreae

COMP112: 192

Classes and Objects

• A class is a description of a type of object.

• includes descriptions of methods you can call on this kind of object

• Some kinds of objects we have used:

UI Scanner

println… ask… next… next, nextInt, hasNext,…

draw… fill… clear…

String File

length(), substring… exists…

CartoonFigure Flower

boilWater, toast, bake … grow, bloom, pick …

• What else did the objects need?

• Information/Data, specifying the state of the object.

• Stored in fields of the object

© Peter Andreae

COMP112: 193

What is an Object

An object is

• A collection of data wrapped up together

plus

• A collection of actions to operate on the collection of data

All specified in a class:

• Fields where data is stored

• Methods describing the actions

• Constructor to make new objects

• Constants

• Some objects (top level program objects) may have no data.

© Peter Andreae

COMP112: 194

CartoonStory program

• Java Program with 2D cartoon objects

• Uses CartoonCharacter objects:

• Methods:

• public void lookLeft()

• public void lookRight()

• public void smile()

• public void frown()

• public void walk(double distance)

• public void speak(String msg)

• public void think(String msg)

• Information a CartoonCharacter object must store:

• its images

• its size

• its state (position, direction, emotion)

© Peter Andreae

COMP112: 195

CartoonStory Program

public class CartoonStory{

public void animate(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “green”);

cf1.lookRight;

cf1.lookLeft();

cf1.frown()

cf1.speak("Is anyone here?");

CartoonCharacter cf2 = new CartoonCharacter(300, 100, “blue”);

cf2.smile(); cf2.lookLeft() ; cf2.speak("Hello");

cf1.lookRight(); cf1.smile();

cf1.speak("Hi there, I'm Jim");

cf2.speak("I'm Jan");

}

}

Two different objects of the same

type

Two different objects of

the same type

© Peter Andreae

COMP112: 196

Defining a class of objects

• CartoonCharacter is not part of the Java libraries

⇒ have to define the class

• Need to define:

• methods:

• specify the actions the objects can do

• constructor:

• specifies how to make a new CartoonCharacter object

• fields:

• for storing the information about the state of each object

© Peter Andreae

COMP112: 197

CartoonCharacter: methods

public class CartoonCharacter {

public void lookLeft() { public void lookRight() {

// erase figure // erase figure

// change direction // change direction

// redraw figure // redraw figure
} }

public void frown() { public void smile() {

// erase figure // erase figure

// change emotion // change emotion

// redraw figure // redraw figure
} }

public void walk(double dist) { public void speak(String msg) {

// erase figure // draw msg in bubble

// change position // wait

// redraw figure // erase msg
} }

© Peter Andreae

COMP112: 198

CartoonCharacter: wishful methods

public class CartoonCharacter {

public void lookLeft() { public void lookRight() {

this.erase(); this.erase();

// change direction // change direction

this.draw(); this.draw();
} }

public void frown() { public void smile() {

this.erase(); this.erase();

// change emotion // change emotion

this.draw(); this.draw();
} }

public void walk(double dist) { public void speak(String msg) {

this.erase(); // draw msg in bubble

// change position // wait

this.draw(); // erase msg

} }

public void erase() { public void draw() {
??? ???

© Peter Andreae

COMP112: 199

CartoonCharacter: draw

public void draw() {

// work out which image to use (eg, “green/right-smile.png”)

// draw the image on the graphics pane

// wait a bit

}

public void draw() {

String filename = imageFolder+"/"+direction+"-"+emotion+".png" ;

UI.drawImage(filename, figX, figY, wd, ht);

UI.sleep(500); // wait 500 mS

}

• But where are those variables defined?

• Where do they get their values?
© Peter Andreae

COMP112: 201

CartoonCharacter Objects

• Objects need places to store values – called “Fields”

• Objects are like entries in your Contacts

CartoonCharacter-24

figX: .

figY: . wd: .

ht: .emotion: “ ”

direction: “ ”

imageFolder: “ ”

CartoonCharacter-27

figX: .

figY: . wd: .

ht: .emotion: “ ”

direction: “ ”

imageFolder: “ ”

© Peter Andreae

COMP112: 202

Using fields:

A method can refer to a field of the object it was called on:

this . fieldname

eg:

public void lookLeft() {

this.erase() ;

this.direction = “left”;

this.draw() ;

}

public void draw() {

String filename = this.imageFolder + ”/” + this.direction + “-” +

this.emotion + “.png” ;

UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);

