
COMP261
Algorithms and Data Structures

2024 Tri 1

Jyoti Sahni
jyoti.sahni@ecs.vuw.ac.nz

Office Hours (COMP261): AM414, Thursday 10:00 – 12:00

mailto:jyoti.sahni@ecs.vuw.ac.nz

Test 3

•When: 5-6 pm Thursday, May 9, 2024

•Syllabus: Everything covered from Week 7 – Tuesday
(May 7), Week 9

- No lecture at 1:00 pm on Thursday, May 9

- Previous year question papers - 2023, 2022 (some
sample questions)

- Refer to Test3Preparation.pdf at the course wiki

https://ecs.wgtn.ac.nz/foswiki/pub/Courses/COMP261_2024T1/LectureSchedule/Tes3Preparation.pdf

Recap: Centrality

Centrality algorithms are used to understand the roles of
particular nodes in a graph and their impact on that
network.

•Degree centrality – Baseline metric

•Closeness centrality – How central a node is to the group

•Between centrality – finding control points

•Ranking – Overall influence

Different centrality algorithms can produce significantly
different results based on what they were created to
measure.

Recap: Page Rank
All the centrality measures (covered till now) measure the direct
influence of a node. Page rank measure the transitive influence
of nodes (influence of neighbours and neighbours of neighbours)

Page Rank, named after both “web page” and Google co-founder
Larry Page, was the first algorithm that was used by Google to
rank websites in their search engine results.

How PageRank works for the Google search engine: It counts the
number and quality of links to a page to determine a rough
estimate of how important the website is.

The underlying assumption is that a page with more incoming
and more influential incoming links is more likely a credible
source.

Recap: Some Preliminaries

•Backedge: If 𝑝𝑎𝑔𝑒 𝐴 links out to
𝑝𝑎𝑔𝑒 𝐵, then 𝑝𝑎𝑔𝑒 𝐵 is said to
have a “backlink“ from 𝑝𝑎𝑔𝑒 𝐴.

•𝑃𝑅(𝑃) — Each page 𝑃 has a
notion of its own page rank.

•𝐶(𝑃)— Count of outgoing links
for page 𝑃. Each page spreads its
vote out evenly amongst all of it’s
outgoing links.

•We’ll study a simplified version

A

C

B

D

E

Recap: Some Preliminaries

•Page rank of a page 𝑃 is
dependent on the page rank of the
pages that have an outgoing link to
𝑃 (nodes pointing to 𝑃)

•E.g. Page rank of A depends upon
page ranks of C and D.

•The PageRank transferred from a
given page to the targets of its
outgoing links is divided equally
among all outbound links.

A

C

B

D

E

Some Preliminaries: Page Rank
•Random Surfer model: Models how someone might
browse the web without any particular goal in mind. The
PageRank theory holds that an imaginary surfer who is
randomly clicking on links will eventually stop clicking.

•Damping factor: The probability, at any step, that the
person will continue following links is a damping factor 𝑑.
The probability that they instead jump to any random
page is 1 − 𝑑.

•When calculating PageRank, pages with no outbound
links are assumed to link out to all other pages in the
collection.

𝑃𝑅(𝐴) = (
1 − 𝑑

𝑁
) + 𝑑 ෍

𝐵 𝑖𝑛 𝑖𝑛𝐿𝑖𝑛𝑘𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑜𝑓 𝐴

𝑃𝑅(𝐵)

𝑐𝑜𝑢𝑛𝑡(𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝑙𝑖𝑛𝑘𝑠 𝑜𝑓𝐵)
+ ෍

𝐾 𝑤𝑖𝑡ℎ 𝑛𝑜𝑂𝑢𝑡𝐿𝑖𝑛𝑘𝑠

𝑃𝑅(𝐾)

