COMP261
Algorithms and Data Structures
2024 Tri 1

Jyoti Sahni

Jyoti.sahni@ecs.vuw.ac.nz
Office Hours (COMP261): AM414, Thursday 10:00 - 12:00

mailto:jyoti.sahni@ecs.vuw.ac.nz

Test 3

* When: 5-6 pm Thursday, May 9, 2024

* Syllabus: Everything covered from Week 7 — Tuesday
(May 7), Week 9

- No lecture at 1:00 pm on Thursday, May 9

- Previous year question papers - 2023, 2022 (some
sample questions)

- Refer to Test3Preparation.pdf at the course wiki

https://ecs.wgtn.ac.nz/foswiki/pub/Courses/COMP261_2024T1/LectureSchedule/Tes3Preparation.pdf

Recap: Centrality

Centrality algorithms are used to understand the roles of
particular nodes in a graph and their impact on that
network.

* Degree centrality — Baseline metric

* Closeness centrality — How central a node is to the group
* Between centrality — finding control points

* Ranking — Overall influence

Different centrality algorithms can produce significantly
different results based on what they were created to
measure.

Recap: Page Rank

All the centrality measures (covered till now) measure the direct
influence of a node. Page rank measure the transitive influence
of nodes (influence of neighbours and neighbours of neighbours)

Page Rank, named after both “web page” and Google co-founder
Larry Page, was the first algorithm that was used by Google to
rank websites in their search engine results.

How PageRank works for the Google search engine: It counts the
number and quality of links to a page to determine a rough
estimate of how important the website is.

The underlying assumption is that a page with more incoming
and more influential incoming links is more likely a credible
source.

Recap: Some Preliminaries

* Backedge: If page A links out to
page B, then page B is said to
have a “backlink” from page A.

*PR(P) — Each page P has a
notion of its own page rank.

*C(P) — Count of outgoing links
for page P. Each page spreads its
vote out evenly amongst all of it’s
outgoing links.

* We'll study a simplified version

s | D

U

(@]

- <
<
—
I
—
—
—
—
—

1

S

-
=
t

Recap: Some Preliminaries

* Page rank of a page P is

dependent on the page rank of the =0 ¢
pages that have an outgoing link to = —y
P (nodes pointing to P) | E— I-E
*E.g. Page rank of A depends upon J=Am 1
page ranks of C and D. 'I=E'

* The PageRank transferred from a _Bm

given page to the targets of its — g
outgoing links is divided equally = —
among all outbound links. ! =

Some Preliminaries: Page Rank

*Random Surfer model: Models how someone might

browse the web wit
PageRank theory ho
randomly clicking on

hout any particular goal in mind. The
ds that an imaginary surfer who is

inks will eventually stop clicking.

Damping factor: The probability, at any step, that the

person will continue
The probability that
pageis1 — d.

following links is a damping factor d.
they instead jump to any random

*When calculating PageRank, pages with no outbound
links are assumed to link out to all other pages in the

collection.

1-d
PR(A) = (——) +d

B in inLinkNeighbours of A

PR(B) PR(K)

count(outbound links of B) Cwitn e count(Number of Nodes in G)
wi noOutLInkKs

computePageRank(Graph graph, int iter, double dampingfactor)({
nNodes = get count of nodes in the graph
//initialize
for each node n in graph
set pageRank(n) = 1.0/nNodes
endFor
count = 1
Repeat
noOutLinkShare = ©
for each node n in the graph that has no outlinks
noOutLinkShare = noOutLinkShare + dampingfactor x (pageRank(n)/nNodes)
endFor
for each node n in the graph
nRank = noOutLinkShare + (1 — dampingFactor)/nNodes // Page rank from
// random jumps
neighboursShare = 0
for each backneighbour b of n
neighboursShare = neighboursShare + pageRank(b)/count of outedges of b

EndFor
NewpageRank(n) = nRank + dampingFactor x neighboursShare
endFor
Update pageRank with NewpageRank //update page-rank for each page
//with the newly computed values
count + +;

Until count > iter

Cycles and Spanning Trees

Cycle

* A cycle in a graph is a non-empty path which begins and
ends at the same vertex.

* A simple cycle is a cycle with no repeated vertices, except
for the beginning and the ending vertex.