UIsleep(500); // wait 500 mS

}

Object the method

was called on

note: fields have no ()

© Peter Andreae

COMP112: 203

“left”

Using fields:

:

cf1. lookLeft();

cf1. walk(20);

:

public void lookLeft() {

this.erase() ;

this.direction = “left”;

this.draw() ;

}

this: CartoonCharacter-

CartoonCharacter-24

figX: wd:

figY: ht:

emotion: imageFolder:

direction:

150

300

40

80

“smile”

“right”

“green”

cf1: CartoonCharacter-24

Method worksheet

Object

ID of Object

© Peter Andreae

COMP112: 204

Using fields:

public void draw() {

String filename = this. imageFolder + ”/” + this.direction + “-” +

this.emotion + “.png” ;

UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);

UI.sleep(500);

}

this: CartoonCharacter-

“ ”

CartoonCharacter-24

figX: wd:

figY: ht:

emotion: imageFolder:

direction:

150

300

40

80

“smile”

“left”

“green”

Method Worksheet

Object

© Peter Andreae

COMP112: 205

“left”

Using fields:

:

cfg1. lookLeft();

cfg1. walk(20);

:

public void lookLeft() {

✓ this.erase() ;

✓ this.direction = “left”;

✓ this.draw() ;

}

this: CartoonCharacter-

CartoonCharacter-24

figX: wd:

figY: ht:

emotion: imageFolder:

direction:

150

300

40

80

“smile” “green”

cfg1: CartoonCharacter-24

Object

ID of Object
✓

© Peter Andreae

COMP112: 206

Using fields:

✓ cfg1.lookLeft();

cfg1.walk(20);

:

public void walk (double dist) {

this.erase() ;

if (this.direction.equals(“right”) { this.figX = this.figX + dist ; }

else { this.figX = this.figX – dist ; }

this.draw() ;

}

this: CartoonCharacter-

CartoonCharacter-24

figX: wd:

figY: ht:

emotion: imageFolder:

direction:

150

300

40

80

“smile”

“left”

“green”

cfg1: CartoonCharacter-24

© Peter Andreae

COMP112: 207

Objects and Classes

Classes define objects:

• Fields: places in an object that store the information

associated with the object

methods can refer to fields of the object they

were called on:

this.fieldname

How do you set up the fields?

• Methods: can be called on any object of the class

• Constructors: specify how to set up an object when it is

first created.

• Constants: specify names for values

© Peter Andreae

COMP112: 208

Setting up an object

Must declare the Fields of an object?

• Declared in the class

(not inside a method)

• Must specify the type and the name

(just like local variables in methods)

• Can specify an initial value (but you don’t have to!)

if not, automatically initialised with 0 or null

(unlike local variables)

• Have a visibility specifier (“private”)

• Fields remain indefinitely

(unlike local variables)

• The set of field declarations is a template for the object

(just like a method is a template for a worksheet).

Just as local variables
must be declared

© Peter Andreae

COMP112: 209

Syntax of Field declarations:

public class CartoonCharacter {

// fields

private double figX; // current position of figure

private double figY;

private String direction = "right"; // current direction it is facing

private String emotion = "smiling"; // current emotion

private String imageFolder; // base name of images

private double wd = 40; // dimensions of figure

private double ht=80;

// methods …….

field name

expression=

;private type

Like variables, BUT

(a) NOT inside a method

(b) have private in front

© Peter Andreae

COMP112: 210

Setting up an object

• How do you initialise the values in the fields?

• Can specify an initial value in the field declaration

but only if every object should start with the same value!!!

• Must have a way of setting up different objects when you create them:

Constructor:

• specifies what happens when you make a new object

(eg, evaluate the expression

new CartoonCharacter(150, 100, “green”)

• We have seen constructors with no parameters.

• Can have parameters that can be used to set up the new object.

© Peter Andreae

COMP112: 211

CartoonCharacter class

public class CartoonCharacter {

// fields

private double figX, figY; // current position of figure

private String direction = "right"; // current direction it is facing

private String emotion = "smile"; // current emotion

private String imageFolder; // folder where images stored

private double wd = 40, ht=80; // dimensions

// constructor

public CartoonCharacter(double x, double y, String base){

this.imageFolder = base;

this.figX = x;

this.figY = y;

this.draw();

}

// methods …….

public void lookLeft() {

this.erase(); …..

