
COMP261 Tutorial Week 10

Data Encoding and Decoding

Data encoding and decoding are techniques used to convert data from one form to another.
Encoding refers to the process of converting data into a format that can be easily
transmitted, stored, or processed, while decoding is the reverse process of converting
encoded data back to its original form.

There are many encoding and decoding techniques available, each with its own strengths
and weaknesses. In this tutorial, we will explore some common techniques used for data
encoding and decoding, including fixed-length encoding, variable-length encoding, and
prefix encoding.

• Fixed-length encoding
Here is an example of fix-length encoding and decoding for 26 letters, period (.), comma (,),
and quotation mark ("):

Symbol Code Symbol Code Symbol Code Symbol Code

A 00000 J 01001 S 10010 , 11011

B 00001 K 01010 T 10011 " 11100

C 00010 L 01011 U 10100
space 11101

D 00011 M 01100 V 10101

E 00100 N 01101 W 10110

F 00101 O 01110 X 10111

G 00110 P 01111 Y 11000

H 00111 Q 10000 Z 11001

I 01000 R 10001 . 11010

1. Can you encode “HELLO WORLD” using the above encoding scheme?

2. Using this encoding method, what is the compression rate achieved?

(The string "hello world" is now represented using 55 bits: 11 characters * 5 bits per
character. The original ASCII code uses 11 * 8 = 88 bits).

3. If you received the following binary sequence: “10110000100001101000”, how do
you decode it?

4. How do we decide the number of bits of our code in the codebook?

5. What is potential advantage and disadvantage of the fixed-length method? (Difficulty
to encode/decode, compression rate, generalizability, …)

• Variable-length encoding

1. Morse code:

Morse code works by representing each letter and number as a unique sequence of dots
and dashes, which are also known as dits and dahs. Each dot represents a short sound or
light, and each dash represents a longer sound or light. The length of a dash is three times
the length of a dot. The sequence of dits and dahs is used to spell out words and phrases.

For example, the letter A is represented by a single dit followed by a single dah, while the
letter B is represented by a single dah followed by three dits. The letter C is represented by a
single dah followed by a single dit followed by a single dah, and so on.

One of the reasons for the popularity of Morse code is its versatility. Because it uses a
simple system of dots and dashes, it can be used to transmit messages across a wide range
of mediums, including sound, light, and electricity. This has made it a valuable tool for
everything from military communications to amateur radio operators and even hobbyists.

Here is the Morse codebook:

A .- F ..-. K -.- P .--.

B -... G --. L .-.. Q --.-

C -.-. H M -- R .-.

D -.. I .. N -. S ...

E . J .--- O --- T -

U ..- V ...- W .-- X -..-

Y -.-- Z --.. 1 .---- 2 ..---

3 ...-- 4 - 5 6 -....

7 --... 8 ---.. 9 ----. 0 -----

In Morse code, the length of the code for each letter is determined by its relative frequency
of use in the English language. More commonly used letters are assigned shorter codes,
while less commonly used letters are assigned longer codes. This is based on statistical
analysis of the frequency of letters in the English language.

1. If you replace ‘.’ by ‘0’ and ‘-’ by ‘1’, you can get a binary Morse codebook. Now,
please encode “Helloworld” and see the compression rate by comparing to the
original ASCII code.

2. In Morse code, to split each letter when transmitting, the Morse code operator uses
brief pauses between the dots and dashes within each letter, and longer pauses
between letters to signal the end of one letter and the beginning of the next.

Please decode the following sequence you received:

000(pause)111(pause)000

3. Is it possible to decode a sequence of Morse code without knowing where the
pauses are? Suppose we have the following Morse code sequence:

.-..---.--..-.-..-.----

01001110110010100101111

Try and see different possible decoding results.

4. Discussion: Morse code is a simple and efficient encoding scheme for human-
readable texts, but why it is not suitable for transmitting large amounts of data over
the internet?

2. Huffman coding:

Huffman coding is a data compression algorithm that uses variable-length codes to
represent data. It was invented by David Huffman in 1952 while he was a student at MIT.
The basic idea behind Huffman coding is to represent more common data elements with
shorter codes, and less common elements with longer codes. This is achieved by
constructing a binary tree, called a Huffman tree, based on the frequency of occurrence of
each element in the data.

Here's an example of a Huffman coding tree:

 +

 / \

 + +

 / \ / \

 + C D E

 / \

 B A

The codebook is:

A: 001, B: 000, C: 01, D: 10, E: 11

To use a Huffman coding tree to decode a message, you need to traverse the tree starting
from the root node and moving down either the left or right branch based on the code you
are trying to decode. The code is a sequence of bits, typically represented as 0s and 1s, that
corresponds to a particular character in the original message. You start at the root node and
examine the first bit of the code. If it is a 0, you move down the left branch; if it is a 1, you
move down the right branch. You keep following the branches, examining the next bit of the
code until you reach a leaf node. The character represented by that leaf node is the decoded
character for that code. You then repeat this process for each code in the message until you
have decoded the entire message.

1. Please decode the following sequence:

11111111101001011001000000001001011011

2. Comparing to the fix-length encoding like this:

A: 000, B: 001, C: 010, D: 011, E: 100

What is the compression rate?

3. Do you need extra schemes or codes to split letters in this variable-length method?
Why?

4. Write seudo-code or Java code for decoding a sequence based on a given Huffman
coding tree.

5. What are the advantages and disadvantages of Huffman encoding/decoding?
(Generalizability? Computational Cost? Redundancy? …)