*C, = (V,XY,W,U,V)is asimple cycle

*C, = (UW, X, Y,W,V,U) is a cycle that
* not simple

100T1

100T2

200T1

200T2

300T1

300T2

400T1

400T2

EMNGR1Z1 ENGR101
Engr Maths Engr tech

COMP10Z/112
Pragrameming

prereq prereq.
v '
ENGR123 EMGA. COMPID
Descr + Stat Engr design Intro OS + algo
preveg
prereq [MATH1E0]
SWENZZ1 COMP261
Software dev D5 + algo
presed
ENGR0L SWENZ25
Engineering Software des
preregq
prereg far} prereq (and) qrereq (ar}
/ k.

SWEN303

SWENIDA

ENGR301
Praject manage 1 ; COMPIOT
Ul engineering D enginesring Safety critical &l

SWENI2G

[

prareq prerg
ENGR302 SWENZO01
Praject manage 2 Saftware eng
ar

MWENZ41
Ss prog

4
™

MWENZAS
Cloud and net

prered
prereq (and) and o
COMPZE1/MNWE

{and}

ne of
N2417SWENZ21

NWENIOZ WWEN3D4
Metwork des. Metwork app

CYBRI71
Intro Cyber

prereg (and)

¥
CYBR271
Secure prog

peareq {or) prareq {and)
and CGRAZS1
CGRAIS2 CYBRITL
Image gragh Sysfnet secure

A

CGRA3S50
Real-tima 30

CYBR3IT3
Human/org sec

@ COMP313
prered Sves prereq excliading enchiding
A4
EMGRAOL SWEN4ZZ SWEN433 SWEN#3S AIMLA2A] AIMLAZT [AIMLA2E] [AIMLEZS]
axcliding
SWEN431 SWENS 38 SWEN432 AlMLAZL AIML425 AIML426 AlMLA30 AlMLATL
Adv Frog Lang Sp: DevOps Ay DB ML toals NN and DL Evo Comp Application AL Tapic in Al

prereq {and)
and
CYBRZTL ar COMP261
CYBR3T2
Crypeography
préres

CYBRATS CYBR4TZ preveq
Malwara Digl forensics

Courtesy: karsten lundgvist, ECS

)

CGRALS
graph + games

prereq (and)

CGRAZSZ
Game eng prog

Finding a Cycle in an Undirected
Graph

* Many possible approaches: DFS based, BFS based and
Topological sort based.

How DFS Works
* We start our search from a particular node.
* We then explore other nodes as long as we can go along

a path.

* When reaching the end of the path, we do a backtrack
up to the point where we began from and repeat the
cycle until we have visited all nodes

DFS Pseudocode

dfsTraversal(Graph G) {
for each node n: n.visited = false
for some node n: DFS(n)
}
DFS(Node n) {
n.marked = true
print n
for each j adjacent to n:
if(1j.visited) {
DFS(j)

Example - DFS Traversal
(A— &) 0

You can also use a data member visited in the
node definition. OR
Use a visited Set

>
o
(@)
O
m
M
()]

15

Example - DFS Traversal

In the graph but
not in the search
tree

Back edge: Edge which is
missing in the DFS tree but
present in the graph

PR
-
”
7
'
C

All the back edges which DFS skips over are part of cycles

Cycle Detection using DFS

* Steps:

- Start DFS traversal

- Keep track of parent of the node being
visited

- If you find a node that has already been

visited but is not the parent of the current
node being visited — there is a cycle

DFS (A, -1), visited(A) = true

DFS (C, A), visited(C) = true

/

DFS (D, C), visited(D) =true

/

DFS (B, D), visited(B)=true

A has already been visited and Az parent(B). Cycle found

Cycle Detection using DFS

* What if the graph has multiple components?

®)

o—

* Repeat for each component until all nodes are visited or
a cycle is found:

* Repeat the DFSCycle search from each unvisited node
until all the nodes are visited or a cycle is found.

CycleDetection(Graph graph){
nNodes = get count of nodes in the graph
boolean visited[nNodes] // all initialized to false as none of the nodes
//have been visited
//Start DFS traversal
for (v = 0; v < nNodes; v++) {
if (!visited[v]) {
if (isCyclicDFS(graph, v, visited, -1))
return true;
}
}
return false;
}
boolean isCyclicDFS(Graph graph, int v, boolean visited[], int parent) {
visited[v] = true;
for each neighbour n of node v {
if (lvisited[n]) {
if (isCyclicDFS(graph, n, visited, v))
return true;
} else if (n != parent) {
// If the adjacent vertex is visited and is not parent of
//current vertex, then there is a cycle in the graph
return true;

}
}

return false;

Next Lecture

Spanning Trees