Shorthand for declaring two fields

(or variables) of the same type

© Peter Andreae

COMP112: 212

public class name type() {

statement

}

parameter name

,

public CartoonCharacter(String base, double x, double y){

this.imageFolder = base;

this.figX = x;

this.figY = y;

this.draw();

}

Syntax of Constructor Definitions (2)

© Peter Andreae

COMP112: 213

• Defining a Constructor

• Part of the class

• Like a method, but called with new

• Does not have a return type

(new always returns an object of the given type)

• this will hold the new object that is being constructed

• Constructor typically
• fills in initial values of fields

• may call other methods on the object,

• can do anything an ordinary method can do.

• The constructor of the “top level” class may set up the user interface.

Constructors

© Peter Andreae

COMP112: 214

What happens with new ?

When an object is created

eg new CartoonCharacter(100, 200 , "yellow");

• New chunk of memory is allocated

(new filing card).

• Reference (ID) to object is constructed

CartoonCharacter-24

• Any initial values specified in the field

declarations are assigned to the fields.

If no initial value, default values:

• 0 for fields of a number type (int, double, etc)

• false for for boolean fields

• null for fields of an object type (String, Scanner, Car, …)

• The arguments are passed to the constructor

• The actions specified in the constructor are performed on the object.

• The reference is returned as the value of the constructor.

CartoonCharacter-24

figX:

figY:

emotion:

direction:

imageFolder:

wd:

ht:

100.

200

40.

80.

“ smile ”

“ right ”

“ yellow ”null

0

0

© Peter Andreae

COMP112: 215

The whole Program

public class CartoonStory{

public CartoonStory(){

UI.addButton(“go”, this::playStory);
}

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “green”);

cf1.lookLeft();

cf1.lookRight();

cf1.frown()

cf1.speak("Is anyone here?");

CartoonCharacter cf2 = new CartoonCharacter(300, 100, “blue”);

cf2.speak("Hello");

cf2.lookLeft() ;

cf1.smile();

cf1.speak("Hi there, I'm Jim");

cf2.speak("I'm Jan");
}

public static void main(String[] args){

CartoonStory cs = new CartoonStory();
}

}

Note the main method

⇒ don't need BlueJ

Simple class:

- no fields

- constructor for UI

- methods

© Peter Andreae

COMP112: 216

CartoonCharacter: fields & constructor

public class CartoonCharacter {

// fields

private double figX; // current position of figure

private double figY;

private String direction = "right"; // current direction it is facing

private String emotion = "smile"; // current emotion

private String imageFolder; // base name of image set

private double wd = 40; // dimensions

private double ht=80;

// constructor

public CartoonCharacter(double x, double y, String base){

this.imageFolder = base;

this.figX = x;

this.figY = y;

this.draw();

}

© Peter Andreae

COMP112: 217

CartoonCharacter: methods

public void lookLeft() { public void lookRight() {

this.erase(); this.erase();

this.direction = "left"; this.direction = "right";

this.draw(); this.draw();
} }

public void frown() { public void smile() {

this.erase(); this.erase();

this.emotion = "frown"; this.emotion = "smile";

this.draw(); this.draw();
} }

public void walk(double dist) {

this.erase();

if (this.direction.equals(“right”) {

this.figX = this.figX + dist ;
}

else {

this.figX = this.figX – dist ;
}

}

© Peter Andreae

COMP112: 218

CartoonCharacter: methods

public void speak(String msg) {

double bubX = this.figX - …; // and bubY, bubWd, bubHt

UI.drawOval(bubX, bubY, bubWd, bubHt);

UI.drawString(msg, bubX+9, bubY+bubHt/2+3);

UI.sleep(500);

UI.eraseRect(bubX, bubY, bubWd, bubHt);

}

public void erase() {

UI.eraseRect(this.figX, this.figY, this.wd, this.ht);

}

public void draw() {

String filename = this. imageFolder +"/"+this.direction+"-"+

this.emotion+“.png” ;

UI.drawImage(filename, this.figX, this.figY, this.wd, this.ht);

UI.sleep(500);

}

© Peter Andreae

COMP112: 219

Running the program: main

> java CartoonStory or call main on the class from BlueJ

public static void main(String[] args){

CartoonStory cs = new CartoonStory();

}

cs: CartoonStory-3

CartoonStory-3

Very simple object!