𝑐𝑜𝑢𝑛𝑡(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑜𝑑𝑒𝑠 𝑖𝑛 𝐺)

computePageRank(Graph graph, int iter, double dampingfactor){
nNodes = get count of nodes in the graph
//initialize
for each node n in graph

set pageRank(n) = 1.0/nNodes
endFor
count = 1
Repeat
noOutLinkShare = 0
for each node n in the graph that has no outlinks

noOutLinkShare = noOutLinkShare + dampingfactor x (pageRank(n)/nNodes)
endFor
for each node n in the graph

nRank = noOutLinkShare + (1 − dampingFactor)/nNodes // Page rank from
// random jumps

neighboursShare = 0
for each backneighbour b of n

neighboursShare = neighboursShare + pageRank(b)/count of outedges of b
EndFor
NewpageRank n = nRank + dampingFactor x neighboursShare

endFor
Update 𝑝𝑎𝑔𝑒𝑅𝑎𝑛𝑘 with 𝑁𝑒𝑤𝑝𝑎𝑔𝑒𝑅𝑎𝑛𝑘 //update page-rank for each page

//with the newly computed values
𝑐𝑜𝑢𝑛𝑡 + +;
Until 𝑐𝑜𝑢𝑛𝑡 > 𝑖𝑡𝑒𝑟

}

Cycles and Spanning Trees

Cycle

•A cycle in a graph is a non-empty path which begins and
ends at the same vertex.

•A simple cycle is a cycle with no repeated vertices, except
for the beginning and the ending vertex.

•C1 = (V, X, Y,W, U, V) is a simple cycle

•C2 = (U,W, X, Y,W, V, U) is a cycle that is
•not simple

Courtesy: karsten lundqvist, ECS

Finding a Cycle in an Undirected
Graph
•Many possible approaches: DFS based, BFS based and
Topological sort based.

How DFS Works
•We start our search from a particular node.
•We then explore other nodes as long as we can go along
a path.
•When reaching the end of the path, we do a backtrack

up to the point where we began from and repeat the
cycle until we have visited all nodes

DFS Pseudocode

𝑑𝑓𝑠𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙(𝐺𝑟𝑎𝑝ℎ 𝐺) {

for each node n: n.visited = false

for some node n: DFS(n)

}

DFS(𝑁𝑜𝑑𝑒 𝑛) {

n.marked = true

print n

for each j adjacent to n:

if(!j.visited) {

DFS(j)

}

}

Example – DFS Traversal

15

A B

C D

F

E

G

0 0 0 0 0 0 0

B
C
D

Visited

A

A

C

D

E

B

FG

1

E

G
F

C, B

A, D, E
A, D
C, B, E

B, D, F, G
E, G
E, F

1 1 1 1 1 1

A B C D E F G

Visited

You can also use a data member visited in the
node definition. OR
Use a visited Set

2
1
0

3
4
5

6

Example – DFS Traversal

16

A B

C D

F

E

G

A

C

D

E

B

FG

In the graph but

not in the search

tree

Back edge: Edge which is
missing in the DFS tree but
present in the graph

All the back edges which DFS skips over are part of cycles

Cycle Detection using DFS
A B

C D

F

E

G

B
C
D

A

E

G
F

A, D, E
A, D
C, B, E

B, D, F, G
E, G
E, F

C, B
DFS (A, -1), visited(A) = true

DFS (C, A), visited(C) = true

DFS (D, C), visited(D) =true

DFS (B, D), visited(B)=true

A has already been visited and A≠ parent(B). Cycle found

• Steps:

- Start DFS traversal

- Keep track of parent of the node being
visited

- If you find a node that has already been
visited but is not the parent of the current
node being visited – there is a cycle

2
1
0

3
4
5

6

Cycle Detection using DFS

•What if the graph has multiple components?

•Repeat for each component until all nodes are visited or
a cycle is found:

•Repeat the DFSCycle search from each unvisited node
until all the nodes are visited or a cycle is found.

A B

C D

F

E

G

CycleDetection(Graph graph){
nNodes = get count of nodes in the graph
boolean visited[nNodes] // all initialized to false as none of the nodes

//have been visited
//Start DFS traversal
for (v = 0; v < nNodes; v++) {

if (!visited[v]) {
if (isCyclicDFS(graph, v, visited, -1))

return true;
}

}
return false;

}
boolean isCyclicDFS(Graph graph, int v, boolean visited[], int parent) {

visited[v] = true;
for each neighbour n of node v {

if (!visited[n]) {
if (isCyclicDFS(graph, n, visited, v))

return true;
} else if (n != parent) {

// If the adjacent vertex is visited and is not parent of
//current vertex, then there is a cycle in the graph
return true;

}
}
return false;

}

Next Lecture

Spanning Trees