- no fields

- no constructor

© Peter Andreae

COMP112: 220

CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “green”);

cf1.lookLeft();

cf1.lookRight();

cf1.frown()

cf1.speak("Is anyone here?");

CartoonCharacter cf2 = new CartoonCharacter(300, 100, “blue”);

cf2.speak("Hello");

cf2.lookLeft() ;

cf1.smile();

cf1.speak("Hi there, I'm Jim");

cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-

this: CartoonStory-3

CartoonCharacter-24

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

150.

100.

40.

80.

“ smile ”

“ right ”

“ green ”

Is anyone here?

© Peter Andreae

COMP112: 221

CartoonStory Program: playStory

public void playStory(){

CartoonCharacter cf1 = new CartoonCharacter(150, 100, “green”);

cf1.lookLeft();

cf1.lookRight();

cf1.frown()

cf1.speak("Is anyone here?");

CartoonCharacter cf2 = new CartoonCharacter(300, 100, “blue”);

cf2.speak("Hello");

cf2.lookLeft() ;

cf1.smile();

cf1.speak("Hi there, I'm Jim");

cf2.speak("I'm Jan");

cf1: CartoonCharacter-24

cf2: CartoonCharacter-27

this: CartoonStory-3

CartoonCharacter-27

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

300.

100.

40.

80.

“ smile ”

“ right ”

“ blue ”

Hello

© Peter Andreae

COMP112: 222

Keeping track of Multiple objects

:

cf2.lookLeft() ;

cf1.smile();

:

public void lookLeft() {

this.erase() ;

this.direction = “left”;

this.draw() ;

}

this: CartoonCharacter-

CartoonCharacter-24

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

150.

100.

40.

80.

“ frown ”

“ right ”

“ blue ”

CartoonCharacter-27

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

300.

100.

40.

80.

“ smile ”

“ right ”

“ blue ”

cf1: CartoonCharacter-24 cf2: CartoonCharacter-27✓

© Peter Andreae

COMP112: 223

Keeping track of Multiple objects

:

cf2.lookLeft() ;

cf1.smile();

:

public void smile() {

this.erase() ;

this.emotion = “smile”;

this.draw() ;

}

this: CartoonCharacter-

CartoonCharacter-24

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

150.

100.

40.

80.

“ frown ”

“ right ”

“ blue ”

CartoonCharacter-27

figX: wd:

figY: ht:

emotion:

direction:

imageFolder :

300.

100.

40.

80.

“ smile ”

“ left ”

“ blue ”

✓ cf1: CartoonCharacter-24 cf2: CartoonCharacter-27

© Peter Andreae

COMP112: 224

Menu

• Another example of defining objects

• Scope, Extent, Visibility

• Event-Driven Input

Admin

• Test marks

• Beijing Summer School on mobile apps development

- July 3 -14

- Two students will be sent

- See the forum message

- Email Ian Welch if you are interested

© Peter Andreae

COMP112: 225

Bouncing Balls

• Two classes: Bouncer and BouncingBall

© Peter Andreae

COMP112: 226

Designing Bouncer (“top level” class)

• How does the user interaction work?

buttons,

constructor

• What are the methods?

© Peter Andreae

COMP112: 227

Designing BouncingBall class

• What fields does it need?

• What methods should it have?

• What should happen when it is first created?

© Peter Andreae

COMP112: 228

BouncingBall: fields & constructor

public class BouncingBall {

// fields

private double xPos;

private double height;

private double xSpeed;

private double ySpeed;

private Color col;

// constructor

public BouncingBall(double x, double y, double sp){

}

© Peter Andreae

COMP112: 229

BouncingBall: methods

public void draw () {

}

public void move() {

}

public double getX() {

}

© Peter Andreae

COMP112: 230

Places: variables vs fields

• Two kinds of places to store information:

• Variables (including parameters)

• defined inside a method

• specify places on a worksheet

• temporary – information is lost when worksheet is finished

• new place created every time method is called (each worksheet)

• only accessible from inside the method.

• Fields

• defined inside a class, but not inside a method

• specify places in an object

• long term – information lasts as long as the object

• new place created for each object

• accessible from all methods in the class, and from constructor.

© Peter Andreae

COMP112: 231

Extent and scope

• A place with a value must be accessible to some code at some time.

• Extent: how long it will be accessible

• local variables (and parameters) in methods have a limited extent

⇒ only until the end of the current invocation of the method

• fields have indefinite extent

⇒ as long as the object exists

• Scope: what parts of the code can access it

• Full scope rules are complicated!!!

• local variables: accessible only to statements

• inside the block { … } containing the declaration

• after the declaration

• fields: at least visible to the containing class; maybe further.

© Peter Andreae

COMP112: 232

Scope of variables

//read info from file and display

while (scan.hasNext()){

String ans = scan.next();

if (ans.equals("flower")) {

Color center = Color.red;

int diam = 30;

}

else if (ans.equals("bud")) {

Color center = Color.green;

int diam = 15;

}

:

UI.setColor(center);

UI.fillOval(x, y, diam, diam);

:

}

while (scan.hasNext()){

String ans = scan.next();

Color center = null;

int diam = 0;

if (ans.equals("flower")) {

center = Color.red;

diam = 15;

}

else if (ans.equals("bud")) {

center = Color.blue;

diam = 30;

}

:

UI.setColor(center);

UI.fillOval(x, y, diam, diam);

:

}

Out of scope

may not be intialised
Out of scope

may not be intialised

;
;

How do you fix it?

different

variables!

different

variables!

© Peter Andreae

COMP112: 233

Fields: scope, visibility, encapsulation

• Fields are accessible to all code in all the (ordinary) methods in the class.

• Should they be accessible to methods in other classes?

• ⇒ visibility: public or private

• public means that methods in other classes can access the fields

cfg1.figX = 30 in the CartoonStory class would be OK

• private means that methods in other classes cannot access the fields

cfg1.figX = 30 in the CartoonStory class would be an error.

The principle of encapsulation says

• Keep fields private.

• Provide methods to access and modify the

fields, if necessary

⇒ LDC 5.3

© Peter Andreae

COMP112: 237

GUI’s and Event driven input

• In a GUI, the interaction is controlled by the user,

not by the program

• User initiates "events"

• buttons

• menus

• mouse press/release/drag

• text fields

• sliders

• keys

• Program responds

© Peter Andreae

COMP112: 238

PuppetMaster

• How does Java respond to buttons etc?

• When a button pressed / text entered in box / slider changed / mouse clicked:

• Java looks up the object & method attached to the button/box/etc

• Calls the method

• passing the value for box or slider.

• passing kind of action and position (x and y) for mouse.

Smile

Frown

Right

Walk

Speak

Distance

Left

© Peter Andreae

COMP112: 239

Setting up event-driven input

• Setting up the GUI:

• To add a button to the UI:

• specify name of button and method to call

(object ::method or class ::method)

(must be a method with no parameters)

eg: UI.addButton("go", this::startGame);

UI.addButton("end", UI::quit);

• To add a textfield to the UI:

• Specify name of textfield and method to call

(must be a method with one String parameter)

eg UI.addTextField("name", this::setName);

• To add a slider to the UI:

• Specify name of slider, min, max, initial values, and method to call

(must be a method with one double parameter)

eg UI.addSlider("speed", 10, 50, 20, this::setSpeed);

© Peter Andreae

COMP112: 240

Event driven input and fields

• Each event will make a new method call.

•  can't remember anything between events in local variables in the methods.

• Typically, need fields in the main object to remember information between events.

• eg: PuppetMaster has to remember the CartoonCharacter object in a field

© Peter Andreae

COMP112: 241

PuppetMaster: Design

Structure of the PuppetMaster class:

public class PuppetMaster … {

// fields to store values between events/method calls

private ….

// Constructor

public PuppetMaster(){

// set up the buttons, slider, textField

// initialise fields

}

// methods to respond to the buttons, slider, textField

public void …

}

© Peter Andreae

COMP112: 242

PuppetMaster: setting up Buttons etc

public class PuppetMaster … {

// fields

// constructor

public PuppetMaster(){

this.setupGUI();

}

public void setupGUI(){

UI.addButton("Smile", this::doSmile);

UI.addButton("Frown", this::doFrown);

UI.addButton("Left", this::doLeft);

UI.addButton("Right", this::doRight);

UI.addTextField("Say", this::doSpeak);

UI.addButton("Walk", this::doWalk);

UI.addSlider("Distance", 1, 100, 20, this::setDist);

…

}

// methods to respond

}

Smile

Frown

Say

Left

Right

Walk

Distance

1 100

© Peter Andreae

COMP112: 243

Responding to buttons and textFields

public class PuppetMaster {

// fields

// constructor

public void setupGUI(){

UI.addButton("Smile", this::doSmile);

UI.addButton("Frown", this::doFrown);

⋮
UI.addTextField(“Say", this::doSpeak);

}

public void doSmile(){

// tell the CartoonCharacter to smile

}

public void doFrown(){

// tell the CartoonCharacter to frown

}

public void doSpeak(String words){

// tell the CartoonCharacter to say the words

}

A method called by a button

must have no parameters

Methods called by buttons

must have no parameters

Methods called by a textField

must have one String parameter

© Peter Andreae

COMP112: 244

PuppetMaster: Using Fields

Actions on the CartoonCharacter happen in response to different events

⇒ will be in different method calls

⇒ need to store character in a field, not a local variable.

public class PuppetMaster{

// fields

private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

// constructor

public void setupGUI(){

UI.addButton("Smile", this::doSmile); // call doSmile on this

UI.addButton("Frown", this::doFrown);

:
}

public void doSmile(){

this.cc.smile();
}

public void doFrown(){

this.cc.frown();
}

© Peter Andreae

COMP112: 245

PuppetMaster: Using Fields

Actions on the CartoonCharacter happen in response to different events

⇒ will be in different method calls

⇒ need to store character in a field, not a local variable.

public class PuppetMaster{

// fields

private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

// constructor

public void setupGUI(){

UI.addButton("Smile", cc::smile); // call smile on the cc object, directly

UI.addButton("Frown", cc::frown);

:
}

public void doSmile(){

this.cc.smile();
}

public void doFrown(){

this.cc.frown();
}

© Peter Andreae

COMP112: 246

PuppetMaster: TextFields (boxes)

public class PuppetMaster{

private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

public PuppetMaster(){

this.setupGUI();

}

public void setupGUI(){

UI.addButton("Smile", this::doSmile); // call doSmile on this

UI.addButton("Frown", this::doFrown);

UI.addTextField(“Say", this::doSpeak); // or cc::speak

:
}

public void doSmile(){

this.cc.smile();
}

:

public void doSpeak(String words){

this.cc.speak(words);
}

© Peter Andreae

COMP112: 247

PuppetMaster: Sliders

public class PuppetMaster {

private CartoonCharacter cc = new CartoonCharacter(200, 100, "blue");

private double walkDist = 20 ;

public PuppetMaster(){

this.setupGUI();
}

public void setupGUI(){

UI.addButton("Smile", this::doSmile);

:

UI.addButton(“Walk", this::doWalk);

UI.addSlider("Distance", 1, 100, 20, this::setDist);
}

:

public void doWalk() {

this.cc.walk(this.walkDist);
}
public void setDist(double value){

this.walkDist = value;

}

Typical design:

field to store value

from one event,

for use by another event

A method called by

a slider must have

one double parameter

© Peter Andreae

COMP112: 248

GUI: Mouse input

• Just like buttons, except don’t have to put anything on screen

• Each press / release / click on the graphics pane will be an event

• Must tell UI object::method to call when a mouse event occurs

UI.setMouseListener(this :: doMouse);

• Must define method to say how to respond to the mouse

parameters: kind of mouse event and position of mouse event

public void doMouse(String action, double x, double y) {

if (action.equals("pressed")) {

// what to do if mouse button is pressed
}

else if (action.equals("released")) {

// what to do if mouse button is released
}

else if (action.equals("clicked")) {

// what to do if mouse button is clicked
}

}

where action

occurred

press-release

in same place

© Peter Andreae

COMP112: 249

Using the mouse.

• Want to let user specify input with the mouse,

• eg: drawing lines

• Typical pattern:

• On "pressed",

• just remember the position

• On "released",

• do something with remembered position and new position

1

2

(100,80)
(260,90)

© Peter Andreae

COMP112: 250

Mouse Input

/**Let user draw lines on graphics pane with the mouse. */

public class LineDrawer {

private double startX, startY; // fields to remember “pressed” position

public LineDrawer(){

UI.setLineWidth(10);

UI.setMouseListener(this::doMouse);

}

public void doMouse(String action, double x, double y) {

if (action.equals("pressed")) {

this.startX = x;

this.startY = y;
}

else if (action.equals("released")) {

UI.drawLine(this.startX, this.startY, x, y);
}

}
}

© Peter Andreae

COMP112: 251

Selecting Colors: JColorChooser

public class LineDrawer {

private double startX, startY;

private Color currentColor = Color.black;

public LineDrawer (){

UI.setMouseListener(this::doMouse);

UI.addButton("Color", this::doChooseColour);
}

public void doMouse(String action, double x, double y) {

if (action.equals("pressed")) { this.startX = x; this.startY = y; }

else if (action.equals("released")) { UI.drawLine(this.startX, this.startY, x, y); }
}

public void doChooseColour(){

this.currentColor = JColorChooser.showDialog(null, "Choose Color", this.currentColor);

UI.setColor(this.currentColor);
}

© Peter Andreae

COMP112: 253

Numbers program

• Program for constructing files of numbers:

• Allow user to select a new file

• Allow user to enter a set of numbers with the mouse (height of mouse click is the number)

• Display numbers as bar chart and list in text pane

• Save numbers to the file as they are entered

• User Interface:

• Button to clear screen and select new file.

• Graphics pane to select (with mouse)

and display the numbers

• Text pane to display list of numbers 130

72

281

98

264

97

Numbers

New

© Peter Andreae

COMP112: 254

Numbers: Design

• Design:

• When does something happen?

• button presses

• mouse clicks

• Fields

• to store the file (PrintStream) that the numbers are being saved to

• to remember the horizontal position of the next bar.

• Constructor

• set up the interface

• Methods to respond to mouse

• record a new number

• Method to respond to button

• clear and start a new file

Numbers

New

© Peter Andreae

COMP112: 255

Numbers: Design

public class Numbers {

private PrintStream outputFile;

private double barX = 0;

private static final double BASE= 450;

public Numbers(){

UI.setMouseListener(this::doMouse);

UI.addButton("New", this::doNew);

UI.drawLine(0, BASE, 600, BASE);

}

public void doNew() {…

public void doMouse(…

public static void main(String[] args){

new Numbers();

}

}

Numbers

New

© Peter Andreae

COMP112: 256

Respond to Mouse:

• When user clicks/releases:

• work out the number they meant

• draw a bar on the graphics pane

• display it in the text pane

• print it to the file

public void doMouse(String action, double x, double y) {

if (action.equals("released")) {

double number = BASE - y;

this.barX = this.barX + 10;

UI.fillRect(this.barX, y, 5, number);

UI.println(number);

this.outputFile.println(number);

}

}

130

Numbers

New

if (this.outputFile != null) {

this.outputFile.println(number);
}

What's the

problem?

© Peter Andreae

COMP112: 257

Respond to "New" button

public void doNew(){

UI.clearPanes();

UI.drawLine(0, BASE, 600, BASE);

this.barX = 0;

this.outputFile.close();

try{

this.outputFile = new PrintStream(new File(UIFileChooser.save()));

} catch(IOException e) { UI.println("File error: "+e); }

}

// Alternative for the long one line:

String fname = UIFileChooser.save();

File file = new File(fname);

this.outputFile = new PrintStream(file);

if (this.outputFile != null) {

this.outputFile.close();
}

Still a

problem!

© Peter Andreae

COMP112: 258

PuppetMaster: Problem 1

Suppose we have two characters!

Problem:

• Which character should smile/turn/walk/speak?

• Event-driven input can be tricky!

Smile

Frown

Speak

Distance

Left

Right

Walk

© Peter Andreae

COMP112: 259

GUI design: choosing object to act on

• One typical simple GUI interaction mechanism

1. Select object you want to act on

2.Choose action.

• Must remember the currently selected object:

• in a field, because the action will be performed in a later method

this.selectedCC = cc1;

• Typically, the “selected object” doesn’t change until user

selects another object.

© Peter Andreae

COMP112: 260

PuppetMaster Problem: two characters

Smile

Frown

Speak

Distance

Walk

CartoonCharacter-11

emotion: "smile"figX: 110

figY: 200 direction: "right"

imgBaseName: "blue"

CartoonCharacter-12

emotion: "frown"figX: 350

figY: 200 direction: "left"

imgBaseName: "green"

PuppetMaster-3

fields:

walkDistance: 20

cc1: CartoonCharacter-11

cc2: CartoonCharacter-12

selectedCC: CartoonCharacter-11

© Peter Andreae

COMP112: 261

PuppetMaster: selecting a character.

public class PuppetMaster{

private CartoonCharacter cc1= new CartoonCharacter(“blue", 100, 100);

private CartoonCharacter cc2= new CartoonCharacter(“green", 500, 100);

private CartoonCharacter selectedCC = cc1; // the selected one

private double walkDistance = 20;

public PuppetMaster(){

UI.addButton("Smile", this::doSmile);

⋮
}

public void doSmile(){

this.selectedCC.smile();

}

public void doFrown(){

this.selectedCC.frown();

}

⋮

How do we change

the selected character?

© Peter Andreae

COMP112: 262

PuppetMaster: buttons for selecting

public PuppetMaster() {

UI.addButton("Jim", this::doJim);

UI.addButton("Jan", this::doJan);

UI.addButton("Smile", this::doSmile);

⋮
}

public void doJim() {

this.selectedCC = this.cc1;

}

public void doJan() {

this.selectedCC = this.cc2;

}

public void doSmile(){

this.selectedCC.smile();

}

public void doWalk() {

this.selectedCC.walk(this.walkDistance);

}
© Peter Andreae

COMP112: 263

PuppetMaster: TextFields & Sliders

Jim

Jan

Speak

Distance

Walk

Smile

Frown

CartoonCharacter-11

emotion: "smile"figX: 110

figY: 200 direction: "right"

imgBaseName: "blue"

CartoonCharacter-12

emotion: "frown"figX: 350

figY: 200 direction: "left"

imgBaseName: "green"

PuppetMaster-3

walkDistance: 20

cc1: CartoonCharacter-11

cc2: CartoonCharacter-12

selectedCC: CartoonCharacter-11

Hello

Hello

60

© Peter Andreae

COMP112: 264

Shorthand: “Lambda expressions”

public class PuppetMaster{

private CartoonCharacter selectedCC = new CartoonCharacter(200, 100, "blue");

public PuppetMaster(){

UI.addButton("Smile", this::doSmile);

UI.addButton("Frown", this::doFrown);

UI.addTextField(“Say", this::doSpeak);

:
}

public void doSmile(){

this.selectedCC.smile();
}

public void doFrown(){

this.selectedCC.frown();
}

public void doSpeak(String words){

this.selectedCC.speak(words);
}

Lots of typing for just

one line

© Peter Andreae

COMP112: 265

Shorthand: “Lambda expressions”

public class PuppetMaster{

private CartoonCharacter selectedCC = new CartoonCharacter(200, 100, "blue");

public PuppetMaster(){

UI.addButton("Smile", () -> { this.selectedCC.smile(); });

UI.addButton("Frown", this::doFrown);

UI.addTextField(“Say", this::doSpeak);

:
}

public void doSmile(){

this.char.smile();
}

public void doSmile(){

this.selectedCC.smile();
}

public void doSpeak(String words){

this.selectedCC.speak(words);
}

Lambda Expression:

Unnamed method!!

- has parameters

- has body

- has no name

It is a value!!

© Peter Andreae

COMP112: 266

Shorthand: “Lambda expressions”

public class PuppetMaster{

private CartoonCharacter selectedCC = new CartoonCharacter(200, 100, "blue");

public PuppetMaster(){

UI.addButton("Smile", () -> { this.selectedCC.smile(); });

UI.addButton("Frown", () -> { this.selectedCC.frown(); });

UI.addButton("Left", () -> { this.selectedCC.lookLeft(); });

UI.addButton("Right", () -> { this.selectedCC.lookRight(); });

UI.addTextField(“Say", (String wds) -> { this.selectedCC.speak(wds); });

UI.addButton(“Walk", () -> { this.selectedCC.walk(this.walkDist); });

UI.addSlider("Distance", 1, 100, 20,

(double val) -> { this.walkDist = val; });
}

}

You do NOT HAVE TO USE THESE!!

It is always safe to have an explicit, named method.
© Peter Andreae

COMP112: 267

Shorthand: “Lambda expressions”

public class PuppetMaster{

private CartoonCharacter cc1= new CartoonCharacter(“blue", 100, 100);

private CartoonCharacter cc2= new CartoonCharacter(“green", 500, 100);

private CartoonCharacter selectedCC= cc1; // the selected one

private double walkDistance = 20;

public PuppetMaster(){

UI.addButton(“Jim", () -> { this.selectedCC = cc1; });

UI.addButton(“Jan", () -> { this.selectedCC = cc2; });

UI.addButton("Smile", () -> { this.selectedCC.smile(); });

UI.addButton("Frown", () -> { this.selectedCC.frown(); });

UI.addButton("Left", () -> { this.selectedCC.lookLeft(); });

UI.addButton("Right", () -> { this.selectedCC.lookRight(); });

UI.addTextField(“Say", (String wds) -> { this.selectedCC.speak(wds); });

UI.addButton(“Walk", () -> { this.selectedCC.walk(this.walkDist); });

UI.addSlider("Distance", 1, 100, 20,

(double val) -> { this.walkDist = val; });
}

}

